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Abstract
Background: The number of porcine Single Nucleotide Polymorphisms (SNPs) used in
genetic association studies is very large, suitable for statistical testing. However, in
breed classification problem, one needs to have a much smaller porcine-classifying
SNPs (PCSNPs) set that could accurately classify pigs into different breeds. This study
attempted to find such PCSNPs by using several combinations of feature selection and
classification methods. We experimented with different combinations of feature
selection methods including information gain, conventional as well as modified
genetic algorithms, and our developed frequency feature selection method in
combination with a common classification method, Support Vector Machine, to
evaluate the method’s performance. Experiments were conducted on a comprehensive
data set containing SNPs from native pigs from America, Europe, Africa, and Asia
including Chinese breeds, Vietnamese breeds, and hybrid breeds from Thailand.

Results: The best combination of feature selection methods—information gain,
modified genetic algorithm, and frequency feature selection hybrid—was able to
reduce the number of possible PCSNPs to only 1.62% (164 PCSNPs) of the total number
of SNPs (10,210 SNPs) while maintaining a high classification accuracy (95.12%).
Moreover, the near-identical performance of this PCSNPs set to those of bigger data
sets as well as even the entire data set. Moreover, most PCSNPs were well-matched to a
set of 94 genes in the PANTHER pathway, conforming to a suggestion by the Porcine
Genomic Sequencing Initiative.

Conclusions: The best hybrid method truly provided a sufficiently small number of
porcine SNPs that accurately classified swine breeds.
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Background
Purebred pigs are commercially important and many pig breeders request purebred pigs
in their cross-breeding programs. Cross-breeding helps breeders discover new breeds
with desirable traits, e.g., disease resistance and heat tolerance. Swine genetic diver-
sity stems from genetic differences. The most prevalent differences are in the form of
variation at the level of a nucleotide, termed single nucleotide polymorphism (SNP). A
single nucleotide or base (adenine, guanine, cytosine, or thymine) substitution can cause
changes at the protein level which results in changes of phenotypes. An informative SNP
profile, a collection of porcine-classifying SNPs (PCSNPs) collected from a pig, can be
used to represent a given phenotype.
Porcine SNPs can be used to classify pigs into different breeds. However, since there

could be ten of thousand SNPs representing each pig, it may not be so practical (and
costly) to use this large SNP collection as a molecular pig classification testing kit. There-
fore, the original number of SNPs should be reduced by means of feature selection, i.e., a
small number of SNPs that carry a statistical power to achieve good classification results.
Moreover, selection of a small number of the most significant features for classification
is very important because even though gene and SNP matching procedure is adequately
efficient, the validation procedure for each match is extremely costly and so least signif-
icant SNPs are preferably not included. With the advent of AI and machine learning era,
we can adopt well established algorithms to efficiently filter SNPs (feature selection). This
study focused on bringing together a feature selection technique in combination with a
classification technique inmachine learning to apply to SNP selection and classification of
swine breeds. The most popular classification techniques at the present time are Bayesian
classifiers, nearest neighbor, neural networks, and support vector machines (SVM) [1].
They have been applied successfully on various types of data such as SNPs, proteomics,
genomics, and microarray, all of which have a large number of features (called dimen-
sions hereafter). These high dimensions affect the efficiency of classification techniques
because some features are not necessary for the construction of an accurate classification
model. Another issue is that, typically, the number of samples to be classified is very small,
so there is a strong tendency that an overfitting issue may occur. An overfitting is a situa-
tion in which a classifier can model the training data too well (including noise in the data)
but not others because the trained model is not generalized enough for other inputs.
Feature selection plays a crucial role in machine learning. Its importance is explained in

[2], a review paper on the feature selection techniques for classification tasks. Kwak and
Choi present an efficient feature selector that reduces computational time and provides
accurate classification results [3]. The feature selection techniques commonly used in
bioinformatics were reported in [4], especially pertaining to microarray. This study con-
sidered these techniques to be of three types–filter, wrapper, and embedded methods. A
filter feature selection method applies a statistical measure to assign a score to each fea-
ture. The features are ranked by the score and either selected to be kept or removed from
the data set. The features that are assigned a high score will be selected to be used in the
further classification step. The advantages of this method are that it can be applied to a
data set that has a large number of features in a simple and efficient way that is indepen-
dent from the machine learning algorithms. As well as that it involves a lower risk of an
overfitting issue which sets it apart from a wrapper method that entails a high risk of this
issue. A disadvantage of this method is that it produces a feature set that is not tuned to
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a specific type of predictive model, so a filter method may fail to find the best subset of
features for a particular predictive model in many occasions. A wrapper method, on the
other hand, is dependent on machine learning algorithms. The final selected features are
the features that provide the best result as the machine learning algorithms operate on a
variety of subsets of features suggested by a search algorithm such as genetic algorithm
(GA) and sequential search. Even though a wrapper method uses a long computational
time from having to perform a lot of procedural steps, it often provides the best subset of
features. The last type of methods, embedded method, is a feature selection method that
is embedded in the machine learning algorithm which, in this sense, is similar to a wrap-
per method that is dependent on the machine learning algorithms, but it uses a shorter
processing time.
Filter methods that have been widely used for bioinformatics tasks are such as χ2, i-test,

gain ratio, Euclidean distance, correlation-based feature selection, and Markov blanket
[4]. In [5], other filter methods than the ones reported in [4] are presented for applying on
gene expression microarray data set. These methods are rank product, fold-change ratio,
modified t-test, and information gain (IG). Thamwiwatthana, Pasupa, and Tongsima pre-
sented a technique to reduce the number of beta-thalassaemia SNPs of Thai population
[6]. That study used several filters, embeddedmethods and classifiers as well as their com-
binations. The best combination was χ2+SVM that selected a small number of PCSNPs
that can classify severe or mild cases of beta-thalassaemia. Besides filter methods, several
wrapper methods have also been widely used. In two review papers [4, 7], several widely
used wrapper methods are mentioned such as sequential search, simulated annealing,
and nature-inspired algorithms. Methods in the nature-inspired group are such as binary
particle swarm optimization, GA [8, 9], binary flower pollination [10], and binary cuckoo
search [11]. The wrapper method of our interest was GA. Lastly, there have been exten-
sive researches on embedded methods such as sparsity control by using lq-norm [12],
Jeffrey’s Hyperprior [13], canonical variate analysis [14]. Moreover, the common embed-
ded methods for bioinformatic tasks are such as random forest, weight vector of SVM,
and decision tree [4, 7], but they were not used in our work because filter and wrapper
methods have been reported to be more stable for feature selection task [7].
In one of our previous studies [15], we combined IG (filter method) with a modified GA

