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Abstract 

Background:  High-content screening (HCS) experiments generate complex data from 
multiple object features for each cell within a treated population. Usually, these data 
are analyzed by using population-averaged values of the features of interest, increasing 
the amount of false positives and the need for intensive follow-up validation. Therefore, 
there is a strong need for novel approaches with reproducible hit prediction by identi‑
fying significantly altered cell populations.

Results:  Here we describe SOPRA, a workflow for analyzing image-based HCS data 
based on regression analysis of non-averaged object features from cell populations, 
which can be run on hundreds of samples using different cell features. Following plate-
wise normalization, the values are counted within predetermined binning intervals, 
generating unique frequency distribution profiles (histograms) for each population, 
which are then normalized to control populations (control-based normalization). These 
control-normalized frequency distribution profiles are analyzed using the Bioconductor 
R-package maSigPro, originally developed to analyze time profiles. However, statisti‑
cally significant altered frequency distributions are also identified by maSigPro when 
integrating it into the SOPRA workflow. Finally, significantly changed profiles can be 
used to generate a heatmap from which altered cell populations with similar pheno‑
types can be identified, enabling the detection of siRNAs and compounds with the 
same ‘on-target’ profile and reducing the number of false positive hits.

Conclusions:  SOPRA is a novel analysis workflow for the detection of statistically 
significant normalized frequency distribution profiles of cellular features generated in 
high-throughput RNAi screens. For the validation of the SOPRA software workflow, a 
screen for cell cycle progression was used. We were able to identify such profiles for 
siRNA-mediated gene perturbations and chemical inhibitors of different cell cycle 
stages. The SOPRA software is freely available from Github.

Keywords:  Image analysis, Cell-based assay, Loss-of-function screen, Drug screening, 
RNA interference analysis
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Background
The availability of robotic liquid handling combined with automated fluorescence micros-
copy and high-performance image computing has enabled rapid advances in developing 
high-throughput screening [1]. Numerous studies have demonstrated the power of high-
throughput image-based assays for characterizing drug effects [2], identifying active small 
molecules [3], and classifying sub-cellular protein localization [4, 5], including genome-
wide siRNA-mediated loss-of-function screens [6] or gene deletion libraries [7]. For every 
single cell within a cellular sample population, it is possible to achieve quantitative meas-
urements of phenotypes such as expression level and localization of proteins, post-trans-
lational modifications, and even cellular or sub-cellular morphologies.

Analyzing cellular populations in the early drug discovery process allows the complex-
ity of living systems to be addressed and produces vast amounts of data that are more 
meaningful than those obtained from isolated proteins [8]. With advanced bioinformat-
ics tools, treatments can be identified that lead to altered cell populations and, therefore, 
might be relevant drugs or drug targets.

Nonetheless, several limitations in data analysis have restricted the full potential of 
high-throughput image-based assays so far [9, 10]. The usual course of events for an HCS 
analysis workflow starts with extracting image feature data, followed by normalization 
and statistical analysis, including final hit selection [11]. A wide variety of microscopes, 
image analysis, and data analysis software packages are available to address these issues 
[12]. However, distributions of multidimensional, multivariate phenotypic measure-
ments from cellular populations are mostly transformed into single population-averaged 
values such as mean or median values. These population-averaged values are used for 
plate-wise or batch-wise normalizations, as well as for statistical analysis for hit selection 
[13, 14], which leads to a substantial loss of information. Population-averaged values 
can indicate whether the value of the measured phenotype increases or decreases upon 
treatment but do not reflect the detailed response of a cellular population to a certain 
treatment or gene depletion. Therefore, these population-averaged values are limiting 
the power of the statistical approaches that are widely used, such as Z-Score or percent-
of-control (POC) analysis, making it impossible to identify more distinct reactions of a 
cell population. This loss of information also hampers the differentiation of treatments 
or gene depletions with the same ‘on-target’ effect from those with ‘off-target’ effects, 
which is extremely important for RNAi gene perturbation experiments, where multiple 
siRNAs are used per gene.

