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Abstract 

Background:  The treatment and prognosis of lung adenocarcinoma (LUAD) remains a 
challenge. The study aimed to conduct a systematic analysis of the predictive capacity 
of N6-methyladenosine (m6A)-related long non-coding RNAs (lncRNAs) in the progno-
sis of LUAD.

Methods:  594 samples were totally selected from a dataset from The Cancer Genome 
Atlas. The identification of prognostic m6A-related lncRNAs were performed by Pearson 
correlation analysis and Cox regression analysis. Systematic analyses, including cluster 
analysis, survival analysis, and immuno-correlated analysis, were conducted. A progno-
sis model was built from the optimized subset of m6A-related lncRNAs. The assessment 
of model was performed by survival analysis, and receiver operating characteristic 
(ROC) curve. Finally, the risk score of patients with LUAD calculated by the prognosis 
model was implemented by the analysis of Cox regression. Differential analysis was for 
further evaluation of the cuproptosis-related genes in two risk sets.

Results:  These patients were grouped into two clusters according to the expression 
levels of 22 prognostic m6A-related lncRNAs. The patients with LUAD in cluster 2 was 
significantly worse in the overall survival (OS) (P = 0.006). Three scores calculated by the 
ESTIMATE methods in cluster 2 were significantly lower. After the least absolute shrink-
age and selection operator algorithm, 10 prognostic m6A-related lncRNAs were totally 
selected to construct the final model to obtain the risk score. Then the area under the 
ROC curve of the prognosis model for 1, 3, and 5-year OS was 0.767, 0.709, and 0.736 
in the training set, and 0.707, 0.691, and 0.675 in the test set. The OS of the low-risk 
cohort was significantly higher than that of the high-risk cohort in both the training 
set (P < 0.001) and test set (P < 0.001). After the analysis of Cox regression, the risk score 
[Hazard ratio (HR) = 5.792; P < 0.001] and stage (HR = 1.576; P < 0.001) were both con-
sidered as independent indicators of prognosis for LUAD. The expression levels of five 
cuproptosis-related genes were significantly different in two risk sets.
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Conclusions:  The study constructed a predictive model for the OS of patients 
with LUAD and these OS-related m6A-lncRNAs might have potential roles in LUAD 
progression.

Keywords:  Lung adenocarcinoma, N6-methyladenosine, Long non-coding RNA, 
Prognosis, Biomarker

Background
Lung cancer, a malignancy which has been identified to have the highest mortality and 
the second highest morbidity worldwidely, has a poor 5-year survival since the rate 
reaches only 10–20% [1, 2]. The most common subtype is lung adenocarcinoma (LUAD) 
[3, 4]. Despite therapeutic options including targeted therapy, radiotherapy, chemother-
apy and surgery progressed rapidly, the prognosis of LUAD patients remains unsatisfac-
tory [3–5]. LUAD, the pathogenesis of which involves multiple molecular mechanisms 
through various pathways, requires more in-depth mechanistic research to develop 
more promising therapies.

N6-methyladenosine (m6A) modification is a crucial RNA post-transcriptional modi-
fication in most eukaryotic long non-coding RNAs (lncRNAs) and mRNAs [6, 7]. It can 
modulate the stabilization, splicing, degradation, translation, and processing of the tar-
get RNA via three type of regulators, which include writers (methyltransferases), eras-
ers (demethylases), and readers (binding proteins) [8, 9]. Some studies have indicated 
that m6A modifications are correlated with the oncogenesis and development of malig-
nancies, including LUAD [10–12]. Wang previously showed that the 13 m6A regula-
tors, such as KIAA1429 and FTO, were aberrantly overexpressed in tumor samples [11]. 
Moreover, several studies also found that the modification of m6A has involvement in 
the regulation of the immune response and tumor microenvironment infiltrating cells, 
such as dendritic cells [13, 14]. Therefore, it is necessary to study these m6A modifica-
tions to gain a comprehensive understanding their functions.

