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Abstract 

Background:  Genome assembly, which involves reconstructing a target genome, 
relies on scaffolding methods to organize and link partially assembled fragments. The 
rapid evolution of long read sequencing technologies toward more accurate long 
reads, coupled with the continued use of short read technologies, has created a unique 
need for hybrid assembly workflows. The construction of accurate genomic scaffolds 
in hybrid workflows is complicated due to scale, sequencing technology diversity (e.g., 
short vs. long reads, contigs or partial assemblies), and repetitive regions within a tar-
get genome.

Results:  In this paper, we present a new parallel workflow for hybrid genome scaf-
folding that would allow combining pre-constructed partial assemblies with newly 
sequenced long reads toward an improved assembly. More specifically, the workflow, 
called Maptcha, is aimed at generating long scaffolds of a target genome, from two 
sets of input sequences—an already constructed partial assembly of contigs, and a set 
of newly sequenced long reads. Our scaffolding approach internally uses an alignment-
free mapping step to build a 〈contig,contig〉 graph using long reads as linking informa-
tion. Subsequently, this graph is used to generate scaffolds. We present and evaluate 
a graph-theoretic “wiring” heuristic to perform this scaffolding step. To enable efficient 
workload management in a parallel setting, we use a batching technique that parti-
tions the scaffolding tasks so that the more expensive alignment-based assembly step 
at the end can be efficiently parallelized. This step also allows the use of any standalone 
assembler for generating the final scaffolds.

Conclusions:  Our experiments with Maptcha on a variety of input genomes, 
and comparison against two state-of-the-art hybrid scaffolders demonstrate 
that Maptcha is able to generate longer and more accurate scaffolds substantially 
faster. In almost all cases, the scaffolds produced by Maptcha are at least an order 
of magnitude longer (in some cases two orders) than the scaffolds produced by state-
of-the-art tools. Maptcha runs significantly faster too, reducing time-to-solution 
from hours to minutes for most input cases. We also performed a coverage experi-
ment by varying the sequencing coverage depth for long reads, which demonstrated 
the potential of Maptcha to generate significantly longer scaffolds in low coverage 
settings ( 1×–10×).
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Background
Advancements in sequencing technologies, and in particular, the ongoing evolution 
from high throughput short read to long read technologies, have revolutionized bio-
logical sequence analysis. The first generation of long read technologies such as PacBio 
SMRT [40] and Oxford Nanopore Technologies (ONT) [16] sequencing platforms, were 
able to break the 10 Kbp barrier for read lengths. However, these technologies also carry 
a higher cost per base than short read (e.g., Illumina) platforms, and they also have much 
higher per-base error rate (5–15%) [19, 29, 32, 33, 60]. Recent long read technologies 
such as PacBio HiFi (High Fidelity) [24, 57, 60] have significantly improved accuracy 
(99.9%).

Genome assembly, irrespective of the sequencing approach employed, strives to 
accomplish three fundamental objectives. Firstly, it aims to reconstruct an entire target 
genome in as few pieces or “contigs” (i.e., contiguous sequences) as possible. Secondly, 
the goal is to ensure the highest accuracy at the base level. Lastly, the process seeks to 
minimize the utilization of computational resources. Short read assemblers effectively 
address the second and third objectives [10, 28, 59], while long read assemblers excel in 
achieving the first goal [12, 31].

An important aspect of genome assembly is to to maintain correctness in genome 
reconstruction [3, 53], including composition, continuity, and contiguity. Compositional 
correctness refers to the correctness of the sequence captured in the output contigs, and 
is typically measured by the number of misassemblies. Continuity is primarily assessed 
using metrics such as the N50 value and related measures that show to the extent long 
stretches of the genome are captured in the contigs correctly, or alternatively how frag-
mented is an output assembly. In addition to continuity, contiguity across contigs (i.e., 
the order and orientation of contigs along the unknown genome) is also an important 
factor, particularly for scaffolding methods.

In the realm of contemporary genome assembly, long read assemblers have adopted 
the Overlapping-Layout-Consensus (OLC) paradigm [12, 30, 31, 48, 52, 56] and de 
Bruijn graph approaches [39, 54, 61]. These assemblers utilize advanced algorithms that 
greatly accelerate the comparison of all-versus-all reads. Many long read assembly tools 
also perform error correction by representing long reads through condensed and spe-
cialized k-mers, such as minimizers [47] and minhashes [52]. This refined representation 
expedites the identification of overlaps exceeding 2 kb. The most recent long read assem-
blers are now progressing toward reducing computational resources [8, 9, 41]. However, 
the assembly of uncorrected long reads introduces challenges, necessitating additional 
efforts in the form of consensus polishing [11, 36, 58]. Genome assembly polishing is a 
process aimed at enhancing the base accuracy of assembled contig sequences. Typically, 
long read assemblers undergo a singular round of long read polishing, followed by mul-
tiple rounds of polishing involving both long and short reads using third-party tools [31, 
35, 58].

The rapid progress in sequencing technologies is providing extensive quantities of raw 
genomic data. However, the reconstruction of a complete and accurate genome from 
these fragmented sequences remains a challenge due to inherent complexities, repetitive 
regions, and limitations of individual sequencing techniques. Genome assembly heav-
ily relies on scaffolding methods to arrange and link these fragments. In other words, 
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as the conventional assembly step focuses on generating contigs that represent contigu-
ous stretches of the target genome, scaffolding focuses on ordering and orienting those 
contigs, as well as filling the gaps between adjacent contigs using any information that 
is contained in the raw reads. Relying on a single sequencing technology for scaffolding 
could still result in incomplete or fragmented assemblies [2].

This limitation necessitates hybrid scaffolding approaches that are capable of inte-
grating sequences from multiple sources—sequencing technologies and/or prior con-
structed draft assemblies.

Hybrid scaffolding: The integration of contigs and long read information for scaffold-
ing purposes can be a promising approach to improve existing genome assemblies [38]. 
Assemblies generated from short reads are known for their high accuracy, but are often 
limited by shorter contig lengths, as measured by N50 or NG50. On the other hand, long 
read sequencing technologies can span larger sections of the genome but are often hin-
dered by higher costs which limit their sequencing coverage depths (to typically under 
20× vs. 100× for short reads), and higher error rates compared to short read sequencing 
complicating de novo assembly. Hybrid scaffolding workflows can overcome these limi-
tations by integrating the fragmented assemblies of contigs obtained from short reads 
and utilizing the long reads to order and orient contigs into longer scaffolds.

In this paper, we visit the hybrid scaffolding problem. Given an input set of contigs 
( C ) generated from short reads, and a set of long reads ( L ), hybrid scaffolders aim to 
order and orient the contigs in C using linking information inferred from the long reads 
L . Such an approach has the advantage of reusing and building on existing assemblies 
to create improved versions of assemblies incrementally, as more and more long read 
sequencing data sets are available for a target genome. This workflow can also be easily 
adapted to scenarios where short reads are available (in place of contigs). In such cases, 
the short reads can be assembled into contigs prior to the application of our hybrid 
scaffolder.

Related work: While the treatment of the hybrid scaffolding problem is more recent, 
there are several tools that incorporate long read information for extending contigs into 
scaffolds. The concept of genome scaffolding initially emerged in the realm of classical de 
novo genome assembly, as introduced by Huson et al. [27]. This pioneering work aimed 
to arrange and align contigs utilizing paired-end read information alongside inferred 
distance constraints. Of the two steps in scaffolding, the alignment step is not only com-
putationally expensive, but it can also lead to loss in recall using traditional mapping 
techniques. On the other hand, the second step of detecting the true linking information 
between contig pairs can be prone to false merges, impacting precision—particularly for 
repetitive genomes.