(wrapper method) to perform swine SNP selection. The IG ranked the SNPs for primary
selection by an elbow method. The resulting group of the primarily selected features was
then processed through twomore selection steps by themodified GA and a frequency fea-
ture selection (FFS) method. We called the entire procedure as IG+modified GA+FFS. It
was completely successful as it yielded a very small number of most statistically significant
porcine-classifying SNPs which gave as highly accurate classification results as using all of
the SNPs in the data set. Since our ultimate goal was to find the genes that are responsible
for the differences between swine breeds, it was necessary to use SNPs data from as many
breeds as possible. Therefore, we attempted to use the successful IG+modified GA+FFS
on a more inclusive swine SNP data set in this study. This SNP data set included those of
all swine breeds raised in countries in America, Europe, and Asia. The situation of a large
number of SNPs and a small number of samples in this study was as challenging as that in
the previous study, and the need to find a very small number of best PCSNPs that would
provide the most accurate classification results were still the same. The aim of this study
was to find a small number of PCSNPs that can accurately identify swine breed.
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Results
We propose a method that reduces the large number of porcine SNPs to a small num-
ber of statistically significant PCSNPs that can be used to successfully classify swine
breed. Our study included investigation of several feature selection methods: IG, IG+GA,
IG+modified GA, IG+GA+FFS, IG+FFS, and IG+modified GA+FFS as well as an SVM
classification method. In this section, we present the results of SNP selection, principal
component analysis (PCA), and identification of genes related to the selected SNPs.

Experimental framework of feature selection and classification

The experimental framework of feature selection and classification consists of the
following: 1) pre-processing and partitioning procedures, 2) perform feature selec-
tion procedures on the data sets, 3) perform classification procedures on the selected
features. The end result of the experiment was a small number of the most signifi-
cant PCSNPs that could identify a particular class of data (porcine breed) accurately.
Incidentally, we used SVM as a classifier, which for the case of a lot of samples,
the kernel would also take a lot of time to process [16]. For example, for Linear
kernel, its computational complexity was O(m2n), where m denotes the number of
samples and n denotes the number of features. Hence, if the number of samples
and features for training our model are reduced, the training time will be reduced
as well.
The porcine SNP data needed to be pre-processed because there were some missing

base-pairs in this real-world data set. Valid base-pairs are represented by 0, 1, or 2 in
the data set, while the missing pairs are represented by −1. These missing pairs could
confound the feature selection and classification procedures, leading to inaccurate clas-
sification. The pre-processing procedure was a single imputation method that estimated
the missing values with a mode value. Then, the pre-processed data set was partitioned
into training and test data sets. The training data set would be used for selecting features
and training the classification model; the test data set would be used for testing the valid-
ity of the model. At the start of the feature selection procedure, the training data set was
further partitioned into r randomly-seeded training sub-data sets and test sub-data sets.
This round of partitioning was necessary because FFS needed to process a large number
(r = 10) of feature subsets in order to be able to select the most frequently occurred fea-
tures that would be the most significant. In the feature selection procedure, IG ranked
the features in each training sub-data set according to their classification significance
and selects the upper-ranked features at and above a cut-point determined by an elbow
method [15]. An elbow method is a method for interpretation and validation of consis-
tency of clusters in a cluster analysis. It is used with a squared-error parameter to find
the optimal number of clusters. Typically, this cut-point has to be set manually for IG to
select a number of significant features which may not be automatically optimal, hence
many cut-point values have to be tried and the resulting classification prediction needs to
be observed which wastes a lot of time and resources [17]. It is most desirable to obtain
the best cut-point automatically. A study has attempted to use z-score as an automatic
method to find the optimal cut-point [18]. However, we used the elbow method in this
study because it was able to give a low but sufficiently effective cut-point in our previ-
ous study [15]. The intermediate result from IG was r-ranked feature subsets which were
passed along to FFS which would choose only high frequency features that appeared in
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every randomly-seeded training sub-data set on the basis that the higher the frequency,
the more significant the feature would be.
For the IG+FFS method, the next step is then to further reduce the number of selected

features by FFS. For the IG+modified GA+FFS, the number of dimensions of individu-
als in the modified GA is automatically set to be the same as the cut-point, and the next
step is that the modified GA further selects the features provided by IG and sends a sub-
set of them to SVM classifier. SVM evaluates the subset of features and then sends the
evaluation result back to the modified GA. This step computes iteratively until the spec-
ified maximum number of generations of GA individuals is reached, resulting in the best
subsets of features in terms of classification result determined by linear and radial basis
function (RBF) kernels of SVM. These two best subsets are then sent to FFS.
In this study, the SNP data (S) were represented by an m × n matrix, where n is the

number of dimensions of each individual andm is the number of swine samples. Figure 1
illustrates examples of n SNP column vectors from amatrix ofm swine samples (Smn) and
four modified GA individuals derived from them. When the slot at a position of a certain
dimension has a value of 1, the column vector, representing an SNP, in the matrix S cor-
responding to that position is selected. For example, for I1, the selected column vectors
are vectors in columns 2, 3, and n which will be iteratively evaluated of their classification
accuracy by linear and RBF kernels of SVM until the maximum number of generations in
modified GA is reached. Next, two subsets of selected features from linear and RBF ker-
nels are processed by FFS that combines them and further selects only a small number of
high frequency features into an optimal subset. Of note here is that, in the actual exper-
iment, we compared this subset of selected features with the subset obtained from IG
alone and found that the subset obtained from IG alone was much bigger, indicating that
FFS was truly effective in selecting only a few high frequency features. This is the end of
the feature selection step illustrated in Fig. 2. Next, the model is further trained with the
columns (in the entire training data set) that correspond to the optimally selected features
from the feature selection step. Again, five-fold cross-validation was employed to obtain
a set of optimal model parameters. Then, the optimal model was tested with the test data
set in the prediction step to find its classification accuracy. The experiment was run 10
times with 10 different randomly-seeded data sets.