LncRNAs, a group of RNAs which is non-coded and has over 200 nucleotides in 
length, functions in various biological processes including growth, apoptosis, and 
regulation of cell development [15]. Aberrant regulation of lncRNAs has been inves-
tigated and found to be related to different malignancies, including in LUAD [16, 17]. 
Ding et al. found that high expression of lncRNA OGFRP1 leads to significantly worse 
survival outcomes and constructed a prediction model whose area under the receiver 
operating characteristic (ROC) curve (AUC) reaches 0.766 [18]. Studies focusing on the 
mechanism by which the m6A modification acts on the occurrence and progression of 
lncRNA-dependent LUAD are limited and the whole roles of the three types of m6A 
regulators in the aberrant lncRNAs regulation is still undefined [19]. Separately, the cell 
death was also involved in the modification of m6A for lncRNAs in the development of 
LUAD and cuproptosis was new form of cell death, which was found to be associated 
with the progression of cancer [20–23]. However, the relationship between cuproptosis 
and m6A-related lncRNAs in the development of LUAD has not been reported.

Therefore, the objective of our research was to perform a bioinformatic analysis to 
distinguish those survival-related m6A-lncRNAs based on data of LUAD patients from 
The Cancer Genome Atlas (TCGA) and conduct a systematic analysis. Furthermore, a 
model was constructed to predict the overall survival (OS) of these patients by utilizing 



Page 3 of 18Gao et al. BMC Bioinformatics          (2022) 23:327 	

the optimized set of survival-related m6A-lncRNAs. Differential analysis was for further 
evaluation of the relationship between the performance of the model and cuproptosis.

Methods
Datasets and m6A‑related genes

The transcriptome profiling normalization data by fragments per kilobase of tran-
script per million mapped reads and the relevant clinical features were acquired from 
the Genomic Data Commons Data Portal (https://​portal.​gdc.​cancer.​gov). A total of 515 
cases with 594 samples were involved in this study from a TCGA project, and 59 samples 
were in the normal group and 535 in the tumor group. In addition, 23 m6A regulators 
were totally determined on the basis of previous studies, as shown the Additional file 1, 
which could be divided in to writers, erasers, and readers. Annotation of the lncRNAs 
and mRNAs in the TCGA project were conducted using the annotation file of Genome 
Reference Consortium Human Build 38 (GRCh38) acquired from the GENCODE web-
site (https://​www.​genco​degen​es.​org). A total of 14,086 lncRNAs were identified by the 
Ensemble IDs of the genes in the TCGA dataset.

Selection of m6A‑related lncRNAs and cluster analysis

m6A-related lncRNAs were initially identified by Pearson correlation analysis with the 
P < 0.001 and |Pearson R|> 0.5. Then, the prognostic m6A-related lncRNAs were deter-
mined by the univariate analysis of Cox regression. Wilcoxon tests were used for analyz-
ing the prognostic m6A-related lncRNA expression between the normal group and the 
tumor group. Cluster analysis was used for analyzing the expression of the prognostic 
m6A-related lncRNAs. The OS of different clusters were compared by Kaplan–Meier 
(KM) curves and the log-rank test. Then, the prognostic m6A-related lncRNAs expres-
sion and clinical features in different clusters were analyzed by differential analysis.

Differential analysis and correlation analysis of CD274 expression

The CD274 (programmed cell death 1 ligand 1, PD-L1) expression in the normal group 
and the tumor group, and in the two clusters, were compared using the Wilcoxon test. 
Moreover, CD274 expression and the expression of prognostic m6A-related lncRNAs 
were analyzed by correlation analysis.

Tumor‑infiltrating immune cells (TIIC) evaluation and gene set enrichment analysis (GSEA)

According to the CIBERSORT algorithm, standard gene expression data and the Wil-
coxon test, the relative proportions and the difference of 22 TIIC subpopulations were 
evaluated [24]. The immune score, estimate score, and stromal score were computed 
using the ESTIMATE algorithm to further predict tumor purity and to analyze the 
tumor microenvironment [25]. The Wilcoxon test was used to analyze these three indi-
cators of the tumor microenvironment between the two clusters. Then we used GSEA 
software (version 4.1.0) to investigate gene set enrichment in the two clusters of lung 
adenocarcinoma.

https://portal.gdc.cancer.gov
https://www.gencodegenes.org
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Establishment of the prognosis model and survival analysis

The patients with LUAD were grouped into a training cohort and a test cohort at a 
ratio of 5:5 randomly. The optimized subset of prognostic m6A-related lncRNAs was 
chosen using the least absolute shrinkage and selection operator (LASSO) algorithm 
to build the final prognosis model. After the number of lncRNAs was determined, 
the corresponding coefficients of each lncRNA of the optimized subset were calcu-
lated. The assessment of prognosis model was then performed by ROC analysis and a 
risk plot. The natural logarithm of risk score was calculated by summing the chosen 
lncRNAs expression, weighted by their corresponding coefficients. Then patients with 
LUAD were divided into low-risk set and high-risk set by the median value of the risk 
scores. The OS of patients with LUAD in the two risk sets were compared by the KM 
method and log-rank test in the training cohort and test cohort. The evaluation of the 
risk score and clinical features for the OS of patients with LUAD were implemented 
by univariate and multivariate analysis of Cox regression. Then, subgroup analysis of 
each clinical feature, based on the two risk sets, was conducted using the KM method 
and log-rank test.