Some publications have described methods for non-averaged cell population data 
analysis from high-content image-based screens. Knapp et  al. [15] showed consider-
able effects of population context on observed phenotypes when using non-averaged 
population data for the normalization steps but still used population-averaged values 
for hit detection. Another method uses multivariate cell classification based on phe-
notypic changes for hit identification [16], which results in a drug effect score, and a 
vector, indicating the simultaneous phenotypic changes induced by the drug. Another 
publication used multi-parametric phenotypic profiles to cluster genes based on mor-
phological changes in individual cells [17]. Yet another group has proposed using Rip-
ley’s K-function to identify knockdowns resulting in perturbation of this cell clustering 
[18]. Also, the Kolomogorow-Smirnov (KS) test has been used to score the difference 
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between control and sample populations [19]. However, all these methods have limita-
tions that prevent them from widely used for large-scale high-content cell population 
analysis. Multivariate classification methods are mainly based on analyzing predomi-
nantly redundant image features. Spatial clustering requires a subjective and work inten-
sive classification step for the cellular populations, whereas KS only uses one unique 
value to identify cell populations with altered distributions.

Here we present a new approach called Single Object Profiles Regression Analysis 
(SOPRA) that overcomes many limitations by analyzing non-averaged cell population 
data. It uses classification-free regression analysis of normalized (control-based) fre-
quency distribution profiles of cell populations. SOPRA can be used to analyze data 
derived from various high-throughput techniques, such as images from automated 
microscopy or single-cell data from FACS analysis. The regression workflow consists 
of (i) a pre-processing step, (ii) data gathering and normalization steps, (iii) identifying 
significant profiles, (iv) post-processing. The normalization is performed in a plate-wise 
and bin-wise fashion, resulting in a unique normalized frequency distribution profile 
for each feature of a cell population. Finally, normalized frequency distribution profiles 
exhibiting statistically significant changes are identified using a p-value and R-squared 
(RSQ)-value derived from the regression analysis with the R-package maSigPro [20, 21]. 
Additionally, normalized profiles of various cell features identified as significantly altered 
can be further clustered in a heatmap according to their similarity. This can be used to 
identify treatments with the same ‘on-target’ effects. Most loss-of-function screens use 
multiple siRNAs for the same gene, which should end up in the same cluster if they have 
a similar cell population phenotype. The more siRNAs for the same gene are identified 
as having a similar cell population profile, the more reliably this gene can be regarded 
as a hit. Beyond this, the derived values of a regression analysis of frequency distribu-
tion profiles of cellular features are not affected by experimental bias to the same degree 
as population-averaged approaches [22], leading to more reproducible results. We used 
a cell-based chemical compound and RNAi screen of cell cycle progression to validat-
ing the SOPRA workflow. The cellular features ‘Area’, ‘Total Intensity DAPI’, and ‘Mean 
Intensity DAPI’ were extracted for each nucleus using image analysis software and sub-
jected to the SOPRA workflow. We found that SOPRA can be used to identify statisti-
cally significant changes in frequency distribution profiles within cellular populations, 
whether induced by gene perturbation through siRNAs or by chemical inhibitor treat-
ment. Taken together, SOPRA is a novel object-based data analysis workflow based on 
regression analysis of distribution profiles of cellular features to identify significantly 
changed cell populations from high-throughput data sets.

Results
SOPRA utilizes a data gathering step combined with plate-wise and so-called bin-wise 
normalization methods, as well as a two-step regression approach that first adjusts a 
global regression model with defined variables in order to identify profiles exhibiting 
statistically significant changes [20] (Conesa et al., 2006). The SOPRA workflow consists 
of several steps, as outlined in Fig.  1. A: High Content Screen. This first step includes 
screening, image analysis, and data extraction. B: Preparation of screen description files 
and the single cell data files. C: Preprocessing (optional). The derived data files for various 
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image features at the single cell level are subjected to a pre-processing step to exclude 
all data from flagged wells that should be excluded from the analysis. D1: Data Gather-
ing and Plate-Wise Normalization. In this step, each single cell object is annotated with 
additional information, such as RNA.ID, plate number, well number, replicate number, 
well content, and gene symbol. If the imaging software supports a gating procedure for 
objects that do not meet certain criteria, such as cell size, these can also be flagged and 
excluded from subsequent analysis steps. The measured value of each cell for the fea-
ture of interest is then normalized to the median of the objects in the neutral control 
wells. D2: Data Gathering and Frequency Distribution Profiles (Histogram) Generation. 
Next, the common binning axis of the distribution profiles is generated by determining 
the minimum and maximum limits of the measured feature across all the screen data to 
avoid strong relative differences at the tails of the distribution. The data are divided into 
equally spaced binning intervals, sufficient for population data that follows a given order 
of regression model (such as quadratic). A pseudo count of one is added to each bin to 