Over subsequent years, a suite of tools emerged within this classical framework, each 
striving to refine scaffolding methodologies [2, 15, 18, 20, 37, 43, 49, 50]. For an exhaus-
tive exploration of these methods, refer to the comprehensive review by Luo et al. [38]. 
Most of these tools utilize alignments of long reads to the contigs of a draft assembly 
to infer joins between the contig sequences. The alignment information is subsequently 
used to link pairs of contigs that form successive regions of a scaffold. SSPACE-Lon-
gRead produces final scaffolds in a single iteration and has shown to be faster than some 
of the other scaffolders for small eukaryaotic genomes; but it takes very long runtimes 
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on larger genomes. For instance, SSPACE-LongRead takes more than 475 h to assemble 
Z.mays and for the Human CHR1, it takes more than a month. OPERA-LG [21] provides 
an exact algorithm for large and repeat-rich genomes. It requires significant mate-pair 
information to constrain the scaffold graph and yield an optimised result. OPERA-LG is 
not directly designed for the PacBio and ONT data. To construct scaffold edges and link 
contigs into scaffolds, OPERA-LG needs to simulate and group mate-pair relationship 
information from long reads.
LRScaf [44] is one of the most recent long read scaffolding tools which utilizes align-

ment tools like BLASR [6] or Minimap2 [34] to align the long reads against the contigs, 
and generates alignment information. These alignments form the basis for establishing 
links between contigs. Subsequently, a scaffold graph is constructed, wherein vertices 
represent contig ends, and edges signify connections between these ends and associated 
long reads. This graph also encapsulates information regarding contig orientation and 
long read identifiers. To mitigate errors and complexities arising from repeated regions 
and high error rates, LRScaf meticulously refines the scaffold graph. This refinement 
process involves retaining edges associated with a minimal number of long reads and 
ensuring the exclusion of edges connecting nodes already present within the graph. The 
subsequent stage involves navigating linear stretches of the scaffold graph. LRScaf trav-
erses the graph, systematically identifying linear paths until encountering a divergent 
node, signifying a branching point. At this juncture, the traversal direction is reversed, 
ensuring exhaustive exploration of unvisited and distinct nodes within the graph. This 
iterative process continues until all unique nodes are visited, resulting in a complete set 
of scaffolds from the linear paths within the graph. As can be expected, this rigorous 
process can be time-consuming, taking hours of compute time even on medium sized 
genomes (as shown later in the Results).

Another recent tool, ntLink [14] utilizes mapping information from draft assem-
blies (i.e., contigs) and long reads for scaffolding. This tool employs a minimizer-based 
approach to first identify the mapped pairs of long reads and contigs, and then uses the 
mapping information to bridge contigs. However, in their minimizer selection method, 
non-unique minimizers are discarded. This is done so that repetitive portions within 
the contigs do not cause false merges in scaffolds. This scheme however limits the 
lengths of the scaffolds that could be generated by this method (as will be shown in our 
comparisons).

Contributions

We present a new scalable algorithmic workflow, Maptcha, for hybrid scaffolding on 
parallel machines using contigs ( C ) and high-fidelity long reads ( L ). Figure 1 illustrates 
the major phases of the Maptcha workflow. Our graph-theoretic approach constructs a 
contig graph from the mapping information between long reads and contigs, then uses 
this graph to generate scaffolds. The key ideas of the approach include: a) a sketching-
based, alignment-free mapping step to build and refine the graph; b) a vertex-centric 
heuristic called wiring to generate ordered walks of contigs as partial scaffolds and c) a 
final linking step to bridge the partial scaffolds and create the final set of scaffolds.

To enhance scalability, we implemented a parallel batching technique for scaffold gen-
eration, enabling any standalone assembler to run in a distributed parallel manner while 
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generating high-quality scaffolds. We use Hifiasm [8] as the standalone assembler and 
JEM-mapper [45, 46] for the mapping step.

Our experiments show that Maptcha generates longer and more accurate scaffolds 
than the state-of-the-art hybrid scaffolders LRScaf and ntLink, while substantially 
reducing time to solution. For example, the scaffolds produced on the test input Human 
chr 7, the NGA50 of Maptcha is around 18× and 330× larger compared to that of 
LRScaf and ntLink respectively. Maptcha is also significantly faster, reducing time-
to-solution from hours to minutes in most cases. Furthermore, comparing Maptcha 
with a standalone long read assembler highlights the benefits of integrating contigs with 
long reads, resulting in longer scaffolds, fewer misassemblies, and faster runtimes. Cov-
erage experiments (done by varying the sequencing coverage depth for long reads) dem-
onstrated the potential of Maptcha to generate considerably longer scaffolds even in 
low coverage settings (1× to 10×).

The Maptcha software is available as open source for download and testing at https://​
github.​com/​Oiesw​arya/​Maptc​ha.​git.

Methods
In this section, we describe in detail all the steps of our Maptcha algorithmic frame-
work for hybrid scaffolding. Let C = {c1, c2, . . . cn} denote a set of n input contigs (from 
prior assemblies). Let L = {r1, r2, . . . rm} denote a set of m input long reads. Let |s| 
denote length of any string s. We use N = �n

i=1|ci| and M = �m
i=1|ri| . Furthermore, for 

contig c, let c̄ denote its reverse complement.
Problem statement: Given C and L , the goal of our hybrid scaffolding problem is to 

generate a set of scaffolds S such that a) each scaffold S ∈ S represents a subset of C such 
that no two subsets intersect (i.e., Si ∩ Sj = ∅ ); and b) each scaffold S ∈ S is an ordered 
sequence of contigs [c1, c2, . . .] , with each contig participating in either its direct form c 
or its reverse complemented form c̄ . Here, each successive pair of contigs in a scaffold is 

Fig. 1  A schematic illustration of the major phases of the proposed Maptcha approach

https://github.com/Oieswarya/Maptcha.git
https://github.com/Oieswarya/Maptcha.git
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expected to be linked by one or more long reads r ∈ L . Intuitively, there are two objec-
tives: i) maximize recall—i.e., to generate as few scaffolds as possible, and ii) maximize 
precision—i.e.,the relative ordering and orientation of the contigs within each scaffold 
matches the true (but unknown) ordering and orientation of those contigs along the tar-
get genome.

Algorithm: The design of the Maptcha scaffolding algorithmic framework is broken 
down into three major phases.

•	 contig expansion: In the first phase, using the contigs as seeds, we aim to 
extend them on either end using long reads that align with those contigs. This exten-
sion step is also designed to detect and connect successive pairs of contigs with direct 
long read links. This yields the first generation of our partial scaffolds.

•	 longread island construction: Note that not all long reads may have con-
tributed to these partial scaffolds, in particular those long reads which fall in the gap 
regions of the target genome between successive scaffolds. Therefore, in the next 
phase, we detect the long reads that do not map to any of the first generation partial 
scaffolds, and use them to build partial scaffolds corresponding to these long read 
island regions. This new set of partial scaffolds corresponds to the second generation 
of partial scaffolds.

•	 link scaffolds with bridges: Finally, in the last phase, we aim to link the 
first and second generation scaffolds using long reads that serve as bridges between 
them. This step outputs the final set of scaffolds.