Differential analysis of risk sets and risk score

The differential analysis of immune score, clinical features and cluster status between 
the two risk sets were analyzed by chi-squared test. The differential analysis of PD-L1 
expression and the cuproptosis-related genes expression were conducted using the 
Wilcoxon test between the two risk sets. Correlation analysis was also implemented 
between the risk score and each TIIC of samples using Spearman correlation analysis.

Statistical analysis

The R statistical software (version 4.0.5) was used for all statistical analyses. The 
“limma” package was used to assess the transcriptome profiling data. The survival 
analysis was conducted by the “survival” and, “survminer” packages. The “pheatmap”, 
“reshape2”, “ggpubr”, and “ggplot2” packages were used to generate heatmaps, box-
maps and risk plots. The “ConsensusClusterPlus” package was to conduct the clus-
ter analysis. The “corrplot” package was to conduct the correlation analysis of PD-L1 
expression. The “e1071”, “parallel”, and “preprocessCore” packages were used to evalu-
ate the TIICs. The “estimate” package was to obtain the stromal score, immune score, 
and estimate score of sample. The “vioplot”, “ggpubr” “ggplot2”, and “ggExtra” pack-
ages were used to investigate the differences among the TIICs in the two clusters 
and to conduct correlation analysis between the risk score and the TIICs. The “caret”, 
“glmnet”, “timeROC”, “survival”, and “survminer” packages were to build the model 
and to get the ROC. A two-side P < 0.05 was considered statistically significant.

Results
Determination of m6A‑related lncRNAs in patients with LUAD

1558 m6A-related lncRNAs were totally determined using Pearson correlation anal-
ysis (with a P < 0.001 and |Pearson R|> 0.5). After clinical survival data integrated, 
504 patients were further involved in the prognostic analysis from a TCGA project. 
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The information for 504 patients was shown in Table 1. Then, a total of 22 prognos-
tic m6A-related lncRNAs were identified by univariate Cox regression analysis (with 
P < 0.01, Fig.  1a). These prognostic m6A-related lncRNAs had significantly different 
expression levels between normal and tumor samples by the Wilcoxon test (Fig. 1b). 
In tumor samples, the expression levels of certain prognostic m6A-related lncRNAs, 
such as AC099850.4, AL606489.1, AC010999.2, and AC034102.8, were higher than 
in normal samples; however, the expression levels of other prognostic m6A-related 
lncRNAs, such as PAN3-AS1, AF131215.5, AC024075.1, MIR99AHG, AC005884.1, 
and AC090617.5, were lower than in normal samples (Fig. 1b).

Cluster analysis of m6A‑related lncRNAs

According to the expression of the 22 prognostic m6A-related lncRNAs, all samples were 
divided into two clusters by cluster analysis. Then, the differences in clinical features and 
the 22 prognostic m6A-related lncRNAs between the two clusters were investigated. A 
heatmap showed that the stage classification was significantly different between the two 
clusters (Fig. 1c). Moreover, the OS between two clusters were compared. As shown in 

Table 1  Clinical features of 504 patients with LUAD

Clinical features TCGA 
database 
(n = 504)

Age 65.30 ± 10.03

Sex

Male 234

Female 270

Pathological Stage

I 270

II 119

III 81

IV 26

Unknown 8

T

T1 168

T2 269

T3 45

T4 19

Unknown 3

N

N0 325

N1 94

N2 71

N3 2

Unknown 12

M

M0 335

M1 25

Unknown 144



Page 6 of 18Gao et al. BMC Bioinformatics          (2022) 23:327 

Fig. 1  The selection of m6A-related lncRNAs for prognosis and cluster analysis. a Forest plot of prognostic 
m6A-related lncRNAs of patients with LUAD using univariate Cox regression analysis (P < 0.01, CI: confidence 
interval); b Boxplot showing the expression levels of prognostic m6A-related lncRNAs in the normal and 
tumor groups. c Heatmap showing the relationship between clinical features, prognostic m6A-related 
lncRNA expression, and the two clusters. d Kaplan–Meier curves showing that cluster 2 group had worse 
overall survival than cluster 1 by log-rank test (P = 0.006). lncRNA, long non-coding RNA; LUAD, lung 
adenocarcinoma. “***”: P < 0.001, “**”: P < 0.01, “*”: P < 0.05
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Fig. 1d, the OS of patients with LUAD was significantly different between the two clus-
ters (P = 0.006).