Fig. 1  SOPRA workflow of high-throughput data sets. A High content screening data is generated and 
used to prepare single object data files and input data files. B Screen description and the single cell data 
files are generated manually. C Wells that should be omitted are flagged, and D1 the single object data is 
filtered, normalized to the median of the controls, and a common binning axis for all plates is determined. 
D2 For each measured feature, the frequency distribution profile (histogram) is generated for each sample 
well, which is then normalized for each bin to the median distribution profile of the controls. E Significantly 
changed normalized distribution profiles are determined using regression analysis, and F a post-processing 
step is performed to determine the number of screening hits
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avoid bins with zero objects. First, the absolute frequency distribution is computed, and 
then the relative frequency for each treatment is calculated by dividing the number of 
objects in each bin by the population size (sum of all objects in all bins). Next, a bin-
wise normalization step is performed by dividing the relative frequency of each bin for 
each treatment by the median of the corresponding bin of the control wells, such as the 
‘AllStars’ control. That means that the frequency density distribution (histogram) of a 
selected feature (test distribution) is divided by the frequency distribution (histogram) of 
that selected feature for control wells (reference distribution) in a bin-wise manner (con-
trol-based normalization). The resulting profiles can be analyzed (using the generated 
bins instead of time points) in the R-package maSigPro [21]. Taking, for instance, the 
logarithm of the ratio test/reference one gets a zero profile if the test distribution equals 
the reference distribution. The larger the deviation of profiles from the reference dis-
tribution, the more likely the test distribution would be statistically significant. Finally, 
an AllDataTable.txt-file containing all normalized and annotated data is generated. This 
AllDataTable.txt-file serves as input for determining statistically significant different his-
togram profiles using maSigPro.

Binning creates equal-length bins to which data are assigned. The default number n of 
bins (the binning level) is 7.

For variable x, assume that the data set is {xi}, let x1, x2,….xm represent the ordered 
values of the variable. Let the xth percentile be min(x) and max(x). The range of the 
variable is range(x) = max(x) – min(x). For binning, the width of binning interval is 
L =

max(x)−min(x)
n

 . The split points are sk = min(x) + L * k, where k = 1, 2,…, numbin-1 and 
numbin is n. For each bin a pseudocount of 1 is added Countp(Xik) = Count(Xik) + 1.

E: Determination of Statistically Significant Altered Profiles. Regression analysis is per-
formed using the Bioconductor R-package maSigPro [21] to identify significantly altered 
normalized distribution profiles. F: Postprocessing (optional). The gene, cluster, and gene 
frequency within the cluster are listed for all significantly changed normalized distribu-
tion profiles identified by the maSigPro analysis.

Data generation of cell cycle progression screen

To generate the cell cycle progression screen data, we seeded HeLa cells in 384-well 
plates either transfected or treated with the inhibitors in three independent biologi-
cal replicates (Fig. 2A). We used 166 different siRNAs to target 107 genes, from which 
54 had been reported to interfere with cell cycle progression [23] (Additional file 1: 
Fig. 1, Additional file 2: Table 1). Additionally, we used cells treated with the chemi-
cal inhibitors aphidicolin or nocodazole, which lead to G1/S and G2/M cell cycle 
arrest, respectively. Cells left untreated (Mock) or treated with siRNAs against ‘All-
Stars’ or ‘Luciferase’ were used as negative controls. While images from AllStars- and 
Luciferase-treated cell populations showed an unaltered, normal phenotype, treat-
ment of cells with aphidicolin (A1-4) or nocodazole (N1-4) resulted in an altered 
phenotype as a consequence of G1/S or G2/M phase arrest, respectively (Fig.  2B). 
On day 4, cells were fixed, nuclei stained with Hoechst (Fig.  2A), images acquired 
using automated microscopy, and automated image analysis (ScanR: High-Content 
Screening Station for Life Science, Olympus) was performed for extracting the image 
features ‘Area’, ‘Total Intensity DAPI’ and ‘Mean Intensity DAPI’ for each nucleus 
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(Additional file 3: Fig. 2) in tab-delimited files using a ScanR export script. The cell 
population distribution profiles for the control as well as the chemically or siRNA-
treated samples, behave differently for the extracted object features (Fig.  2C). They 
show a strong shift towards smaller nuclei for nocodazole and towards larger nuclei 