This three phase approach has the following advantages. First, it provides a systematic 
way to progressively combine the sequence information available from the input con-
tigs (which typically tend to be more accurate albeit fragmented, if generated from 
short reads) to the input long reads (which may be significantly larger in number), in an 
incremental fashion. Next, this incremental approach also could reduce the main com-
putational workload within each phase that is required for mapping long reads. More 
specifically, we choose to align long reads either to the contigs or to the generated partial 
scaffolds wherever possible, and in the process restrict the more time consuming long 
read to long read alignments only to the gap regions not covered by any of the contigs or 
partial scaffolds. In this paper, we use the JEM-mapper, which is a recently developed 
fast (parallel) and accurate sketch-based alignment-free long read mapping tool suited 
for hybrid settings [43, 45]. Finally, by decoupling the contig ordering and orientation 
step (which is a graph-theoretic problem) from the scaffold generation step (which is 
an assembly problem), we are able to efficiently parallelize the scaffold generation step. 
This is achieved through a batching step that splits the input sequences into separate 
batches to allow the use of any existing standalone long read assembler to generate the 
final sequence scaffolds. Our framework is capable of leveraging any off-the-shelf long 
read mapping tool. In this paper, we use Hifiasm [8], which is one of the most widely 
used state-of-the-art long read assembly tool, as our standalone assembler.
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In what follows, we describe the details of our algorithm for each of the three major 
phases of our approach. Figure  2 provides an illustration of all the main steps within 
each of these three phases.

Phase: contig expansionThe goal of this phase is to enhance contigs by incor-
porating long reads that have been aligned with them. This process allows for the 
extension of contigs by connecting multiple ones into a scaffold using the long reads 
aligned to them, thereby increasing the overall length of the contigs. This is achieved 
by first mapping the long reads to contigs to detect those long reads that map to con-
tigs, and then use that information to link contigs and extend them into our first gen-
eration of partial scaffolds (panel I in Fig. 2).

We use the following definition of a partial scaffold in our algorithm: A partial scaf-
fold corresponds to an ordered and oriented sequence of an arbitrary number of con-
tigs [ci, cj , ck , . . .] such that every consecutive pair of contigs along the sequence are 
linked by one or more long reads.

Step: Mapping long reads to contigs: For mapping, we use an alignment-free, dis-
tributed memory parallel mapping tool, JEM-mapper because it is both fast and 
accurate [45, 46]. JEM-mapper employs a sketch-based alignment-free approach 
that computes a minimizer-based Jaccard estimator (JEM) sketch between a subject 

Fig. 2  A detailed illustration of the Maptcha pipeline showing the different phases and their steps
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sequence and a query sequence. More specifically, in a preprocessing step, the algo-
rithm generates a list of minimizing k-mers [47, 51] from each subject (i.e., each con-
tig) and then from that list computes minhash sketches [4] over T random trials (we 
use T = 30 for our experiments). Subsequently, JEM sketches are generated from 
query long reads. Based on these sketches, for each query the tool reports the subject 
to whom it is most similar. For further details on the methodology, refer to the origi-
nal paper by Rahman et al. [45].

One challenge of using a mapping tool is that the subject (contigs) and query (long 
reads) sequences may be of variable lengths, thereby resulting possibly in vastly dif-
ferent sized ground sets of minimizers from which to draw the sketches. However, 
it is the minimizers from the aligning region between the subject and query that 
should be ideally considered for mapping purposes. To circumvent this challenge, in 
our implementation we generate sketches only from the two ends of a long read. In 
other words, our mapping step maps each long read to at most two contigs, one cor-
responding to each end of that long read. Note that this implies a contig may poten-
tially appear in the mapped set for multiple long reads (depending on the sequencing 
coverage depth). In our implementation, we used a length of ℓ base pairs ( ℓ = 2Kbp 
used in our experiments) from either end of a long read for this purpose. The intuitive 
rationale is that since we are interested in a scaffolding application, this approach of 
involving the ends of long reads (and their respective alignment with contigs) pro-
vides a way to link two distantly located contigs (along the genome) through long read 
bridges.

Using this approach in our preliminary experiments, we compared JEM-mapper 
with Minimap2 and found that JEM-mapper yielded better quality results for our 
test inputs (results summarized in the supplementary section Figure S2).

Step: Graph construction: Let M denote the mapping output, which can be 
expressed as the set of 2-tuples of the form 〈c, r〉—where long read r maps to a contig 
c—output by the mapper. We use Lc ⊆ L to denote the set of all long reads that map 
to contig c, i.e., Lc = {r | �c, r� ∈ M} . Informally, we refer to Lc as the long read set cor-
responding to contig c.

Using the information in M , and in Lc for all c ∈ C , we construct an undirected 
graph G(V, E), where:

•	 V is the vertex set such that there is one vertex for every contig c ∈ C ; and
•	 E is the set of all edges of the form (ci, cj) , such that there exists at least one long read 

r that maps to both contigs ci and cj (i.e., Lci ∩ Lcj �= ∅).

Intuitively, each edge is the result of two contigs sharing one or more long reads in 
their mapping sets. In our implementation, we store the set of long read IDs corre-
sponding to each edge. More specifically, along an edge (ci, cj) ∈ E , we also store its 
long read set Li,j given by the set Lci ∩ Lcj . The cardinality of set Li,j is referred to as the 
“support value” for the edge between these two contigs. Since the vertices of G cor-
respond to contigs, we refer to G as a contig graph.
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Next, the graph G along with all of its auxiliary edge information as described 
above, are used to generate partial scaffolds. We perform this in two steps: a) first 
enumerate paths in the contig graph that are likely to correspond to different par-
tial scaffolds (this is achieved by our wiring algorithm that is described next); and b) 
subsequently, generate contiguous assembled sequences for each partial scaffold by 
traversing the paths from the previous step (this is achieved by using a batch assembly 
step described subsequently).

Step: Wiring heuristic: Recall that our goal is to enumerate partial scaffolds, where 
each partial scaffold is a maximal sequence of contiguously placed (non-overlapping) 
contigs along the target genome. In order to enumerate this set of partial scaffolds, we 
make the following observation about paths generated from the contig graph G(V, E). 
A partial scaffold [ci, ci+1, . . . , cj] can be expected to be represented in the form of a 
path in G(V, E). However, it is important to note that not all graph paths may corre-
spond to a partial scaffold. For instance, consider a branching scenario where a path 
has to go through a branching node where there are more than one viable path out of 
that node (contig). If a wrong decision is taken to form paths out of branching nodes, 
the resulting paths could end up having chimeric merges (where contigs from unre-
lated parts of the genome are collapsed into one scaffold). While there is no way to 
check during assembly for such correctness, we present a technique we call wiring, as 
described below, to compute partial scaffolds that reduce the chance of false merges.

The wiring algorithm’s objective is one of enumerating maximal acyclic paths in 
G—i.e., maximality to ensure longest possible extension of the output scaffolds, and 
acyclic to reduce the chance of generating chimeric errors due to repetitive regions in 
the genome (as illustrated in Fig. 5). This problem is trivial if each vertex in V has at 
most two neighbors in G, as it becomes akin to a linked list of contigs, each with one 
predecessor contig and one successor contig. However, in practice, we expect several 
branching vertices that have a degree of more than two (indicating potential presence 
of repeats). Therefore, finding a successor and/or a predecessor vertex becomes one 
of a non-trivial path enumeration problem that carefully resolves around branching 
nodes.

Fig. 3  Illustration of the wiring heuristic, shown centered at a contig vertex ci . On either side of ci are 
shown other contigs ( c1 through ck ) that each have at least one long read common with ci . These long read 
sets shared between any contig (say j) and ci are denoted by Li,j (same as Lj,i ). Out of all possible pairwise 
connections between the incident edges, the wiring heuristic will select only one edge pair
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Algorithm: Our wiring algorithm is a linear time algorithm that first computes a 
“wiring” internal to each vertex, between edges incident on each vertex, and then uses 
that wired information to generate paths. First, we describe the wiring heuristic.

Step 1: Wiring of vertices: For each vertex c ∈ V  that has at least degree two, the algo-
rithm selects a subset of two edges incident on that vertex to be “wired”, i.e., to be con-
nected to form a path through that vertex, as shown in Fig. 3. The two edges so wired 
determine the vertices adjacent on either side of the current vertex c.