Fig. 1 Examples of four modified GA individuals and their connection with matrix S
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Fig. 2 The framework of experiments on the IG+FFS and IG+modified GA+FFS in combination with SVM
methods

Experimental setup

The swine sample data set was randomly-seeded into 10 training data sets and 10 test
data sets to increase the reliability of the experiment. The ratio of the number of swine
samples in all of the training data sets to that in all of the test data sets was 80:20.
The initial values of the parameters for IG+GA, IG+modified GA, and IG+modified

GA+FFS methods were set as follows: a population size of 30 chromosomes. The reason
that we set the population size to be 30 was that a higher number would result in too
large a number of features that would incur a lot of wasted computational time. We did
not choose to investigate other smaller population sizes because several studies, briefly



Pasupa et al. BMC Bioinformatics          (2020) 21:216 Page 7 of 28

described below, have investigated them already and suggested that a population size of at
least 20 was necessary and a population size of 30 was used in at least two studies. Roeva
et al. investigated the cases of 5, 10, 20, and 30 chromosomes and GA, and reported that
at least 20 chromosomes were necessary for achieving a better solution [19]. For Particle
Swarm Optimization, Chen et al. reported that a larger population size of n ≥ 30 made it
converged faster [20]. Lastly, Rodrigues et al. have done a SNP selection study similar to
ours and reported that he also used a population of 30 [10].
The crossover rate (Pc) of 0.8; mutation rate (Pm) in the range of 0.1–0.9; the maximum

number of generations of 10. The number of generations was set as 10 because prelimi-
nary trial runs showed that GA met its stop criterion within 10 generations and setting
it to a higher number was not likely to increase the accuracy at all. Our method con-
verged before 10 generations in 30 runs.We show a graph that extended to 30 generations
in Fig. 3 in this paper so that readers can see that nothing changed beyond 10 genera-
tions. The initial values of the parameters of SVM were set as follows: a C in the range of
10−6 − 106 and a γ of RBF kernel in the range of 10−10 − 1010. The selection threshold of
the FFS method was set at 9 from trial and error.
It is noted that the chance to obtain PCSNPs is proportion to the percentage of ran-

domly generated 1 values for selecting SNPs. In the proposed method, we did not control
this, but it makes use of IG ranking process of SNPs by IG in combination with the
process of screening out some SNPs by the elbow method. Therefore, it can automat-
ically select the initial SNPs instead of hard threshold. However, we have tried to use
the original GA in the IG+GA+FFS hybrid to reduce the number of features in the pop-
ulation initializing step to 10–50% of the total number of features. The results of the
runs are shown in Fig. 4. SNPs were able to get selected with the frequency of 6–10
at most (from runs of 10 randomly seeded training sub-data sets) for the population
initializing of 10–50%, respectively, as shown in Fig. 4a. This can be attributed to the
feature selection procedure of GA. If the procedure randomly generated few 1 values
for selecting SNPs, i.e. few SNPs were selected initially, the chance for the method to
find and select a high number of statistically significant PCSNPs was low as shown
in Fig. 4b.

Fig. 3 Classification accuracy versus number of generations of population in modified GA
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Fig. 4 Effects of the assigned percentage of selected features by GA in the initialization step on the final
number of selected PCSNPs by IG+GA+FFS method (b) and their classification accuracy (a) that vary with FFS
selection threshold

Results of SNP selection and swine breed classification

For comparison between all five feature selection method—IG+GA, IG+modified GA,
IG, IG+FFS and IG+modified GA+FFS, we used the optimum parameter values in each
method. In 10 runs, several values of various parameters were involved. Here, we reported
the best parameters from the majority of runs out of 10 runs. The best C parameter for
linear kernel after the training was 10−1. The best C and γ parameters for RBF kernel
were 106 and 10−7. The result—the mean number of selected SNPs obtained from every
method and the mean classification accuracy obtained by using the features selected by
each method—are shown in Table 1. Every method selected nearly the same number of
SNPs: 2.03%, 3.04%, 4.05%, 2.36% and 1.62% of the whole SNPs in the data set, respec-
tively, where IG+modified GA+FFS selected the least number of PCSNPs. Nevertheless,
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Table 1 Themean numberof finally selected PCSNPs by each of the five feature selection methods and
their resulting accuracy as well as the accuracy provided by using the entire swine SNPs in the data set

Method
PCSNPs Accuracy (%)

Linear RBF Linear RBF

Whole SNPs
10,210 10,210 95.66 ± 1.28 95.66 ± 1.28

(100%) (100%)

IG+GA 207.70±42.71 209.90±37.57 95.27±1.57 94.88±1.11

(2.03%) (2.06%)

IG+modified GA 319.10±104.02 310.70±84.89 95.74±1.47 95.35±1.42

(3.13%) (3.04%)

IG 413.30±88.22 410.30±88.22 95.43±1.53 95.58±1.51

(4.05%) (4.05%)

IG+FFS 240.80±15.33 240.80±15.33 95.58±1.27 95.66±1.22

(2.36%) (2.36%)

IG+modified GA+FFS 164.90 ± 36.11 164.90 ± 36.11 94.81±1.46 95.12±1.55

(1.62%) (1.62%)

it did not give the highest mean accuracy values (94.81% for the linear kernel and 95.12%
for RBF kernel that IG+FFS achieved (95.66%). The results achieved by IG+GA+FFS are
not shown because the approach was not able to select more than a few SNPs since the
frequencies of occurrences of most SNPs were below the specified threshold. The accu-
racy values achieved by all of the methods were tested by a one-way ANOVA analysis
whether the differences between them were statistically significant. Generally, one-way
ANOVA is used for comparing more than two means whether at least a pair of the means
are significantly different or not. In our case, the ANOVA results indicated that the dif-
ferences were not significant at p > 0.05 (Table 2 where p = 0.73). If the p-value from a
statistical analysis is less than or equal to the set significance level, the data is considered
statistically significant. The widely-accepted significance level (or alpha) is 0.05, Hence, it
was concluded that IG+modified GA+FFS was the best feature selection method among
these five methods because it provided the smallest number of PCSNPs and gave a good
accuracy value that was not statistically different than the best accuracy value achieved
by any of the five methods. On top of that, this accuracy value was also not statistically
different from the accuracy value obtained from using the whole SNPs.
Regarding the resulting number of selected SNPs, IG+GA would reduce the number of

SNPs to a half regardless of the value of Pm. In contrast, the number of PCSNPs selected
by IG+modified GA was highly sensitive to the value of Pm.
The numbers of selected PCSNPs from 10 randomly-seeded data sets by IG+modified

GA+FFS are shown in Fig. 5a, and the resulting classification accuracy provided by them
are shown in Fig. 5b. The 1st set of 183 PCSNPs achieved the highest classification accu-
racy (96.90%), so it was brought to use in the principal component analysis (PCA) of