Immuno‑correlated analysis

The PD-L1 expression in the tumor group was significantly lower than that in the nor-
mal group (Fig. 2a). The PD-L1 expression of cluster 1 was significantly lower than that 
in cluster 2 (Fig.  2b). Figure  2c shows the correlation between PD-L1 expression and 
the expression levels of the 22 prognostic m6A-related lncRNAs. The infiltration of 22 
immune cells in the LUAD microenvironment were analyzed based on the CIBERSORT 
algorithm. As shown in Fig. 2d, the 22 kinds of TIICs were compared between the two 
clusters. The violin plot showed that the proportions of 13 kinds of immune cells were 
significantly different between the two clusters. Then the stromal score, immune score, 
and estimate score assessed by the ESTIMATE methods were compared between two 
clusters and all three were significantly different (Fig. 2e–g).

GSEA analysis

GSEA was conducted and the results showed that in cluster 2, the genes set was mainly 
enriched for the oocyte meiosis, cell cycle, and ubiquitin mediated proteolysis (Fig. 3a–
c). In cluster 1, the genes set was mainly enriched for arachidonic acid metabolism, lin-
oleic acid metabolism, and asthma (Fig. 3d–f).

Construction of the prognosis model and survival analysis

The 504 patients were randomly grouped into a training cohort and a validation cohort. 
Then 10 prognostic m6A-related lncRNAs chosen by the LASSO algorithm were to 
obtain the risk score, including AC087501.4, L3MBTL2-AS1, AL606489.1, AC007613.1, 
AC090617.5, AC073316.3, AC010999.2, AC005884.1, TSPOAP1-AS1, and ADPGK-
AS1(Fig.  4a). The formula is shown in the Additional file  2. Built by the LASSO algo-
rithm, the AUC of the prognosis model for 1-year, 3-year, 5-year OS was 0.767, 0.709, 
and 0.736 in the training cohort and 0.707, 0.691, and 0.675 in the validation cohort 
(Fig. 4b–c). Then, according to the median value of the risk scores of the training cohort, 
the survival status of the training cohort and the validation cohort were analyzed based 
the two risk sets (Fig. 4d–g). Moreover, the OS of low-risk set were significantly higher 
than the high-risk set in both the training cohort (P < 0.001) and validation cohort 
(P < 0.001) (Fig. 4h–i).

Cox regression analysis and subgroup analysis

After univariate and multivariate analysis of Cox regression, the risk score and stage were 
both considered as independent predictive factors for the OS of patients with LUAD and 
the risk score was the key one in all groups (Table 2). After the subgroup analysis, the 
low-risk set showed significantly higher OS than the high-risk set in these 11 subgroup 
patients, as shown in Fig. 5. Then, T stage, TNM stage, N stage, sex, immune score, and 
cluster of patients were significantly different in the two risk groups (Fig.  6). Figure  6 
also showed the difference expression levels of the 10 prognostic m6A-related lncRNAs 
in the two risk groups. The PD-L1 expression levels of the low-risk set and high-risk set 
were not significantly different (P = 0.54), as shown in the Fig. 7. The expression levels 
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Fig. 2  Immuno-correlated analysis. a Boxplot showing that the CD274 (PD-L1) expression was significantly 
different between the normal set and the tumor set. ***: P < 0.001. b Boxplot showing that PD-L1 expression 
was significantly different between the two clusters. ***: P < 0.001. c Plot showing the correlation between 
CD274 (PD-L1) expression and the expression of 22 prognostic m6A-related lncRNA. The red circle indicates 
a positive correlation and the blue circle indicates a negative correlation. “”: P < 0.05. d Violin plot showing the 
differences in the percentage of 22 kinds of tumor-infiltrating immune cells between the two clusters. e, f, g: 
These boxplots show that the estimate score, immune score, and stromal score of cluster 2 were significantly 
lower than cluster 1 (P = 0.0058, 0.019, and 0.005, respectively). PD-L1, programmed cell death 1 ligand 1; 
lncRNA, long non-coding RNA



Page 9 of 18Gao et al. BMC Bioinformatics          (2022) 23:327 	

of five cuproptosis-related genes were significantly different in two risk sets, as shown 
in the Fig. 8. Moreover, the 6 kinds of immune cells, such as plasma cells (R =  − 0.2), 
correlated significantly and negatively with the risk score, whereas the other 6 kinds of 
immune cells, such as M0 macrophages (R = 0.22), correlated significantly and positively 
with the risk score (Fig. 9).