To determine which pair of edges to connect, we use the following heuristic. Let Li 
denote the set of long read IDs associated with edge ei . We then (hard) wire two dis-
tinct edges ei and ej incident on a vertex c, if Li ∩ Lj �= φ and it is maximized over all 
possible pairs of edges incident on c, i.e., arg maxei ,ej∈E(c) |Li ∩ Lj| , where E(c) denotes 
all edges incident on c.

The simple intuition is to look for a pair of edges that allows maximum long read-
based connectivity in the path flowing through that vertex (contig). This path has the 
largest support by the long read set and is therefore most likely to stay true to the con-
nectivity between contigs along the target genome. All other possible paths through 
that vertex are ignored. The resulting wired pair of edges 〈ei, ej〉 generated from each 
vertex c is added in the form of wired edge 3-tuple 〈ci, cj , c〉 . We denote the resulting 
set as W.

There are two special cases to consider here. First, if no pair of edges incident on a 
vertex c have long reads in common (i.e., Li ∩ Lj = φ for all pairs of edges incident), 
then there is no evidence of a link between any pair of edges on that contig. There-
fore, our algorithm would not wire any pair of edges for that contig. In other words, if 
a walk (step 2) should reach this vertex (contig), such a walk would terminate at this 
contig.

As another special case, if a vertex c has degree one, then the wiring task is trivial 
as there exists only one choice to extend a path out of that contig, ce , along the edge e 
attached to that vertex. We treat this as a special case of wiring by introducing a dummy 
contig cd to each such vertex with degree one, and adding the tuple 〈cd , ce, c〉 to W.

Note that by this procedure, each vertex c has at most one entry in W . To implement 
this wiring algorithm, note that all we need is to store the set of long read IDs along each 
edge. A further advantage of this approach is that this is an independent decision made 
at each vertex, and therefore this step easily parallelizes into a distributed algorithm that 
works with a partitioning of the input graph.

Step 2: Path enumeration: In the next step, we enumerate edge-disjoint acyclic 
paths using all the wired information from W . The rationale behind the edge-disjoint 
property is to reduce the chance of genomic duplication in the output scaffolds. The 
rationale for avoiding cycles in paths is two-fold—both to reduce genomic duplica-
tion due to repetitive contigs, as well as to reduce the chance of creating chimeric 
scaffolds.

The path enumeration algorithm (illustrated through an example in Fig. 4) works as 
follows. 
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	(i)	 Initialize a visit flag at all vertices and set them to unvisited.
	(ii)	 Initialize a work queue Q of all vertices with degree one (e.g., ca , ce , cf  , cg and ch in 

Fig. 4).
	(iii)	 For each vertex c ∈ Q , if c is still unvisited, dequeue c, start a new path at c 

(denoted by Pc ), and grow the path as follows. The edge e incident on c connects 
c to another vertex, say c1 . Then c1 is said to be the successor of c in the path and 
is appended to Pc . We now mark the vertex c as visited. Subsequently, the algo-
rithm iteratively extends the path by simply following the wired pairing of edges 
at each vertex visited along the way—marking each such vertex as visited and 
stitching together the path—until we arrive at one of the following termination 
conditions: 

Case a)	 Arrive at a vertex which has chosen a different predecessor vertex: See 
for example path P1 truncated at cb because the wiring at cb has chosen a differ-
ent pair of neighbors other than ca based on long read support, i.e., W contains 
〈cg , cc, cb〉 . In this case, we add the vertex cb at the end of the current path P1 and 
terminate that path.

Case b)	 Arrive at a vertex that is already visited: This again implies that no 
extension beyond this vertex is possible without causing duplication between 
paths, and so the case is handled the same way as Case a by adding the visited 
vertex as the last vertex in the path and the path terminated.

Case c)	 Arrive at a degree one vertex: This implies that the path has reached its 
end at the corresponding degree one contig and the path is terminated at this 
contig.

	  More examples of paths are shown in Fig. 4.

Fig. 4  Edge-disjoint acyclic paths generated from walking the contig-contig graph. Also shown below are 
the likely alignments of the individual paths to the (unknown) target genome G . Here, since the contig cb 
appears in two paths, it is likely to be contained in a repetitive region (X, X ′ ) as highlighted
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Provable properties of the algorithm

The above wiring and path enumeration algorithms have several key properties. 

Prop1	 Edge disjoint paths: No two paths enumerated by the wiring algorithm can inter-
sect in edges.

Proof  This is guaranteed by the wiring algorithm (step 1), where each vertex chooses 
only two of its incident edges to be wired to build a path. More formally, by contradic-
tion let us assume there exists an edge e that is covered by two distinct paths P1 and P2 . 
Then this would imply that both paths have to pass through at least one branching vertex 
c such that there exist �e1, e, c� ∈ W and �e2, e, c� ∈ W (for some e1  = e2  = e all incident 
on c). However, by construction of the wiring algorithm (step 1) this is not possible. 	
� �

Prop2	 Acyclic paths: There can be no cycles in any of the paths enumerated.

Proof  This is guaranteed by the path enumeration algorithm described above (step 
2). More specifically, the termination conditions represented by the Cases (a) and (b) 
clip any path before it forms a cycle. By not allowing for cycles, our algorithm prevents 
including the same contig more than once along a scaffold. This is done so as to prevent 
chimeric misassemblies of a repetitive contig (for example, repetitive regions X and X ′ 
illustrated in Fig. 4. 	�  �

Prop3	 Deterministic routing: The path enumeration algorithm is deterministic and gen-
erates the same output set of paths for a given W regardless of the order in which paths 
are generated.

Proof  This result follows from the fact that the wiring heuristic at each vertex is itself 
deterministic as well as by the conditions represented by Cases (a) and (b) to terminate a 
path in the path enumeration algorithm. More specifically, note that each vertex contrib-
utes at most one hard-wired edge pair into W and none of the other edge pair combina-
tions incident on that vertex could lead to paths. Given this, consider the example shown 
in Fig. 4, of two paths P1 and P2 converging onto vertex cb . Note that in this example, 
�cg , cc, cb� ∈ W . The question here is if it matters whether we start enumerating P1 first 
or P2 first. The answer is no. In particular, if P1 is the first to get enumerated, then ter-
mination condition Case (a) would apply to terminate the path to end at cb . Therefore, 
when P2 starts, it will still be able to go through cb . On the other hand, if P2 is the first 
path to get enumerated, then cb will get visited and therefore termination condition Case 
(b) would apply to terminate P1 at cb again. So either way, the output paths are the same. 
A more detailed example for this order agnostic behavior is shown in S3. This order 



Page 13 of 27Bhowmik et al. BMC Bioinformatics          (2024) 25:263 	

agnostic property allows us to parallelize the path enumeration process without having 
to synchronize among paths. 	�  �

As a corollary to Prop1 (on edge disjoint paths) and Prop2 (on acyclic paths), we now 
show an important property about the contigs from repetitive regions of the genome 
and how the wiring algorithm handles those contigs carefully so as to reduce the chances 
of generating chimeric scaffolds.

Corollary 1  Let cx be a contig that is completely contained within a repetitive region. 
Then this contig can appear as a non-terminal vertex1 in at most one path output by the 
wiring algorithm.

Proof  Consider the illustrative example in Fig. 5, which shows a contig cx that maps to 
a repeat X and its copy X ′ . In particular, if there is a trail of long reads linking the two 
repeat copies (from [cx, c2, . . . ck , cx] ), then it could generate a cycle in the graph G. How-
ever, based on Prop2, the cycle is broken by the path enumeration algorithm and there-
fore cx is allowed to appear as a non-terminal vertex only in at most one of the paths that 
goes through it. Even if there is no trail of long reads connecting the two repeat regions, 
the same result holds because of the edge disjoint property of Prop1. 	�  �

An important implication of this corollary is that our algorithm is careful in using 
contigs that fall inside repetitive regions. In other words, if a contig appears as a non-
terminal vertex along a path, then its predecessor and successor contigs are those to 
which this contig exhibits maximum support in terms of its long read based links. 
While it is not possible to guarantee full correctness, the wiring algorithm uses long 
read information in order to reduce the chances of repetitive regions causing chimeric 
scaffolds.