Fig. 2  Schematic representation of the microscopic cell cycle screening assay. A Cells were seeded in 
384-well plates and treated with siRNAs or chemical cell cycle inhibitors at different concentrations and time 
points to inhibit cell cycle progression. Cells were fixed, stained with Hoechst, and subjected to automated 
microscopy and image analysis. B Treatment with the control-siRNAs AllStars and luciferase did not lead to 
any cell population changes. Treatment with aphidocoline A1 (2 µg/ml, 24 h), A2 (4 µg/ml, 24 h), A3 (2 µg/
ml, 12 h), A4 (4 µg/ml, 12 h) and nocodazole N1 (50 ng/ml, 24 h), N2 (75 ng/ml, 24 h), N3 (50 ng/ml, 12 h), N4 
(75 ng/ml, 12 h) resulted in cell populations arrested at various stages of the cell cycle. C Distribution profiles 
were generated for each well from the data exported for the features ‘Area’, ‘Mean Intensity DAPI’ and ‘Total 
Intensity DAPI’ for all nuclei
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for aphidicolin-treated samples for the feature ‘Area’, while for the feature ‘Mean 
Intensity DAPI’ the influence of these two chemical treatments on the mean inten-
sity is the opposite. Interestingly, for the feature ‘Total Intensity DAPI’ a strong shift 
towards higher values was observed for nocodazole-treated samples, while aphidico-
lin treatment did not alter the profile compared to that of the ‘Allstars’, ‘Luciferase’ or 
‘Mock’-treated wells. Distribution profiles of the cell populations treated with differ-
ent siRNAs (samples) showed no clear tendency (Fig. 2C).

We calculated p-values and RSQ-values using maSigPro regression analysis, as 
described, to identify significantly altered distribution profiles compared to the neu-
tral controls. The maSigPro package computes a regression fit for each frequency dis-
tribution profile and uses a linear step-up (BH) false discovery rate (FDR) procedure 
[24]. Here, we used a level of 0.05 for FDR control. Once statistically significant dis-
tribution profiles have been found, a variable selection procedure is applied to find 
significant variables for each profile. The final step is to generate lists of statistically 
significant profiles. As expected, cell populations treated with the ‘AllStars’ or ‘Lucif-
erase’ controls usually had high p-values and low RSQ- values. Only two (10%) and 
four (20%) out of 20 cellular populations treated with the neutral controls ‘Allstars’ or 
‘Luciferase’, respectively, were identified to be significantly changed for at least one of 
the three cellular features used (Additional file 4: Table 2; Fig. 4A—Plate2, Well 207). 
When hits were only considered positive if at least two of the image features were 
identified as significantly changed, none of the neutral controls were identified as a 
hit. In contrast, cells treated with aphidicoline (A1-4) or nocodazole (N1-4) showed 
significant changes, indicated by low p-values and high RSQ-values for all of the three 
extracted cellular features (Fig. 3A). All 28 profiles for each of the aphidicolin condi-
tions A2 (4  µg/ml/24  h), A3 (2  µg/ml/12  h) and A4 (4  µg/ml/12  h), for each of the 
nocodazole conditions N1 (50 ng/ml/24 h), N2 (75 ng/ml/24 h), N3 (50 ng/ml/12 h) 
and N4 (75  ng/ml/12  h) and 27 out of 28 profiles for the aphidicolin condition A1 
(2 µg/ml/24 h) were identified as significantly changed hits (Additional file 5: Fig. 3). 
Interestingly, aphidicolin-treated samples showed marked differences for the cellular 
features ‘Area’ and ‘Mean Intensity’ and only slight changes for the cell feature ‘Total 
Intensity DAPI’ (Fig. 4A – A1: Plate1, Well 208, A2: Plate2, Well 353, A3: Plate1, Well 
44, A4: Plate2, Well 213), while nocodazole-treated samples showed strong changes 
in all three cellular features used (Fig. 4A -N4: Plate1, Well 47, N1: Plate 2, Well 354). 
In total, using these thresholds for the p-value and the RSQ-value, 359 normalized 
distribution profiles were identified as significantly altered for each of the cellular fea-
tures ‘Area’ and ‘Mean Intensity DAPI’ and 335 normalized distribution profiles for 
the cellular feature ‘Total Intensity DAPI’. This resulted in a total of 448 significantly 
changed cell populations, with 247 profiles significantly changed for all three, 111 
profiles for two, and 90 profiles for only one of the analyzed cellular features. Next, 
for the 448 profiles identified as significantly changed, a k-means clustering approach 
was performed (Fig. 3B and Fig. 3C). The normalized distribution profiles for the fea-
tures ‘Area’, ‘Mean Intensity DAPI’, and ‘Total Intensity DAPI’ were arranged in four, 
three, and two profile clusters, respectively. Cluster numbers were selected to give 
high cluster reproducibility. Finally, for all clustered profiles, a heatmap was defined 
based on the k-means clustering result arranged as a vector (consisting of zeros and 
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ones such as 0001–010-10 for a profile resulting in cluster 4 for ‘Area’, cluster 2 for 
‘Mean Intensity DAPI’ and cluster 1 for ‘Total Intensity DAPI’). The heatmap was 
sorted using a hierarchical clustering (hclust) algorithm to identify cell populations 
with similar distribution profiles (Fig. 4A). Finally, a dendrogram cut-off value of 1.8 
was used to generate three main groups in the matrix.