Table 2 One-way ANOVA results of the significance difference between mean accuracy values
obtained from using the whole features in the data set and from using only the features selected by
various selection methods

Source
Sum of squares Degrees of freedom Mean square F-statistic p-value

Linear RBF Linear RBF Linear RBF Linear RBF Linear RBF

Methods 5.82 5.13 5 5 1.16 1.03 0.57 0.56 0.73 0.73

Error 111.11 99.39 54 54 2.06 1.84 - - - -

Total 116.93 104.52 59 59 - - - - - -
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Fig. 5 a The numbers of selected PCSNPs obtained from 10 randomly-seeded data sets; b the classification
accuracy values obtained from using the selected PCSNPs from those data sets

swine breeds to see whether this set of PCSNPs can truly and clearly classify a group of
swine samples into different breeds. The classification experiment in this study was done
on 10 randomly-seeded data sets because we wanted the results to be most reliable. Our
decision was justified as can be seen in the 5% difference in the classification accuracies
obtained from the first and the fifth training and test sets by the IG+modified GA+FFS,
shown in Fig. 5. The much lower accuracy obtained from the fifth training and test data
sets might be because of the training data set not including a high enough number of
PCSNPs.
The comparative numbers of selected PCSNPs achieved by IG+GA and IG+modified

GA and the mean classification accuracy achieved by these selected features as Pm was
varied from 0.1-0.9 are shown in Fig. 6. It can be seen in Fig. 6a that the numbers of
selected PCSNPs by IG+GA as Pm was varied from 0.1 to 0.9 were not very different at
all, and these numbers were about one half of the number of PCSNPs first selected by
IG which is in a good agreement with the results from [15]. In addition, it can be seen
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Fig. 6 Fig. 6 Final mean number of selected PCSNPs (a and c) and the classification accuracy (b and d)
obtained from the selected PCSNPs from 10 runs of different randomly-seeded data sets; (a) and (b) are from
IG+GA while (c) and (d) are from IG+modified GA

in Fig. 6b that the value of Pm that provided the best accuracy (95.27%) from the linear
kernel was 0.3, while the Pm value that provided the best accuracy (95.04%) from the RBF
kernel was 0.9. As for the numbers of selected PCSNPs by IG+modified GA as Pm was
varied, the value of Pm that gave the best accuracy results was 0.9 which gave 95.74% and
95.35% accuracy from the linear kernel and RBF kernel, respectively, as can be seen in
Fig. 6d, while themean numbers of selected PCSNPs were 319.10 and 310.70, respectively,
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as shown in Fig. 6c. Therefore, for the subsequent experiment, a Pm value of 0.9 was also
used for IG+modified GA+FFS.

Results of the PCA analysis

The PCA result of the entire collection of SNPs in the data set is shown in Fig. 7. The
figure shows the relationship between the principal components PC1 and PC2 which are
the top two PCs. It can be seen that the analysis was able to distinguish the following swine
breeds: Chinese pig, Vietnam pig, Landrace, Large white, Mixed-breed pig, Iberian, Bis-
aro, and Duroc. This result agrees very well with the PCA results in [15] and [21], i.e., all
of those classification results of the following swine breeds were in complete agreement:
Chinese pig (green), Iberian (red), Bisaro (brown), Landrace (yellow), Large white (blue),
and Duroc (orange). The additional Asian swine breeds that were included in the new
data set that we used were also clearly classified: Vietnamese pig (pink) [22] and Mixed-
breed pig (black). However, the swine breeds in the group of village pigs [21] have been
crossed extensively with each other and so their classification results were overlapped to
some extent (Fig. 7).
It can be seen in Fig. 8a (the relationship between the principal components PC1 and

PC2) and Fig. 8b (the relationship between the principal components PC1 and PC3 where
PC3 is the third PC from the top that has the highest variance) that the results of an SNP
analysis by PCA by using only 183 PCSNPs (obtained from one of the randomly-seeded
data sets that provided the highest accuracy) that were selected by our proposed method
were virtually the same as those from the analysis that used the whole 10,210 SNPs in the
data set of which details are shown in Table 6.

Results of identification of genes related to the selected sNPs

The gene identification was done by inputting the union of 341 selected PCSNPs from 10
randomly-seeded data sets (See Supplementary Table S1, Additional file 1) into an appli-
cation called genome build 2.0 that searched for the genes related to them. The search

Fig. 7 Conventional PCA projection from using the entire SNPs in the data set
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Fig. 8 Conventional PCA projection from using only 183 PCSNPs in the data set. a PC1-vs-PC2 and b
PC1-vs-PC3

found 248 genes, and their gene expression pathways were further searched for in a Pro-
tein ANalysis through an Evolutionary Relationships (PANTHER) biological database of
gene families that can classify gene products and indicate their function. We found path-
ways of 94 genes as shown in Table 3 that includes Gene symbol, Chromosome (Chr),
and MAPINFO. The gene symbols 1–6, 7–8, 9–19, 20–33, 34–45, 46–51, 52–59, 60–65,
66–70, and 71–94 represent the genes containing the PCSNPs that were found to occur
at the highest (10) to lowest (1) frequency in that order in the 10 randomly-seeded data
sets. In addition, Table 4 shows the function of the gene products of the first five genes
listed in Table 3. For the gene in the 6th order (RTN3), although it was found in the 10
randomly-seeded data sets, but its gene function was not found in PANTHER pathway.
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Table 3 Discovered gene families from the final selected PCSNPs

No. Gene symbol Chr MAPINFO No. Gene symbol Chr MAPINFO No. Gene symbol Chr MAPINFO