Fig. 5  A case of repeats ( X , X ′ ) causing cycles branching around contigs

1  A vertex is said to be non-terminal along a path if it appears neither at the start nor the end of that path.



Page 14 of 27Bhowmik et al. BMC Bioinformatics          (2024) 25:263 

Algorithm 1  Wiring Heuristic

Step: Parallelized contig batch assembly:
As the next step to wiring and path enumeration, we use the paths enumerated to 

build the output sequence (partial) scaffolds from this phase. To implement this step in a 
scalable manner, we make a simple observation that the paths enumerated all represent a 
disjoint set of partial scaffolds. Therefore, we use a partitioning strategy to partition the 
set of paths into fixed size batches (each containing s contigs), so that these independ-
ent batches can be fed in a parallel way, into a standalone assembler that can use both 
the contigs and long reads of a batch to build the sequences corresponding to the partial 
scaffolds. We refer to this parallel distributed approach as contig batch assembly.

The assembly of each batch is performed in parallel using any standalone assembler of 
choice. We used Hifiasm [8] for all our experiments. By executing contig-long read pairs 
in parallel batches, this methodology yields one or more scaffolds per batch, contribut-
ing to enhanced scalability in assembly processes. Furthermore, the selective utilization 
of long reads mapped to specific contig batches significantly reduces memory overhead, 
mitigating the risk of misassemblies that might arise from using the entire long read set 
which is evident in the results.

This strategy not only reduces memory utilization but also minimizes the potential for 
misassembly errors that could occur when unrelated sequences are combined.

Phase: longread island construction
The first phase of contig expansion, only focuses on expanding contigs using long 

reads that map on either side. This can be thought of a seed-and-extend strategy, where 
contigs are seeds and extensions happen with the long reads. However, there could be 
regions of the genome that are not covered by this contig expansion step. Therefore, in 
this phase, we focus on constructing “longread islands” to cover these gap regions. See 
Fig. 1 for an ilustration of these long read islands. This is achieved in two steps: 
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9a)	 First we detect all long reads that do not map to any of the first generation partial 
scaffolds (generated from the contig expansion step). More specifically, we give as 
input to JEM-mapper the set of all unused long reads (i.e., unused in the partial 
scaffolds) and the set of partial scaffolds output by the contig expansion phase. Any 
long read that maps to previous partial scaffolds are not considered for this phase. 
Only those that remain unmapped correspond to long reads that fall in the gap 
regions between the partial scaffolds.

(b)	 Next, we use the resulting set of unmapped long reads to build partial scaffolds. 
This is achieved by inputing the unmapped long reads to Hifiasm. The output of 
this phase represent the second generation of partial scaffolds, each corresponding 
to a long read island.

Phase: link scaffolds with bridges
In the last phase, we now link the first and second generations of partial scaffolds using 

any long reads that have been left unused so far. The objective is to bridge these two gen-
erations into longer scaffolds if there is sufficient information in the long reads to link 
them. Note that from an implementation standpoint this is same as for contig expansion, 
where the union of first and generation partial scaffolds serve as the “contigs” and the 
rest of the unused long reads serve as the long read set.

Complexity analysis

Recall that m denotes the number of input long reads in L , and n is the number of input 
contigs in C . Let p denote the number of processes used by our parallel program.

Out of the three major phases of Maptcha, the contig expansion phase is 
the one that works on the entire input sets ( L and C ). The other two phases work on a 
reduced subset of long reads (unused by the partial scaffolds of the prior scaffolds) and 
the set of partial scaffolds (which represents a smaller size compared to C ). For this rea-
son, we focus our complexity analysis on the contig expansion phase.

In the contig expansion phase we have the following steps: 
	(i)	 Mapping long reads to contigs: JEM-mapper [45] is an alignment-free distributed 

memory parallel implementation and hence processes load the long reads and con-
tigs in a distributed manner. The dominant step is sketching the input sequences 
(long reads or contigs). Given that the number of long reads is expected to be more 
than the number of contigs (due to sequencing depth), the complexity can be 
expressed as O(

mℓlT
p ) , where ℓl is average long read length and T  denotes the num-

ber of random trials used within its minhash sketch computation.
	(ii)	 Graph construction: Let the list of mapped tuples 〈c, r〉 from the previous step con-

tain T  tuples. These T  tuples are used to generate the contig graph by first sort-
ing all the tuples by their long read IDs to aggregate all contigs that map to the 
same ID. This can be achieved using an integer sort that scans the list of tuples 
linearly and inserts into a lookup table for all long read IDs—providing a runtime 
of O(m+ T ) time. Next, this lookup table is scanned one long read ID at a time, 
and all contigs in its list are paired with one another to create all the edges corre-
sponding to that long read. The runtime of this step is proportional to the output 
graph size (G(V, E)), which contains n vertices (one for each contig), and |E| is the 
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number of edges corresponding to all contig pairs detected. Our implementation 
performs this graph construction in a multithreaded mode.

	(iii)	 Wiring heuristic: For the wiring step, each node detects a pair of edges incident on 
it that has the maximum intersection in the number of long read IDs. This can be 
achieved in time proportional to O(d2) where d is the average degree of a vertex. 
The subsequent step of path enumeration traverses each edge at most once. Since 
both these steps are parallelized, the wiring heuristic can be completed in 
O(

nd2+|E|
p ) time.

	(iv)	 Contig batch assembly: The last step is the contig batch assembly, where each of the 
set of enumerated paths are partitioned into b batches, and each batch is individu-
ally assembled (using Hifiasm). As this step is trivially parallelizable, this step takes 
O
(

b×a
p

)

 time, where a is the average time taken for assembling any batch.

In our results, we show that the contig expansion phase dominates the overall 
runtime of execution (shown later in Fig. 6).

The space complexity of Maptcha is dominated by the size to store the input 
sequences and the size of the contig graph—i.e., O(N +M + n+ |E|).

Results
Experimental setup

Test inputs: For all our experiments, we used a set of input genomes (from various fami-
lies) downloaded from the NCBI GenBank [1]. These genome data sets are summarized 
for their key statistics in Table 1. Using the reference for each genome, we generated a 
set of contigs and a set of long reads as follows. The set of test input contigs ( C ) were 
generated by first generating and then assembling a set of Illumina short reads using the 
ART Illumina simulator [26], with 100× coverage and 100bp read length. The reads gen-
erated for our experiments do not have paired-end information. For short read assembly, 
we used the Minia [10] assembler. As for the set of test long reads ( L ), we used the Sim-
it PacBio HiFi simulator [17], with a 10× coverage and long read median length 10Kbp. 
Furthermore, note the length divergences in both C and L.

As a real-world dataset, we used a draft assembly of contigs and a set of real-world 
long reads available for Hesperophylax magnus (H. magnus)—a caddisfly genome [42]. 
The corresponding data was downloaded from NCBI GenBank, as reported in Olsen 
et al. [42]. All GenBank accession IDs are shown in supplementary Table S2. Since the 
original reads used in this assembly were not available, we simulated the short reads 
from this assembly and assembled them into contigs using Minia. For long reads, we 
used the real HiFi long reads provided by Hotaling et al. [25]. This HiFi dataset consists 
of a median read length of 11.4 Kbp with a 22.8× coverage. The long reads were gener-
ated using the PacBio Sequel II system with SMRTcell.