As a result, the aphidicolin-treated samples A1 and A2 grouped differently from 
the aphidicolin-treated samples A3 and A4, (Fig. 3A, sidebar), while the nocodazole-
treated samples N1 and N2, as well as N3 and N4, grouped together. Further, the sig-
nificant distribution profiles of samples treated with siRNA were more dispersed in 
the heatmap, depending on the individual feature distribution. Thus, with this two-
step method—first identifying statistically significant normalized profiles for each 

Fig. 3  Results of SOPRA regression analysis and cluster profiles. A Calculated RSQ and p-values of each well 
for the features ‘Area’, ‘Mean Intensity DAPI’, and ‘Total Intensity DAPI’ using the maSigPro package. B Data 
visualization by cluster analysis. Normalized distribution profiles of all significantly altered normalized profiles 
for the three image features were clustered using k-means with 4, 3 and 2 clusters, respectively. The average 
feature profile is shown (black line) together with the individual profiles of the cell populations in the cluster 
(grey lines) or C as the mean of 3 replicates
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Fig. 4  Heatmap analysis and examples of significantly altered distribution profiles. A The normalized 
regression profiles for different treatment conditions for aphidicolin (A1–A4) and nocodazole (N1 and N4), as 
well as Luciferase are displayed. A heatmap showed the distribution of all cell populations with at least one 
significantly changed profile for the features ’Area’, ’Mean Intensity DAPI’ and ’Total Intensity DAPI’ among the 
SOPRA cluster profiles. Wells treated with aphidicolin or nocodazole are displayed in shades of green or blue 
in the row sidebar. Wells Mock-treated or treated with siRNA against Luciferase or AllStars are indicated in red, 
orange and yellow, respectively. Wells treated with siRNA against specific genes are displayed in grey in the 
row sidebar. The heatmap is clustered using hierarchical clustering, and a dendrogram with a cut-off of 1.8 is 
performed, resulting in the heatmap groups (1), (2) and (3). The Venn diagram displays the distribution of the 
significantly changed profiles for each treatment among the heatmap groups (1–3). B Examples of profiles 
for the features ‘Area’, ‘Total Intensity DAPI’ and ‘Mean Intensity DAPI’ of cell populations significantly changed 
upon siRNA treatment, as well as the corresponding microscopic and FACS images
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analyzed image feature, then using a heatmap to generate profile groups – we were 
able to differentiate cell populations showing a similar distribution among the cluster 
profiles. Taken together, the SOPRA workflow was responsive enough to distinguish 
not only nocodazole-treated from aphidicolin-treated samples, but also to differenti-
ate between samples that were treated with the same concentration but for different 
durations (A1/A2 vs. A3/A4).

As laid out above, analyzed features for siRNAs that target the same gene and have 
the same ‘on-target’ phenotype should end up in the same cluster and also in the same 
heatmap group. Therefore, we further analyzed if individual siRNAs for the same gene 
were represented in the same or different heatmap groups. The individual siRNAs of 38 
and 42 genes appeared exclusively in profile groups 1 or 2, respectively, strengthening 
their ‘on-target’ specificity. In contrast, both groups represented individual siRNAs of 21 
genes, indicating less stringent ‘on-target’ specificity or other influences, such as experi-
mental variation. For the SOPRA workflow, two different siRNAs were used for each 
gene in duplicate, therefore, hits were classified as medium or weak hits if the two siR-
NAs did not show the same cluster profile and were not grouped in the same heatmap 
group.

To assess the reproducibility of plate replicates and SOPRA workflow, the RSQ-values 
for different groups of replicates were determined and the correlation matrix between 
these groups was calculated. Firstly, we defined replicate group R1 containing replicate 
r2, r3, and r4 (i.e., without replicate 1), replicate group R2 containing r1, r3, and r4 (with-
out replicate 2) and so on. Running SOPRA for cell feature ‘Total Intensity DAPI’ with 
pre-defined maSigPro parameters alfa = 1, Q = 1, and RSQ = 0 one gets the p-values and 
RSQ-values for each replicate group. The correlation matrix between the RSQ-values for 
sample data from the different groups R1–R4 is calculated and visualized (Fig. 5).