1 PTPRK 1 38598147 33 GALNT12 1 268890145 65 HES1 13 140688388

2 ABCA5 12 11388469 34 FIGN 15 75340693 66 CCDC13 13 28893435

3 SEMA3E 9 106779607 35 BMPR1B 8 133950496 67 KIT 8 43651639

4 KCNU1 15 14889528 36 PPEF2 8 75662581 68 GRK5 14 140846738

5 SLC28A3 10 34818681 37 GNAT3 9 110416160 69 PIK3C3 6 118157644

6 RTN3 2 7728326 38 CD3E 9 50672784 70 PDE4B 6 134910792

7 SORCS3 14 125978735 39 PSAP 14 80626307 71 LOC100153360 1 313111618

8 DBH 1 307192626 40 SNCA 8 138635995 72 LOC100739240 3 74337201

9 SNTB1 4 19453169 41 HACE1 1 80302938 73 NCR2 7 41832022

10 VAT1L 6 10041550 42 TRHR 4 30842196 74 CDK8 11 3651117

11 LOC100622482 6 82916168 43 NTS 5 101073253 75 SATB1 13 6000732

12 CUEDC1 12 35017301 44 ADRA1B 16 69129145 76 ROR2 14 3557219

13 CALB2 6 13899346 45 RXRG 4 93070713 77 TRPM2 2 143991472

14 MACROD1 2 7103886 46 AAAS 5 18962460 78 CAPZB 6 71859152

15 KLHL25 7 93415034 47 NEK2 9 144617825 79 ANKRD35 4 109093503

16 GRK5 14 140846738 48 RNF180 16 45700636 80 SECISBP2L 1 136455430

17 DPEP1 6 504970 49 EML5 7 117152298 81 LMX1B 1 301126002

18 LOC100155953 7 122798672 50 ABLIM1 14 135899761 82 DTL 9 144214338

19 ZMIZ1 14 88275273 51 RBM19 14 40500953 83 PPP2R5A 9 144185861

20 LOC100156904 1 296533542 52 PRUNE2 1 256372239 84 RCAN1 13 208012602

21 PCDH15 14 104808991 53 PDZK1IP1 6 119087839 85 RAPGEF4 15 24972365

22 SLC22A5 2 140066357 54 GAD2 10 54668661 86 LHX2 1 298735016

23 LNX1 8 42621415 55 CP 13 97407074 87 IQSEC3 5 69759629

24 DNAJB12 14 81222592 56 SAMD3 1 36604527 88 LY96 4 67548067

25 CDKAL1 7 17100569 57 SLC35F4 1 207232466 89 WHAMM 7 57639263

26 CRB2 1 297932234 58 FCRLB 4 96854257 90 CHD1L 4 110076256

27 SPOCK2 14 80904334 59 ENPP5 7 47241389 91 ADAMTS16 16 82812184

28 CCND2 5 68326348 60 CYP7B1 4 75934281 92 TBC1D14 8 3354915

29 TXNDC15 2 142718262 61 AGRP 6 25411042 93 PARM1 8 74934147

30 FRAS1 8 77822157 62 NOX4 9 25460973 94 FGFR1 15 55262655

31 A2M 5 65318067 63 LOC100511652 9 12772773

32 STAT3 12 20767800 64 ARHGAP26 2 150907623

However, we have found a report about RTN3 in [23] that RTN3 is one of 26 genes in a
functional network that can indicate meat quality. Top functions of this gene network are
lipid metabolism, small molecule biochemistry, and molecular transport.
A piece of information that supports our valid PCSNPs results is that the PTPRK

gene that is related to the most frequently selected and highest-ranked SNP from all 10
randomly-seeded data sets that we found has been reported to be differentially expressed
in two swine groups: a group of adult and juvenile swine with Rapacz familial hyper-
cholesterolemic and a group of WT swine, as indicated by the results of a microarray
analysis [24]. Lee et al. analyzed the gene ontology of Landrace pigs and reported that
PTPRK gene contained PCSNPs in the case of under-dominance in the final weight and
over-dominance in the backfat thickness [25]. Lastly, LOC100511786, LOC100625374,
and LOC100515404 are examples of genes containing three selected PCSNPs of which
frequencies of occurrences were 10–found in all 10 randomly-seeded data sets apart from
the first six genes listed in Table 3. Surprisingly, these genes were not found in a PAN-
THER search. All genes of which frequencies of occurrences were 8 and up to 10 are
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Table 4 Functions of gene products

No. Gene
symbol

Gene ontology biological process complete

1 PTPRK transforming growth factor beta receptor signaling pathway (GO:0007179);

negative regulation of keratinocyte proliferation (GO:0010839); cell migration (GO:0016477);

negative regulation of cell migration (GO:0030336); protein localization to cell surface (GO:0034394);

cellular response to reactive oxygen species (GO:0034614); cellular response to UV (GO:0034644);

peptidyl-tyrosine dephosphorylation (GO:0035335); negative regulation of cell cycle (GO:0045786);

negative regulation of transcription; DNA-templated (GO:0045892); focal adhesion assembly (GO:0048041)

2 ABCA5 negative regulation of macrophage derived foam cell differentiation (GO:0010745);

cholesterol transport (GO:0030301); cholesterol efflux (GO:0033344);

high-density lipoprotein particle remodeling (GO:0034375); transmembrane transport (GO:0055085)

3 SEMA3E branching involved in blood vessel morphogenesis (GO:0001569);

negative regulation of cell-matrix adhesion (GO:0001953);

sprouting angiogenesis (GO:0002040); regulation of cell shape (GO:0008360);

negative regulation of angiogenesis (GO:0016525); synapse organization (GO:0050808);

negative chemotaxis (GO:0050919); semaphorin-plexin signaling pathway (GO:0071526);

regulation of actin cytoskeleton reorganization (GO:2000249)

4 KCNU1 potassium ion transport (GO:0006813); ion transmembrane transport (GO:0034220);

potassium ion transmembrane transport (GO:0071805)

5 SLC28A3 pyrimidine nucleobase transport (GO:0015855); purine nucleoside transmembrane transport

(GO:0015860);

pyrimidine nucleoside transport (GO:0015864); sodiumion transmembrane transport (GO:0035725);

pyrimidine-containing compound transmembrane transport (GO:0072531); purine nucleobase

transmembrane transport (GO:1904823)

shown in Table 5. It is quite possible that they may be important genes of which func-
tions have not been hitherto discovered–investigation into them may provide lucrative
information.

Discussion
In this section, we first discuss the parameter tuning results for IG+GA and IG+modified
GA and the final number of selected features as well as their classification accuracy. Then,
we discuss SNP selection by IG alone and by IG+modified GA+FFS. Lastly, we discuss
breed identification by our PCA analysis.