Qualitative evaluation: To evaluate the quality of of the scaffold outputs produced 
by Maptcha, we used Quast [23] which internally maps the scaffolds against the tar-
get reference genome and obtains key qualitative metrics consistent with literature, 
such as NG50 and NGA50 lengths, largest alignment length, number of misassemblies, 
and genome fraction (the percentage of genome recovered by the scaffolded assem-
bly) (Table 3). For a comparative evaluation against a state-of-the-art hybrid scaffolder, 
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we compared the quality as well as runtime performance of Maptcha against that of 
LRScaf [44] and ntLink [13, 14].

Qualitative evaluation

Scaffold quality
First, we report on the qualitative evaluation for Maptcha, for its hybrid assembly 

quality. Table 2 shows the quality by the various assembly metrics alongside the quality 
values for LRScaf and ntLink—for all the inputs tested. The same inputs were pro-
vided into all the tools. Note that the assembly quality for Maptcha shown are for the 
final output set of scaffolds produced by the framework (i.e, after its link scaffolds 
with bridges phase).

We observe from Table 2 that Maptcha is able to produce a high quality scaffolded 
assembly, reaching nearly 99% genome coverage with high NG50, NGA50 and largest 
alignment lengths, low misassembly rate, and a near-perfect (1.0) duplication ratio, for 

Table 1  Input data sets used in our experiments. All inputs were downloaded from NCBI GenBank 
[1]. For all the inputs the contigs were generated from simulated short reads using the Minia 
assembler, and the long reads also were simulated (as described under Experimental setup), except 
for H. magnus. For the Hesperophylax magnus (H. magnus) genome input—a type of a caddisfly—the 
estimated genome size is reported to be 1.2 Gbp [42]. For this input we used real-world HiFi long 
reads downloaded from NCBI Genbank. All accession numbers are provided in the supplementary 
table Table S2

Input genome C : Contig statistics (Minia contigs) L : Long read statistics (HiFi simulated 
reads)

Genome Genome 
length (in 
bp)

No. 
contigs ( ≥ 
1,000bp) 
(n)

Total 
length in 
bp (N)

N50 in bp No. long 
reads (m)

Total length in 
bp (M)

Read length 
(avg.±std.
dev)

E. coli 4,641,652 330 4,499,289 23,328 4,541 46,312,093 10,198 ± 
3420

P. aerugi-
nosa

6,264,404 370 6,093,817 30,162 6,122 62,511,066 10,210 ± 
3,72

C. elegans 100,272,607 18,054 77,564,568 7,268 98,103 1,001,075,296 10,204 ± 
3396

T. crassiceps 107,053,072 4,976 90,108,186 52,334 104,679 1,065,911,598 10,182 ± 
3390

D. busckii 118,492,362 28,505 99,697,088 4,622 123,781 1,258,903,798 10,170 ± 
3406

Human 
chr 7

159,345,173 34,921 96,494,010 3,354 156,285 1,591,064,955 10,180 ± 
3390

N. polychlo-
ros

398,112,776 91,698 220,924,212 2,743 389,895 3,973,622,942 10,191 ± 
3398

C. septem-
punctata

398,868,586 57,938 136,903,130 2,563 390,797 3,981,681,897 10,188 ± 
3398

B. splendens 441,388,503 73,785 322,195,214 6,451 432,230 4,404,143,269 10,189 ± 
3393

M. florea 485,103,743 86,826 218,502,680 2,740 474,914 4,836,563,328 10,184 ± 
3393

H. aestivaria 501,713,186 76,767 154,096,503 2,118 491,533 5,005,317,758 10,183 ± 
3397

H. magnus (1.2 Gbp 
est.)

91,837 656,731,831 1713 2,436,589 28,013,062,204 11,496 ± 
720
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all the test inputs. These results are substantially better than the output quality pro-
duced by the two state-of-the-art tools LRScaf and ntLink. For smaller genomes such 
as E. coli and P. aeruginosa, both LRScaf and ntLink yield competitive results with 
Maptcha. However, as the genome sizes increase, the assemblies produced by ntLink 
and LRScaf become more fragmented. For instance, on T. crassiceps, the NGA50 value 
for Maptcha is about 21× and 5.6× larger compared to that of the value for LRScaf 
and ntLink respectively. Whereas for Human chr 7, the NGA50 of Maptcha is around 
18× and 330× larger compared to that of LRScaf and ntLink respectively.

Table 2  Qualitative comparison of the output scaffolds generated by the different tools on the 
different inputs. All statistics shown are for the final output scaffolds, and were calculated using 
the Quast tool. Symbol − indicates that the corresponding runs did not complete within 6 h; and 
∗ indicates that no NGA50 were obtained from the Quast results. Bold face values show the best 
results for any input

Input Method NG50 NGA50 Largest 
Alignment 
(bp)

Genome 
Coverage 
%

Missassemblies Duplication 
Ratio

E. coli LRScaf 4,499,158 3,541,973 3,541,973 97.12 0 1.03

ntLink 4,653,131 4,495,406 4,495,406 96.96 1 1.04

Maptcha 4,641,652 4,641,652 4,641,652 99.87 0 1
P. aer-
uginosa

LRScaf 3,780,771 3,703,369 3,703,369 97.96 1 1.03

ntLink 4,734,796 3,640,841 3,640,841 97.21 1 1.03

Maptcha 6,264,404 6,264,404 6,102,781 98.69 0 1
C. 
elegans

LRScaf 1,080,091 1,080,091 5,019,647 83.68 46 1.23

ntLink 818,712 435,226 3,007,944 77.34 35 1.25

Maptcha 15,736,218 15,736,218 17,718,942 99.81 11 1
T. cras-
siceps

LRScaf 171,559 128,433 1,108,210 86.86 501 1.02

ntLink 564,569 478,734 3,925,088 84.26 20 1.05

Maptcha 4,805,993 2,716,011 12,352,928 98.68 21 1
D. 
busckii

LRScaf 2,597,298 1,129,460 13,199,135 91.41 42 1.11

ntLink 1,598,290 335,476 10,477,172 84.75 17 1.13

Maptcha 13,533,287 13,432,400 23,381,820 95.69 0 1.01
Human 
chr 7

LRScaf 4,499,158 4,499,158 3,541,973 97.12 0 1.03

ntLink 872,912 245,860 4,336,964 60.69 33 1.44

Maptcha 81,166,983 81,144,021 81,144,021 99.71 2 1
N. poly-
chloros

LRScaf – – – – −
ntLink 449,932 66,222 2,556,669 55.50 273 1.61

Maptcha 13,933,406 13,338,748 18,337,428 99.92 15 1
C. 
septem-
punc-
tata

LRScaf − – – – –

ntLink 81,127 ∗ 2,243,121 34.31 236 1.83

Maptcha 24,570,419 21,121,362 40,568,023 99.95 25 1

B. splen-
dens

LRScaf − − − – –

ntLink 890,090 548,569 6,269,807 73.08 190 1.15

Maptcha 18,757,076 16,788,131 31,409,892 99.01 54 1.1
M. florea LRScaf − – – − –

ntLink 453,387 ∗ 2,806,031 45.03 266 1.74

Maptcha 34,041,601 15,241,540 24,515,726 97.91 67 1
H. aesti-
varia

LRScaf − – − − –

ntLink 37,703 ∗ 901,904 30.73 441 2.08

Maptcha 18,646,319 9,640,658 29,935,333 99.83 34 1
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In terms of misassemblies, all three tools produce misassemblies, however to vary-
ing degrees, with Maptcha in general producing the fewest number of misassemblies 
over nearly all the inputs. Misassembly rates are influenced by multiple factors, includ-
ing the genomic repeat complexity, baseline contiguity, genome fraction, and duplication 
ratio. In particular, repetitive sequences can significantly impact assembly accuracy and 
increase misassemblies [5, 7, 22, 55]. While the number of misassemblies produced by 
ntLink and Maptcha are comparable for inputs such as P. aeruginosa and T. crassi-
ceps, as the genome size and complexity increase, there is a notable rise in the number of 
misassemblies with ntLink. As for duplication ratio as well, Maptcha produces scaf-
folds which have almost no duplication (i.e., ratio is close to 1) in nearly all inputs, while 
the other tools show varying degrees of duplication. Maptcha also shows the best per-
formance when it comes to genome fraction, capturing almost 99% or more fraction for 
all the inputs. In general, these results clearly show that Maptcha is able to outperform 
both LRScaf and ntLink in all the quality metrics reported.