Discussion
The transcriptome information and clinical data of patients that have been diagnosed 
with LUAD were totally collected from the TCGA dataset, with the aim to investigate 
those m6A-related lncRNAs that associated with LUAD prognosis. After the analysis 
of univariate Cox regression, 22 prognostic m6A-related lncRNAs were confirmed and 
used for clusters analysis. The OS of the patients in cluster 1 was significantly higher 
than in cluster 2. Then 10 m6A-related lncRNAs were selected from the previously men-
tioned 22 prognostic biomarkers, based on which a prediction model aiming at the OS 
of patients was established. The low-risk set patients with LUAD had significantly higher 
OS than the other set (P < 0.001). The risk score was considered as an independent risk 
factor for OS after the univariate and multivariate analyses of Cox regression. In the later 
subgroup analysis, the low-risk set had a significantly higher OS revealed by groups with 
M0 stage and divided by sex, age, TNM stage, N stage, and T stage. Moreover, the dif-
ference of T stages, TNM stages, N stages, sex, immune scores, five cuproptosis-related 
genes and clusters of these patients were significant in two risk sets.

Fig. 3  Gene set enrichment analysis of the two clusters. a–c: The top three gene sets enriched in cluster 2 
included oocyte meiosis (NES = 2.65, Norm P < 0.001, FDR q < 0.001), cell cycle (NES = 2.60, Norm P < 0.001, 
FDR q < 0.001), and ubiquitin mediated proteolysis (NES = 2.52, Norm P < 0.001, FDR q < 0.001). d–f: The 
top three gene sets enriched in cluster 1 included arachidonic acid metabolism (NES =  − 2.11, Norm 
P < 0.001, FDR q = 0.014), linoleic acid metabolism (NES =  − 2.08, Norm P < 0.001, FDR q = 0.013) and Asthma 
(NES =  − 2.07, Norm P = 0.002, FDR q = 0.009). NES, normalized enrichment score; Norm, normalized; FDR, 
false discovery rate
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Researches have shown that m6A modification of lncRNAs could regulate the onco-
genesis and progression of malignancies [26–28]. Lan et  al. showed that VIRMA, 
which was also named KIAA1429, could regulate lncRNA GATA3 to drive hepato-
carcinogenesis, progression, and metastasis based on an m6A modification [26]. Yang 
et al. showed that METTL14, which is one of m6A “writer” regulators, could increase 

Fig. 4  Building the prognosis model and survival analysis. a The process of least absolute shrinkage and 
selection operator regression to establish the final prognosis model. b, c The receiver operating characteristic 
of the prognosis model for OS in the training cohort (b) and validation cohort (c). d, e Patients were grouped 
into two risk sets by mean value of the risk score of training cohort in the training cohort (d) and validation 
cohort (e). f, g The distribution of patients with survival status based on two risk groups in the training cohort 
(f) and validation cohort (g). h, i: Kaplan–Meier curves of two risk sets in the training cohort (h) and validation 
cohort (i)
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Table 2  Univariate and multivariate Cox regression analysis