Furthermore, we used Receiver Operating Characteristic (ROC) to assess the statisti-
cal performance of SOPRA workflow in comparison to other approaches, such as “Kol-
mogorov–Smirnov (KS) test” which uses probability density and “t.test” for assessment 
of population differences. The RO curve for cell feature ‘Total Intensity DAPI’ is depicted 
in Fig. 6 and shows that the SOPRA method lies between the other two RO curves.

To benchmark the efficiency of this method in gene perturbation hit prediction, we 
tested whether the results of the SOPRA workflow could be validated by either the origi-
nal cell cycle data from Kittler et al. [23] or FACS data generated by our group (Addi-
tional file  5: Fig.  3B). We selected 46 of the genes (hits and non-hits) analyzed with 
SOPRA and performed FACS analysis for cell cycle profiles with one siRNA per gene. A 
hit was scored as positive for a particular method if at least one other method also leads 
to the same (positive or negative) result. Out of the 46 genes analyzed, 30 genes from 
the Kittler et  al. study were validated with at least one of the other methods (SOPRA 
or FACS), while for the SOPRA and FACS analyses, 36 and 38 genes, respectively, were 
validated by one of the other two methods. Taken together, SOPRA and FACS analysis 
scored best in their ability to predict hits compared to the data published by Kittler et al. 
[23].

Thus, the SOPRA workflow offers a unique and fast analysis approach based on meas-
ured single features of cell populations, comparable to or better than published methods. 
In contrast to FACS data analysis, it does not need manual intervention or thresholding, 
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such as cell gating. SOPRA is, therefore, well suited for high-throughput and high-con-
tent data, as it can be easily run on multiple features from an identical cell population.

In order to prove the scalability, we leveraged the SOPRA software workflow to ana-
lyze a genome-wide NFKB screen consisting of 192 384-wells plates with 3 replicates for 
each plate, i.e., in total 576 plates. Because one plate takes about 50–60 s depending on 
the operating system, CPU time of the computer model, and disk drives in the network, 
the SOPRA workflow successfully finished after 60*576 = 34,560 s or 9.60 h provided a 
large enough R memory.

Conclusions
Most methods published for analyzing high-content microscopic screens use popula-
tion-averaged values or manually performed cell classification steps for normalization 
and hit classification. The SOPRA workflow represents a novel approach for analyzing 
large microscopy-based high-content screens using non-averaged data of cell popula-
tions for normalization and hit determination. The workflow generates frequency dis-
tribution profiles of cellular features normalized to a neutral control for each treatment. 
These normalized distribution profiles are used for hit identification by regression analy-
sis to identify significantly altered profiles using the R-package maSigPro, as originally 
described for the analysis of single-series time-course gene-expression data.

RNAi screens are frequently performed with multiple siRNAs per target gene; 
however, the use of population-averaged values often leads to the identification of 
‘off-target’ effects as hits, since population averaged values can only monitor major 

Fig. 5  Reproducibility assessment between replicates. Correlation matrix between the RSQ-values for sample 
data from the different replicate groups R1- R4 for cell feature ‘Total Intensity DAPI’
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variations of the phenotype such as up- or down-regulation compared to a control. 
In contrast, non-averaged data can indicate more diverse changes in a cell population 
upon treatment; thus, different siRNAs targeting the same gene should have a simi-
lar ‘on-target’ effect on the distribution profile of the measured cellular features, and 
consequently, these are more likely to be ‘true’ hits. The SOPRA workflow we describe 
here has the power to cluster all significantly altered normalized distribution profiles, 
identifying siRNAs with similar ‘on-target’ profiles for the same gene via a heatmap 
approach. Therefore, the SOPRA workflow can be used to avoid false-positive hits 
or ‘off-target’ effects, leading to more reliable HCS hit results and reducing time and 
work-intensive validation steps.

In principle, the SOPRA workflow can be used to analyze single-cell population data 
from various sources such as microscopy or FACS. In this study, we performed a micros-
copy-based high content screen of the effect of siRNA-mediated gene knockdown of 
selected genes taken from a published cell cycle data set from Kittler et  al. [23] as an 
example to demonstrate the utility of the SOPRA workflow.