We further examined the growth of contigs and incremental improvement in assem-
bly quality through the different scaffolding phases of Maptcha. Table  4 shows these 
results, using NG50 lengths output from these different phases as the basis for this 
improvement assessment. Supplementary Figure S4 shows the increase across all three 
phases in log-scale.

As can be seen from Table  4, the initial set of Minia-assembled contigs for larger 
genomes have NG50 measurements ranging from 1 to 3 Kbp. After the contig 
expansion phase of Maptcha, a substantial increase in NG50 is observed, often 
exceeding 200-fold. For instance, inputs such as C. septempunctata, M. florea, and H. 
aestivaria show a notable increase in NG50 values from around 2 Kbp for the initial 
contigs to over 400 Kbp post-contig expansion phase. This substantial increase is 
attributed to the long reads acting as connectors between the shorter contigs, resulting 
in longer partial scaffolds.

In the subsequent longread island construction phase, there is a modest 
increase in NG50. However, the primary contribution of this phase is to provide more 
comprehensive genome coverage in regions not covered by contigs. This phase ensures 
that gaps left by contigs are filled, thereby enhancing the overall assembly.

The final phase of linking partial scaffolds with remaining long reads in Maptcha 
results in a noteworthy surge in NG50, up to 1,000× for larger genomes. This phase, sim-
ilar to the contig expansion phase, shows the greatest increase in NG50 among all 
phases. The average length of these partial scaffolds is considerably longer, which con-
tributes to this dramatic improvement.

Performance evaluation

Next, we report on the runtime and memory performance of Maptcha and com-
pare that with LRScaf and ntLink. Table 3 shows these comparative results for all 
inputs tested. All runs with Maptcha were obtained by running it on the distributed 
memory cluster using p = 64 processes—more specifically on 4 compute nodes, each 
running 16 processes. For both LRScaf and ntLink, we ran them in their multi-
threaded mode on 64 threads on a single node of the cluster. Note that in parallel 
computing, distributed memory systems support larger aggregate memory but at the 
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expense of incurring communication (network) overheads, which do not appear in 
multithreaded systems running on a single node. However to enable a fair compari-
son on equivalent number of resources, we tested both on the same number (p) of 
processes, with Maptcha running in distributed memory mode while LRScaf and 
ntLink running on shared memory. For all runs reported for the performance evalu-
ation, we ran Maptcha with a batch size of 8,192 in the batch assembly step.

The results in Table 3 demonstrate that Maptcha outperforms both LRScaf and 
ntLink in terms of run-time performance. For instance, on medium-sized inputs 
such as C. elegans, Maptcha completes nearly 70× faster than LRScaf, reducing the 
time to solution from over 2  h (LRScaf) to 1.8  min (Maptcha), whereas ntLink 

Table 3  Performance evaluation for our test inputs. Symbol − indicates that these results could not 
be collected in time on the same system i.e 6 h

Bold face values show the best results for any input

Input Method Time Taken (in secs) Peak 
Memory 
(in GB)

E. coli LRScaf 0.13 10.87
ntLink 0.32 16.01

Maptcha 0.33 12.33

P. aeruginosa LRScaf 0.18 11.02
ntLink 0.22 18.01

Maptcha 0.37 12.11

C. elegans LRScaf 126.18 18.54

ntLink 2.41 19.79

Maptcha 1.84 12.48
T. crassiceps LRScaf 131.68 18.45

ntLink 3.98 19.79

Maptcha 2.93 12.19
D. busckii LRScaf 232.58 20.22

ntLink 7.05 19.79

Maptcha 3.32 14.57
Human chr 7 LRScaf 355.8 21.03

ntLink 10.43 19.88

Maptcha 3.5 14.33
N. polychloros LRScaf − −

ntLink 14.3 20.05

Maptcha 5.8 16.01
C. septempunctata LRScaf − −

ntLink 19.01 20.01

Maptcha 10.45 16.23
B. splendens LRScaf − −

ntLink 25.85 21.19

Maptcha 17.52 18.96
M. florea LRScaf − −

ntLink 30.1 22.07

Maptcha 20.55 18.57
H. aestivaria LRScaf − −

ntLink 45.52 22.16

Maptcha 40.68 18.71
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takes 2.42 min. For larger genomes like N. polychloros and M. florea, Maptcha is still 
the fastest. Even though ntLink runs in comparable times for some of the inputs, 
the quality of the scaffolds generated by Maptcha is considerably better than that of 
ntLink (as shown in Table 2). For the five largest inputs (out of the 11 simulated test 
inputs), we could not obtain performance results for LRScaf as those runs did not 
complete within the allotted 6-hour limit of the cluster.

Table  3 also shows the memory used by the three tools for all the inputs. For 
Maptcha, recall that the memory is primarily dictated by the memory needed to pro-
duce the batch assemblies (which are partitioned into batches). Due to batching, even 
though the input genome size is increased, the number of contigs that anchor a batch 
is kept about the same, ensuring a way to control the memory needed to run large 
assemblies in a scalable fashion. This is the reason why despite growing input sizes, 
the peak memory used by Maptcha stays approximately steady (under 20 GB).

For the real-world long read dataset used in case of the caddisfly genome input, H. magnus, 
the quality of the scaffolds generated by Maptcha surpasses both state-of-the-art tools, as 
shown in Table 5. LRScaf was unable to complete its run within 6 h, and thus its results 
are not included. Maptcha outperforms ntLink by producing scaffolds that are 119 times 

Table 4  The increases in the values of NG50 achieved through the Maptcha phases starting from 
the input contigs to the final scaffolds. For H. magnus, N50 values are shown instead

Input genome NG50 after each phase of Maptcha (in bp)

Genome Contigs NG50 
(in bp)

contig 
expansion

longread island 
construction

link scaffolds 
with bridges

E. coli 22,175 348,034 357,799 4,448,034

P. aeruginosa 29,539 310,601 329,562 6,101,601

C. elegans 4,481 294,365 294,400 15,736,218

T. crassiceps 40,139 351,834 358,177 4,805,993

D. busckii 3,678 303,316 311,207 3,533,287

Human chr 7 1,667 384,512 493,519 81,116,983

N. polychloros 1,260 325,208 474,756 13,933,406

C. septempunctata 2,563 457,265 599,471 24,570,419

B. splendens 3,998 410,300 411,111 18,757,076

M. florea 2,740 483,063 587,311 44,041,601

H. aestivaria 2,118 439,243 547,441 18,646,319

H. magnus 1,713 681,784 734,318 10,010,993

Table 5  Real-world long read input analysis: Quality and performance comparison of the output 
scaffolds generated by the different tools on an real-world input Hesperophylax magnus (H. magnus), 
a type of a caddisfly. Symbol − indicates that the corresponding runs did not complete within 6 h. 
Bold face values show the best results for the given input

Input Method N50(bp) Largest 
contig (bp)

Total assembly 
length (bp)

# N’s (per 
100 kbp)

Time 
Taken (in 
mins)

Peak 
Memory 
(in GB)

H. magnus LRScaf – – – – – –

ntLink 83,830 1,056,097 956,804,493 56,074.63 52.21 35.32

Maptcha 10,010,993 30,653,099 1,208,865,085 0 61.54 26.35
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larger in N50 and 29 times longer in the largest contig metric compared to ntLink. Addi-
tionally, Maptcha generated scaffolds with no gaps, whereas ntLink had more than 56k 
gaps per 100 kbp. Although ntLink finished faster, with a runtime of approximately 52 min 
compared to Maptcha’s 61 min, the difference in runtime is marginal when considering the 
substantial improvement in scaffold quality.