CI confidence interval, HR Hazard ratio

Variable Univariate Cox regression Multivariate Cox regression

HR (95% CI) P value HR (95% CI) P value

Training cohort

Age 1.012 (0.989–1.035) 0.310 1.011 (0.988–1.034) 0.342

Sex 1.185 (0.785–1.790) 0.419 0.820 (0.529–1.271) 0.374

Stage 1.629 (1.347–1.969)  < 0.001 1.549 (1.269–1.892)  < 0.001

Risk score 6.338 (3.749–10.716)  < 0.001 5.952 (3.338–10.615)  < 0.001

Test cohort

Age 1.003 (0.982–1.024) 0.781 1.011 (0.990–1.032) 0.299

Sex 1.039 (0.681–1.585) 0.859 1.053 (0.689–1.609) 0.811

Stage 1.639 (1.335–2.013)  < 0.001 1.576 (1.266–1.961)  < 0.001

Risk score 7.555 (3.530–16.170)  < 0.001 5.792 (2.707–12.396)  < 0.001

Fig. 5  Survival analysis of clinical subgroups of patients. a–k: Kaplan–Meier curves and the log-rank test 
showed that the overall survival of the high-risk set was significantly worse than that of the low-risk set in 
these 11 subgroups of patients (a–k)
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the m6A-methylated rate of lncRNA XIST and decrease the levels of XIST to suppress 
the proliferation and metastasis of colorectal cancer cells [27]. Ni et  al. showed that 
YTHDF3 could promote m6A-related lncRNA GA55 degradation and then accelerate 
the development of colorectal cancer [28]. These studies indicated that m6A-related 
lncRNAs could contribute to not only the oncogenesis but also progression of malig-
nant tumors and lncRNAs might be involved in competing against endogenous RNAs, 

Fig. 6  Heatmap analysis of the two risk sets in all patients.The figure shows that the differences of patient 
with N stage, T stage, Stage, Sex, Immune Score, and Cluster was respectively significant in two risk sets. The 
heatmap also shows the expression of the 10 prognostic m6A-related lncRNAs in the two risk sets.lncRNA, 
long non-coding RNA.“***”: P < 0.001, “**”: P < 0.01, “*”: P < 0.05

Fig. 7  The difference of CD274 (PD-L1) expression in the two risk sets. The boxplot shows that the PD-L1 
expression of the high-risk set and low-risk set were no significant difference (P = 0.54). PD-L1, programmed 
cell death 1 ligand 1
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affecting the invasiveness of tumors. However, taking a thorough look at how m6A mod-
ifications act on the progression of lncRNA-dependent LUAD is challengeable. Our pre-
sent study found the gene set of m6A-related lncRNAs in LUAD mainly enriched in the 
oocyte meiosis, cell cycle, and ubiquitin mediated proteolysis in cluster 2, whose OS was 
obviously poorer than in cluster 1. These results indicated that lncRNAs with the m6A 
modification could influence the progression of LUAD and then the OS of patients with 
LUAD. Therefore, we believe these lncRNAs will be confirmed as potential therapeutic 
targets of LUAD by studying the functions and interaction of these lncRNAs and their 
m6A modifications in a future study.

In the present study, 10 of 22 m6A-related lncRNAs were selected by the LASSO algo-
rithm, including AC087501.4, L3MBTL2-AS1, AL606489.1, AC007613.1, AC090617.5, 
AC073316.3, AC010999.2, AC005884.1, TSPOAP1-AS1, and ADPGK-AS1, which could 
predict the prognosis of LUAD. Several of the 10 lncRNAs have been investigated 
in different tumors [29–31]. Giulietti et  al. showed that the methylation level of the 
TSPOAP1-AS1 promoter was higher in pancreatic ductal adenocarcinoma than in nor-
mal tissues and the aberrant methylation level of the lncRNA might be considered as an 
indicator for the diagnosis of pancreatic ductal adenocarcinoma [29]. Yang et al. showed 
that the expression level ADPGK-AS1 in the adjacent non-tumor tissues of patients with 
breast cancer was lower than in the tumor tissues, which might be regarded as an indica-
tor for the prognosis of breast cancer patients because ADPGK-AS1 could facilitate cell 
proliferation and migration, suppress cell apoptosis, and induce epithelial-mesenchymal 
transition [30]. The study of Xu et al. showed that the risk score comprised of 12 m6A-
related lncRNAs could predict the 1-year OS of patients with LUAD, and the AUC of its 
risk score was 0.759 [19]. The group of 12 m6A-related lncRNAs was different with our 
study and there might be some reasons as below. Firstly, our study included 23 m6A-
related genes but the study of Xu et al. only included 21 m6A-related genes [19]. There-
fore, our study performed further analysis with two more m6A-related genes than the 