Table 5 Discovered genes that did not match any genes in the PANTHER database

No. Gene symbol No. Gene symbol No. Gene symbol

1 LOC100511786 14 DLK1 27 LOC100516653

2 LOC100625374 15 LOC100738463 28 LOC100628179

3 LOC100515404 16 LOC100157816 29 AGMO

4 PTPN3 17 ITGB5 30 LOC100127144

5 LOC100737182 18 LOC100512373 31 LOC100154421

6 LOC100153068 19 LOC100511786 32 LOC100525245

7 DLK1 20 LOC100513826 33 LOC100624347

8 TLL1 21 LOC100625374 34 LOC100515332

9 LOC100738463 22 LOC100628176 35 LOC100622308

10 ITGB5 23 LOC100622588 36 BRP44L

11 LOC100156777 24 LOC100627046 37 TCF4

12 LOC100512373 25 C13H21orf63 38 LOC100736576

13 CTNNA2 26 LOC100519752
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SNP selection and swine breed classification

Firstly, we ran IG+GA and IG+modified GA with varying values of Pm to find the opti-
mum value of Pm for our final experiment and found that, for IG+GA, no matter what
value of Pm was set and which of the 10 randomly-seeded data sets the method acted
on, the number of features selected by this method was almost the same, around a
half of the number of all features, whereas the IG+modified GA was sensitive to Pm.
This tuning result was reasonable because the mutation operator of a conventional GA
flips a ‘0’ or ‘1’ bit with an equal probability; hence, the mutation does not affect the
number of selected features in any ways. However, the mutation probability for flip-
ping 0 bit to 1 bit of modified GA is not equal to the probability of flipping 1 bit to
0 bit. These probabilities vary with the value of Pm, and so a smaller or larger number
of selected features can be set via a particular value of Pm. Nevertheless, an optimum
value of Pm also depends on the classification accuracy obtained from the set of selected
features, so we can have a degree of control over the number of selected features by
varying the Pm, but we cannot vary it to an arbitrary value as we are pleased. The true
optimum Pm, 0.9, was found only by also performing classification, i.e., the whole pro-
cedure. Therefore, for the subsequent experiment, a Pm value of 0.9 was also used for
IG+modified GA+FFS. It should be noted, as can be seen in Fig. 6c and d, that for
the values of Pm of 0.1–0.3, the mean numbers of selected PCSNPs and the accuracy
values that they produced were the same because the initial population already pro-
vided the best results and the low mutation rate did not alter the outcomes in any
which ways, i.e, the numbers of selected PCSNPs were so low that the classification
accuracy values provided by the later mutated generations could not improve them any
further.
In addition, in the final runs, we assigned the threshold value for FFS as 9. We had

investigated lower and higher values of this threshold, from 1 to 10, and selected 9 as an
optimal value. The rationale behind our selection is explained in the following passage.
Figure 9 shows the selected PCSNPs from setting the FFS threshold from 1 to 10 on the
first randomly seeded data set. It can be seen that the lower the threshold, the higher the
number of selected PCSNPs, while the classification accuracy stayed the same or changed
slightly as the threshold varied. Figure 10 shows that the accuracy values from setting the
threshold from 1 to 10 differed by only 3.91%, but the number of selected PCSNPs differed
by as much as 87.03%, demonstrating that setting a high threshold value that results in
a smaller number of most significant PCSNPs is still able to achieve high classification
accuracy. Setting the threshold to 10 provided a smaller number of selected PCSNPs than
setting it to 9 (that provided a -2.34% relative difference in accuracy compared to the
threshold value of 1 that provided the best accuracy but did not provide a small enough
number of selected PCSNPs), but the classification accuracy that it provided was lower
(-3.91% relative difference in accuracy). Similarly, setting the FFS threshold value to 9
rather than 8 provided an identical classification accuracy but a lower number of selected
PCSNPs.
As shown in Table 1, the classification accuracy values achieved by every method were

not significantly different at p > 0.05, but the number of selected features were different.
The difference stemmed from the original feature selection method rather than the com-
bined FFS; that is, IG alone selected a mean number of 413.30 features while IG+modified
GA selected 310.70 features, and after these features were further selected by FFS, the
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Fig. 9 Effects of FFS threshold on classification accuracy and the final number of PCSNPs selected by
IG+modified GA+FFS

difference still remained; IG+FFS selected 240.80 features while IG+modified GA+FFS
selected 164.90 features.

Information gain values and PCSNPs selected by IG and IG+modified GA+FFS methods

A plot of information gain values versus the selected PCSNPs by IG and IG+modified
GA+FFS methods on a selected randomly-seeded data set is shown in Fig. 11. The SNPs
that were selected by IG alone are shown as blue bars while those selected by IG+modified
GA+FFS are shown as red bars. In addition, the green bars in Fig. 11 represent the selected
33 PCSNPs of which genes containing them were found in PANTHER pathway. First of
all, it can be seen that IG+modified GA+FFS selected fewer PCSNPs than IG alone did
as we had expected. Secondly, IG+modified GA+FFS selected not only the PCSNPs that
had a high information gain value but also a few of those with a relatively low information

Fig. 10 Relative differences of classification accuracy and number of selected SNPs by IG+modified GA+FFS
with different values of FFS threshold with respect to FFS threshold equal to 1
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Fig. 11 Plot of information gain value versus number of selected PCSNPs by IG (blue bars), IG+modified
GA+FFS (red bars) and the genes found in the PANTHER pathway (green bars)

gain value, signifying that the PCSNPs could be lower-ranked PCSNPs with respect to
information gain value, indicating that IG alone was not able to select some PCSNPs that
IG+modified GA+FFS was able to. This is supported by the fact that there exist real genes
in the PANTHER pathway that were identified by these relatively lower-ranked PCSNPs.
This kind of discovery of lower-ranked yet significant PCSNPs is supported by [26].
In addition, minor allele frequency (MAF) is the frequency of the second most frequent

allele for a given SNP. A low MAF may imply that a major allele for the SNP is conserved
and more or less fixed, but not necessarily. This measure indicates the degree of varia-
tion of genotypes for a given SNP in a given population. In other words, it gives an idea
about how common the SNP is. MAF helps to differentiate the common and the rare
SNPs in a population. Kasamo et al. found mutated genes with SNPs that had an MAF
of lower than 1% that caused chronic progressive external ophthalmoplegia symptoms
[27]. If a SNP has a lower-than-1% MAF, that SNP is a mutated SNP. We hypothesized
that a SNP with a low MAF was likely to differentiate porcine breeds well. If we left it
out from a run, the classification accuracy should decrease. Therefore, we did leave-one-
SNP-out experiments and plotted the obtained accuracy values against the MAF value of
each SNP. The graph in Fig. 12 shows that there were only 3 instances (3 PCSNPs) when
the accuracy value decreased. Those 3 PCSNPs—ALGA0114715_T, ASGA0001200_A,
and ALGA0001286_T—had an MAF in the range of 0.19–0.26 (higher than 1%). There-
fore, those PCSNPs were not mutated SNPs, but they were certainly PCSNPs. Hence, all
PCSNPs should be taken into account to classify these porcine breeds.