We also compared our scaffolding results with the scaffolds reported in Olsen et al. 
[42]. We note that the underlying raw reads used in these two studies were different, 
as the raw reads used in [42] were not available in public as of this writing. In their 
original work, they report an N50 of 768 Kbp for performing a hybrid assembly using 
their Illumina (49× ) and Nanopore (26× ) data. In comparison, our Maptcha scaf-
folder produces a scaffold set with an N50 of 10 Mbp. This represents a significant 
improvement in scaffolding length—showing promise that when applied to real-world 
data our Maptcha scaffolder is likely to yield longer scaffolds. However further study 
is needed to validate and compare assembly quality, and also perhaps experimenting 
with different choices of HiFi long read assemblers.

We also studied the runtime breakdown of Maptcha across its different phases. 
This breakdown is shown normalized for each input in Fig. 6a (left), all running on 
p = 64 processes. It can be observed that the contig expansion phase is gener-
ally the most time consuming phase, occupying anywhere between 40% to 60% of the 
runtime, with the other two phases roughly evenly sharing the remainder of the runt-
ime. Figure 6b (right) further shows how the run-time is distributed within the con-
tig expansion phase. As can be noted, more than 80% of the time is spent in the 
batch assembly step, while the remainder of the run-time is spent mostly on mapping.

Effect of batch size on NG50 and run-time: Fig.  7 shows the impact of varying 
batch sizes on NG50 and processing time, using the H. aestivaria genome as an exam-
ple. Recall that the batch size is the number of contigs that are used to anchor each 

Fig. 6  (a) Normalized runtime breakdown for the different rounds of Maptcha pipeline for p = 64 . (b) 
Normalized runtime breakdown for different steps in the contig expansion round for input H. aestivaria.
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batch along with their respective long reads that map to those contigs. Subsequently, 
each batch is provided to a standalone assembly (using Hifiasm) to produce the 
assemblies for the final scaffolds. We experimented with a wide range of batch size, 
starting from 32, and until 16K. As anticipated, smaller batch sizes exhibit reduced 
processing times due to the smaller assembly workload per batch. However, if a 
batch is too small then the resulting assembly quality is highly fragmented (resulting 
in small NG50 values) as can be observed. Conversely, larger batch sizes necessitate 
longer processing times (e.g., batch size 32 requiring approximately 280 s, while 8K 
batch size requires 1,841 s). But the NG50 metric substantially improves—e.g., NG50 
size improvement from 93Kbp to 1.8Mbp from a batch size of 32 to 8K.

We found that increasing the batch size from 8K to 16K resulted in a slight increase in 
NG50 (1.86Mbp to 1.89Mbp), but also a substantial increase in processing time (1,841 s 
to 2,329 s). Since the increase in NG50 was not significant enough to justify the longer 
processing time, we decided to use the batch size of 8K for all our tests.

Coverage experiment with Maptcha (hybrid) and Hifiasm (only‑LR)

One of the main features of a hybrid scaffolding workflow is that it has the potential to 
build incrementally on prior constructed assemblies using newly sequenced long reads. 
This raises two questions: a) how does the quality of a hybrid workflow compare to a 
standalone long read-only workflow? b) can the information in contigs (or prior con-
structed assemblies) be used to offset for lower coverage sequencing depth in long reads?

To answer these two questions, we compared the Maptcha scaffolds to an assembly 
produced directly by running a standalone long read assembler but just using the long 
reads. For the latter, we used Hifiasm and denote the corresponding runs with the label 
Hifiasm (only-LR) (to distinguish it from the hybrid configuration in Maptcha). 
Analysis was performed using different coverages (1x, 2x, 3x, 4x, 8x, and 10x) for the 
long read data set, for the H. aestivaria input, and focusing on performance metrics of 
NG50, execution time, and peak memory utilization.

The results shown in Table  6 for this experiment, revealed that at lower coverages 
(1x and 2x), Hifiasm (only-LR) and Maptcha demonstrated relatively comparable 

Fig. 7  Effect of batch size on NG50 and average time taken for input H. aestivaria 
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performance. However, as the long read coverage increased, Maptcha exhibited better 
NG50 quality over Hifiasm (only-LR), demonstrating the value of adding the con-
tigs in growing the scaffold length. For instance, at 4x coverage, Maptcha yielded a con-
siderably longer NG50 (ten-fold increase). The assembly quality becomes comparable 
for higher coverage settings. These results demonstrate that the addition of prior con-
structed assemblies can increase the scaffold length compared to long read-only assem-
blies. However, this value in growing the scaffold length tends to diminish for higher 
coverage settings—showing that the addition of contigs can be used to offset reduced 
coverage settings.

Table 6 also shows that a run-time and memory advantage of Maptcha over Hifiasm 
(only-LR). For instance, Maptcha was generally between two and four times faster 
than Hifiasm (only-LR) (e.g., on the 10x input, Maptcha takes 30 min compared to 
81 min taken by Hifiasm (only-LR)). Note that internally, Maptcha also is using the 
standalone version of Hifiasm to compute its final assembly product. These results show 
that the Maptcha approach of enumerating paths to generate partial scaffolds and dis-
tributing those into batches, reduces the overall assembly workload for the final assem-
bly step, without compromising on the quality.

Conclusions

Genome assembly remains a challenging task, particularly in resolving repetitive regions, 
given its inherently time-intensive nature. In this study, we present Maptcha, a novel 
hybrid scaffolding pipeline designed to combine previously constructed assemblies with 
newly sequenced high fidelity long reads. As demonstrated, the Maptcha framework 
is able to increase the scaffold lengths substantially, with the NG50 lengths growing by 

Table 6  Quality and performance evaluation of running Hifiasm (only-LR) and Maptcha 
with different coverages of longread on input H. aestivaria 

The bold values highlight superior results

Coverage of LR Method NG50 (in bp) NGA50 (in bp) Misassemblies Time 
Taken in 
mins)

Peak 
Memory 
(in GB)

1× Hifiasm 
(only-LR)

32,586 32,586 9 18.37 16.36

Maptcha 33,353 32,416 16 5 11.51
2× Hifiasm 

(only-LR)
30,106 30,106 11 21.82 20.54

Maptcha 39,990 32,964 17 9.32 12.33
3× Hifiasm 

(only-LR)
560,317 554,390 160 28.03 20.56

Maptcha 724,586 698,713 189 14.85 12.97
4× Hifiasm 

(only-LR)
943,059 917,859 158 31.62 20.64

Maptcha 9,060,428 7,881,934 211 17.01 15.19
8× Hifiasm 

(only-LR)
11,122,586 11,122,586 42 59.53 25.68

Maptcha 11,602,876 11,602,876 33 25.57 16.46
10× Hifiasm 

(only-LR)
16,455,206 9,998,605 39 81.98 29.67

Maptcha 18,646,319 9,640,658 34 30.8 18.71
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more than four orders of magnitude relative to the initial input contigs. This represents 
a substantial improvement in genomic reconstruction that comes without any com-
promise in the accuracy of the genome. Furthermore, our method is able to highlight 
the value added by prior constructed genome assemblies toward potentially reducing 
the required coverage depth for downstream long read sequencing. In terms of perfor-
mance, the Maptcha software is a parallel implementation that is able to take advantage 
of distributed memory machines to reduce time-to-solution of scaffolding. The software 
is available as open source for testing and application at https://​github.​com/​Oiesw​arya/​
Maptc​ha.​git.
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