Fig. 6  Assessment of diagnostic quality by Reciever Operating Curve (ROC). Receiver Operating 
Characteristic (ROC) serves to assess the SOPRA workflow in comparison to other statistical approaches, such 
as “t.test” and “Kolmogorov–Smirnov (KS) test”. The RO curves for cell feature ‘Total Intensity DAPI’ shows that 
the SOPRA method lies between the t.test and KS-test
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We were able to show that the false positive detection rate (detection of neutral con-
trols as significantly changed) can be considerably reduced when taking into account 
more than one cellular feature. As described using the generated cell cycle data, we 
were able to demonstrate that the SOPRA workflow led to no false-positive hits among 
the neutral controls when at least two of the image features were taken into account. 
For the cell populations treated with the cell cycle inhibitors, a very high hit detection 
rate of 99.55% was achieved (223 of 224 cell population profiles). We also used siRNA 
knockdowns in this screen, which produce less significant phenotypic effects than small 
chemical compounds. Nevertheless, analysis of changed cell populations based on gene 
perturbation with siRNA using SOPRA still achieved a hit detection rate comparable to 
a manual FACS analysis with commercial software, which requires predetermined gat-
ing or thresholding.

Taken together, SOPRA is a novel analysis workflow that uses a unique analysis 
approach for non-averaged high-throughput data from cellular features based on regres-
sion analysis of normalized frequency distribution profiles of cell populations. It offers 
an easy-to-handle workflow and can run on hundreds of cell populations using multi-
ple features. In particular, treated cell populations are defined as significantly changed 
on two measurements—the p-value and the RSQ-value—followed by a clustering step 
to identify treatments with the same normalized density profiles. The following heat-
map analysis enabled us to filter out most hits that are likely to be false positives. Thus, 
SOPRA is a unique tool ideal for the high-content analysis of cell population data.

Methods
Cell cycle perturbation screen

We generated a set of screening plates consisting of siRNAs (Qiagen, Germany) targeting 
proteins responsible and not responsible for cell cycle progression, as well as the neutral 
siRNAs ‘AllStars’ and ‘Luciferase’, and wells without treatment (Mock) (Additional file 1: 
Fig. 1). On day one, cells were seeded in 96-well plates and transfected using Hiperfect 
(Qiagen, Germany). The chemical cell cycle inhibitors nocodazole and aphidicolin were 
added as positive controls at the described time points and concentrations. On day four, 
cells were fixed using 4% PFA and stained with Hoechst 33,342 (5 µg/ml, Sigma). The 
plates were imaged using an automated microscope (IX-81, Olympus, Germany) and 
analyzed using the ScanR software with an in-house image analysis assay (Additional 
file 3: Fig. 2).

Using a ScanR single cell export script, single-cell data were exported and download-
able from https://​trans​fer.​mpiib-​berlin.​mpg.​de/s/​AibR4​AHLCR​9xzDB?​path=%​2F. The 
SOPRA project description is also available from GitHub https://​github.​com/​kpple​iss-
ner/​SOPRA/.

Cell cycle FACS validation

For FACS analysis of cell cycle profiles, 1 × 105 cells were seeded into each well of a 
12-well plate 24 h before transfection. Cells were then transfected with Hiperfect trans-
fection reagent (Qiagen) according to the manufacturer’s guidelines. In brief, 150 ng of 
specific siRNA was added to RPMI without serum and incubated with 6 µl Hiperfect in 
a total volume of 100 µl. After 10 to 15 min, the liposome-siRNA mixture was added to 

https://transfer.mpiib-berlin.mpg.de/s/AibR4AHLCR9xzDB?path=%2F
https://github.com/kppleissner/SOPRA/
https://github.com/kppleissner/SOPRA/
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the cells with 1 ml of cell culture medium (RPMI (Gibco) supplemented with 10% fetal 
calf serum (FCS) (Biochrome), 2 mM glutamine, and 1 mM sodium pyruvate), to give 
a final siRNA concentration of 10 nM. After one day, cells were trypsinized and seeded 
into new 6-well plates. Three days after transfection, cells were detached from the plate 
with the addition of trypsin–EDTA for 5  min, spun down for 10  min at 500 × g, and 
resuspended in 0.5 ml PBS. The resuspended cells were then added to 70% ethanol for 
fixation and left at –20 ℃ overnight. Cells were collected by centrifugation, resuspended, 
rinsed in PBS, and re-collected by centrifugation. Pelleted cells were resuspended in 
500 µl PBS containing a final concentration of 20 µg/ml propidium iodide and 200 µg/
ml RNAse A and left in the dark for 30 min at room temperature. Cell Cycle analysis was 
then performed using a Becton Dickinson FACSort flow cytometer and BD CellQuest 
Pro Software (BD Biosciences).