PCA analysis

According to PCA, the swine breed classification results from SNPs indicate that Lan-
drace, Large white, and Duroc breeds that have been farmed globally and widely used as
parent breeding stock still retain their pure breed even though they have been farmed
in numerous regions in the world. Iberian and Bissaro which are outgroup pigs were
clearly separated from village pigs [21]. Chinese pigs that are included in this data set–
Jiangquhai, Jinhua, Xiang pig, and Meisha–showed their Chinese traits clearly. A PCA
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Fig. 12 Performance of the model versus their MAF value when each PCSNP is left out

analysis by Ishihara et al. [22] showed that 90 samples of Vietnamese pigs (Figure 1 in
[22]) of 15 native breeds which were clearly different genetically and 6 samples of Lan-
drace breed fell into 3 main groups: groups from the northern region, central region,
and southern region, indicating that the breeds of Vietnamese pigs may be closely related
to the geographical locations where they were farmed. Some Vietnamese breeds over-
lapped with Landrace breed which might be the result of cross-breeding. Our analysis
results (in Fig. 8a and b) show that HU-TN, BA-ME, and CP-SO Vietnamese breeds are
closely related and form their own distinct group. Their locations in the PCA plot are
close to the locations of Chinese pigs. For the new mixed-breed pigs in Thailand that
are resistant to stress, provide a lot of red meat, and consistently produce high-quality
offspring, their locations in our PCA plot were clearly separate from those of the other
breeds (see Fig. 8a and b). All of these pieces of information indicate that the breeds
of pigs of which data had been collected have been appropriately developed to retain
their breed purity. Lastly, the small number of the best PCSNPs that can differentiate
swine breeds found by our developed selection method should render an identification
of the genes related to these PCSNPs more achievable and less expensive, i.e., more
practical.

Conclusions
To conclude, this work attempted to select and classify a small number of the best
porcine-classifying SNPs (PCSNPs) for differentiating swine breeds. The feature selection
methods used were IG, IG+GA, IG+FFS, IG+modified GA, and IG+modified GA+FFS
and the classification method was SVM. The IG+modified GA+FFS was able to find the
smallest number of the most PCSNPs with the highest classification accuracy. It was
1.62% of the whole SNPs in the data set that provided 95.12% classification accuracy. This
method had already been used successfully in one of our previous studies on a smaller
data set and continued to perform effectively on a bigger data set in this study. These
selected PCSNPs were then put through a search in the PANTHER database to find genes
related to them. As a result, 94 genes were found that will benefit future swine breed
improvement.
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Methods
The data set of sNPs used in this study

The details of the data set used in this study is shown in Table 6. It had 676 swine samples
of 21 breeds with 10,210 SNPs. The swine samples in this data set were chosen and col-
lected from 3 established data sets: a Porcine colonization of the Americas data set [21]
which had 315 swine samples of 17 breeds such as Creole, Iberian, Jinhua, Duroc, Lan-
drace, and Large White; a data set of pigs raised in Thailand [28], which had 321 swine
samples of 4 breeds–Duroc, Landrace, Large white, and mixed-breed pig; and a data set
of pigs raised in Vietnam [22] which had 40 swine samples of 4 breed–HU-TN, BA-ME,
CP-SO, and Landrace. The collected data in our data set had been processed through a
quality control procedure that utilized a PLINK computer program, but there were still
some missing values. These values were then estimated by a mode value in a single impu-
tation method. The data set is available for download at https://github.com/dsmlr/th-vn-
us-swine.
Selection of a small number of the most significant features for classification is very

important because even though gene and SNPmatching procedure is adequately efficient,
the validation procedure for each match is costly and so least significant SNPs are prefer-
ably not included. In [15], a combination of filter and wrapper methods plus a frequency
feature selection (FFS) method were successfully used for single nucleotide polymor-
phisms (SNPs) selection. This information gain+modified genetic algorithm+frequency
feature selection feature selectionmethod was also used in this study but on a larger swine

Table 6 Details of swine samples in the data set used in this study

Breed Location Number of samples

Creole Alto Baudo-Colombia, Baja Verapaz-Guatemala, Granma-Cuba,
Guanacaste, Alajuela-Costa Rica,

Loja-Ecuador, Misiones-Argentina, Pinar del Rio-Cuba, Titicaca area-Peru 90

Monterio Pocone-Brazil 10

Zungo Cerete-Colombia 10

Jiangquhai China 11

Jinhua China 16

Meishan China 16

Xiang pig China 11

Iberian Spain 15

Duroc Denmark, Holland, USA, Thailand* 44

Landrace Denmark, Holland, USA, Thailand*, Hanoi-Vietnam** 146

Large white Denmark, Holland, USA, Thailand* 149

Semi- feral Formosa-Argentina 10

Wild boar Hungary, Poland, Tunisia 13

Yucatan Indiana-USA 10

Hampshire UK, USA 14

Guinea hog USA 15

Bisaro Portugal 14

Mixed-breed pig Thailand* 48

HU-TN Vietnam** 11

BA-ME Vietnam** 11

CP-SO Vietnam** 12

Note: * indicates that the swine samples are from Thailand Pig data set [28]; ** indicates that the samples are from [22]; the rest of
the samples are from [21]

https://github.com/dsmlr/th-vn-us-swine
https://github.com/dsmlr/th-vn-us-swine
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SNP data set. In the section below, this selection method is described in more detail. In
addition, the support vector machine (SVM) that was used both in [15] and this study is
also described and explained.

Related works and basic concepts on information gain, genetic algorithm, and support

vector machine

The information gain (IG)+modified genetic algorithm (GA)+frequency feature selection
(FFS) hybrid was developed to take advantage of the strength of each component algo-
rithm in performing feature selection. IG was used for primary selection because it was
a simple and fast filter selection method; GA was used because it was a widely successful
wrapper selection method that of which selection criteria included accurate classification
performance, but it was used in a modified form because the conventional GA did not
select a small enough number of features from a very large number of features; FFS was
used because it was able to reduce the number of primarily selected features further based
on the frequency of occurrences of a feature. In a previous study, the hybrid had success-
fully selected 142 most significant PCSNPs from a total of 16,579 SNPs in a smaller data
set and provided a high classification accuracy [15].