Fig. 8  Differential analysis of cuproptosis-related genes in the two risk sets.The boxplot shows that 
the difference of the expression of five cuproptosis-related genes were significant in the two risk sets. 
Log-transformation was only performed to draw the boxplot for visualization.“ns”: not significant; “***”: 
P < 0.001; “**”: P < 0.01; “*”: P < 0.05
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study of Xu et al. [19]. Secondly, the Pearson’s correlation coefficient of their study and 
our study was more than 0.3 and 0.5, respectively [19]. Thirdly, the prognosis of m6A-
related lncRNAs selected by univariate Cox regression analysis in their study and our 
study was different (P < 0.05 and P < 0.01, respectively) [19]. Fourthly, sample size was 
insufficient. Moreover, the version of the annotation files might be different. What’s 
more, the study of Zhao et al. used 13 m6A-related lncRNAs to construct the predic-
tion model of patients with LUAD [32]. The two studies were similar to some extent, 
but there were some differences between the results of our study and the study of Zhao 
et al. [32]. The main reasons are as follows. Firstly, 3 of 23 m6A-related genes are differ-
ent in our study and the study of Zhao et al. [32]. IGF2BP1, IGF2BP2, IGF2BP3 were also 
included in the study of Xu et al., which are consistent with our study but not with the 
study of Zhao et al. [19, 32]. Therefore, there are different in m6A-related genes between 

Fig. 9  The correlation between immune cells of samples and the risk score.The figure shows 12 types of 
immune cells from samples with significantly related with risk scores
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our study and the study of Zhao et al. [32]. Secondly, there are different in m6A-related 
lncRNAs between our study and the study of Zhao et al. because of the above mentioned 
the differences of m6A-related genes [32]. Thirdly, a total of 504 patients were included 
into our study to construct the model, but 468 patients were included into the study 
of Zhao et al. [32]. Although two studies were derived from the TCGA lung adenocar-
cinoma dataset, there were differences in the transcriptome data due to the inconsist-
ency of the patients included. Fourthly, 22 m6A- related lncRNAs were obtained by the 
univariate Cox regression analysis (with P < 0.01) in our study, while 91 m6A- related 
lncRNAs were obtained by the univariate Cox regression analysis (with P < 0.05) in the 
study of Zhao et al. [32]. Although there have been few studies about the relationship of 
how m6A-related lncRNAs act on the occurrence and progression in LUAD, based on 
our results, we still believe these m6A-lncRNAs have roles in LUAD tumorigenesis and 
progression, which need to be confirmed in future studies.

Several studies have investigated the relationship between TIICs and the prognosis 
of lung cancer [33–35]. Li et al. found that in the low-risk set, the percentage of neu-
trophil infiltration was lower while patients in the high-risk set had poorer prognosis 
in nonsquamous non-small cell lung cancer [33]. Sun et al. showed that LUAD groups 
with lower immune score, stromal score, or estimate scores could have worse OS than 
those with higher scores [34]. The finding is in accordance with the results of this study. 
We observed no difference in PD-L1 expression between the two risk sets. Similarly, 
Zhang et al. showed that there was no significant difference in PD-L1 expression among 
patients with adenocarcinoma in situ, minimally invasive adenocarcinoma, and invasive 
adenocarcinoma and this finding is also in line with ours [35]. However, evidence suggest 
that immune checkpoint inhibitors targeting the PD-1/PD-L1 interaction could lead to 
a reversal of the lung cancer–induced immunosuppressive microenvironment, bringing 
about an effective host antitumor immune response and also significant improvement 
in survival [36–38]. Therefore, further research into the undying association between 
the CD274 (PD-L1) expression and prognosis of LUAD is required. Moreover, our study 
showed that the expression levels of five cuproptosis-related genes were significantly dif-
ferent in two risk sets. The result indicated cuproptosis might have the involvement in 
the modification of m6A for lncRNAs in the development of LUAD, which might help to 
identify tumor therapeutic targets, and the further investigation is also required.

Several limitations are worth mentioning. Firstly, the study only included a TCGA 
dataset and the prognostic m6A-related lncRNAs need to be validated using various 
datasets or independent LUAD cohorts in further research. Secondly, the detailed mech-
anism and function of the prognostic m6A-related lncRNAs in tumorigenesis and the 
progression of LUAD need to be confirmed by in vitro and in vivo experiments.

Conclusions
In conclusion, the present study investigated the association between m6A-related lncR-
NAs and the prognosis in patients with LUAD, establishing a prognosis model for the 
OS of these patients.

The difference in the expression levels of five cuproptosis-related genes were con-
firmed in two risk sets. These results suggested potential therapeutic targets of LUAD, 
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which might be confirmed by studying the functions and mechanism of m6A-related 
lncRNAs in the future.
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