SOPRA software

The SOPRA software workflow (Fig.  1) consists of several steps: pre-processing 
(SOPRA1 of 4), data gathering and normalization (SOPRA 2 of 4), identification of sig-
nificantly changed cell populations, and clustering of similar density profiles (SOPRA 
3 of 4) and conversion of significant siRNAs into genes with their cluster membership. 
Furthermore, the workflow requires a variety of input files describing the experimental 
design and input/output folders for data.

The ‘Single Cell Feature Files’ contain the features for every single cell measured, while 
the files ‘PlateConf_LookUp’, ‘PlateList’ and ‘ScreenLog’ contain information about well 
content, plate content and flagged wells. In the first step, the data is gathered, includ-
ing the flagging of wells and single objects within wells. In the next step, a plate-wise 
median normalization is performed, and the limits for the binning intervals are defined. 
Subsequently, the single objects within each binning interval (bin) are counted, and a 
bin-wise control-based normalization is performed. Since the derived frequency distri-
bution profiles of measured features can be analyzed in a similar way as time curves, we 
employed regression analysis using R-Package maSigPro. Significantly different profiles 
can be identified using the calculated p-value, RSQ-value, and alpha-value for each sam-
ple profile. The significant profiles can be clustered using different clustering algorithms. 
Finally, a post-processing step (optional) can be performed to convert siRNA into gene 
names, cluster membership, and frequency. The SOPRA workflow is written as a Shiny 
application in R, enabling interactive selection of input/output folders, descriptive files 
characterizing plates, definitions of parameters for regression analysis etc. A detailed 
project description with specific instructions for how to run the workflow is available 
from GitHub.

Supporting data ZIP file for 384‑wells plates (single cell features)

The 384_wells_Plates_for_SOPRA.zip file contains data based on a cell cycle screen 
analyzed with ScanR: High-Content Screening Station for Life Science, Olympus. The 
following cell features were measured: ‘Area’,’ Mean Instensity DAPI’ and ‘Total Inten-
sity DAPI’. In general, any file in the correct format can be used for SOPRA. One file 
is needed for each plate or part of a plate. The folders also contain the descriptive files 
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’PlateConf_LookUp’, ’PlateList’ and ’ScreenLog’. https://​trans​fer.​mpiib-​berlin.​mpg.​de/s/​
AibR4​AHLCR​9xzDB?​path=%​2F.

Code availability and implementation
Source code of SOPRA shiny application (ui.R, server.R), single-cell data (96-wells plate) 
data for testing and SOPRA project description (folder: Manual) are freely available 
from GitHub https://​github.​com/​kpple​issner/​SOPRA/.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​022-​04981-8.

Additional file 1:   Screen setup includes 166 different siRNAs to target 107 genes, from which 54 had been 
reported to interfere with cell cycle progression in [23], known cell cycle inhibitors (A/N) in different concentrations, 
neutral controls (AS, L, M), as (toxic) siRNAs as a transfection control (PLK).

Additional file 2:   A total of 166 different siRNAs to target 107 genes, from which 54 had been reported to interfere 
with cell cycle progression [23].

Additional file 3:   Automated image analysis (ScanR: High-Content Screening Station for Life Science, Olympus) for 
measuring Area, mean Intensity and total Intensity for each cell (=count).

Additional file 4:   Lists of statistically significant profiles. As expected, cell populations treated with the ‘AllStars’ or 
‘Luciferase’ controls usually had high p-values and low RSQ- values. Only two (10%) and four (20%) out of 20 cellular 
populations treated with the neutral controls ‘Allstars’ or ‘Luciferase’, respectively, were identified to be significantly 
changed for at least one of the three cellular features used.

Additional file 5:   Comparison of SOPRA, FACS and published data. 28 profiles for each of the aphidicolin condi‑
tions A2 (4 μg/ml/24 h), A3 (2 μg/ml/12 h) and A4 (4 μg/ml/12 h), for each of the nocodazole conditions N1 (50 ng/
ml/24 h), N2 (75 ng/ml/24 h), N3 (50 ng/ml/12 h) and N4 (75 ng/ml/12 h) and 27 out of 28 profiles for the aphidicolin 
condition A1 (2 μg/ml/24 h) were identified as significantly changed hits.
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