Information gain

IG has been widely used in many machine learning tasks. It is well-known as a good fil-
ter method for text categorization task [17]. In recent years, IG has been improved to
perform text categorization task more effectively [29, 30]. In a text categorization task,
many irrelevant terms are mixed with a small number of significant terms in a collection
of text documents in a similar manner to the presence of PCSNPs among many insignif-
icant ones in a data set. Therefore, it was reasonable that we chose it to be a component
of our developed hybrid. Moreover, IG has already been used for a similar kind of appli-
cation to ours, such as gene selection in a gene expression task [5, 31]. In addition, IG has
been successfully used in combination with SVM to classify cancer cases [32].
In the field of machine learning, IG, which is associated with informational entropy, is

used to reduce the number of features. The IG value for a feature is the entropy of the
whole data set minus the expected new entropy. The entropy in this sense is defined as
the sum of the probability of occurrences of each class times the log probability of that
class. If the features in a data set (a feature is an SNP in this study) are not very different,
the entropy will be low and the IG value will be high. The features are ranked by their IG
value in descending order. The top features are selected for use in the classification step.
IG is calculated by (1) below,

IG(T ,X) = E(T) −
∑

v∈Values(X)

|Tv|
|T | E(Tv), (1)

where E(T) is the entropy of the whole data in a training set calculated by (2) below,

E(T) = −
∑

i
pi log2(pi), (2)

where T is the training set; X is a feature; Tv is the subset of T for which feature X has a
value v; V is all possible values of X; and pi is the probability of class i computed as the
proportion of class i in the training set.
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Genetic algorithm

GA is a widely used wrapper method for feature selection [2, 4, 7, 33, 34] because the
features selected from it are very efficient for a classification task in the field of ML. Nev-
ertheless, in the case of a large number of features, the conventional GA cannot select
a sufficiently small number of significant features [15]. Rathasamuth and her colleagues
shows that the number of selected PCSNPs by GA was as high as a half of the whole
set of the SNPs in the study, too high for porcine breed classification [15]. A suggestion
has already been made that GA should be modified in order to achieve a small number
of selected significant features [35]. In that study, GA was modified with a CHC algo-
rithm. CHC algorithm employs a population elitist strategy, i.e., the best individuals of the
following generation replace the worst individuals of the previous generation. Another
feature of CHC is that even though individuals are selected randomly for recombina-
tion, they are allowed to mate only if their genomes are not very similar. CHC algorithm
makes for more aggressive search. GA+CHC hybrid also finds an optimal solution faster
than conventional GA. In the same vein, Li et al. reports a gene selection procedure by
a GA-SVM hybrid on a set of microarray data, specially, the randomly-selecting-a-gene
step in the GA procedure was modified to progressively reduce the number of genes to
be selected by 50% in successive iterations [36]. In [8], the authors modified the mutation
procedure of the original GA by assigning different values of the probability of bit-flipping
from 0 to 1 and that from 1 to 0 in an attempt to reduce the number of selected features.
In one of our previous studies [15], we employed this idea to modify GA that we subse-
quently used to successfully perform swine SNP selection. In this study, the prediction
accuracy of SVM was used as the fitness function of GA, as shown in Algorithm 1.

Algorithm 1: Pseudocode of genetic algorithm

Set the initial values of the parameters
Generate initial random population of individuals
Evaluate the fitness of the individuals
while termination condition is not met do

Perform parent selection
Generate new individuals with a crossover operator
Mutate some genes in every individual
Evaluate the fitness of all of the new individuals
Replace weaker parents with stronger new individuals

end
return the best individual

GA is an optimization algorithm based on random search. Basic components of GA
include fitness function, chromosomes or individuals of the population, and genetic
operators—selection (roulette wheel), crossover (multi-point), and mutation operators.
GA mimics the processes of natural evolution and genetic heredity in finding an optimal
solution. Each solution is represented by a chromosome which is recursively improved
by genetic operators. In general, a solution or chromosome is represented by a string
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of binary numbers which is evaluated by a fitness function. A solution with the highest
fitness value is the optimal solution.
GA attempts to find the best individuals in a population of individuals and have them

reproduce better offspring. The offspring inherit the good characteristics of the parents
and improve on those; therefore, they will have a good chance of survival. Algorithm 1
depicts the pseudocode of conventional GA. At the start, the initial values of various GA
parameters are assigned: crossover rate, mutation rate, population size, and maximum
number of generations. Next, an initial population of individuals is constructed. Each
individual is represented by a string of binary numbers (0 and 1), and each binary number
represents a gene or dimension of an individual or solution of the problem. Each indi-
vidual is then evaluated of its fitness value by a fitness function. The probability that an
individual will be selected to reproduce depends on its fitness value. In the parent selec-
tion step, individuals with high fitness values are selected to be crossed over together.
This step is a significant step in GA that ensures that the search for the best solution is
going in the right direction. The crossover positions of each pair of parents are randomly
assigned. In order for a new solution to avoid getting trapped at a local optimum solution,
some genes in the offspring will mutate with a random probability of bit-flipping muta-
tion. After crossover and mutation, the fitness values of all of the offspring are evaluated
and ranked together with the parent individuals. Next, the weaker parents are replaced by
fitter offspring to be included in the next generation of population. The algorithm termi-
nates when it reaches a maximum number of generations, and the fittest individual from
the population is output as the optimal solution.

Support vectormachine

SVM is a very effective classifier for problems with high-dimensional space. Applications
of SVM are numerous such as text classification [37], classification in bioinformatics [1]
including gene expression [31, 36], cancer [32, 35], and SNPs [9, 15]. SVM is a super-
vised learning classifier, i.e., it learns from a training data set. This model is further tested
with a test data set. A properly trained model can classify whether an unknown sample
is a member of which class. The idea behind SVM is to put the data into a feature space
then determine the hyperplane with the highest margin that separates the data into two
classes in that space. The data points used to construct the hyperplane are called sup-
port vectors. Originally, SVM was designed to be used with linear data; however, typical
data are often non-linear, so kernel functions were brought in to deal with this issue. Ker-
nel functions can be of many kinds. In this study, linear and radial basis function (RBF)
kernels were used, and their performances were compared. A basic parameter for every
SVM model is C, a hyperparameter that balances training error and model’s complexity.
Another parameter especially for RBF kernel is γ , a kernel width. Both of these parame-
ters need to be tuned properly in order to get an optimal hyperplane. The optimal values
for these parameters can be obtained by a grid search. After properly tuned, these param-
eters are validated by a k-fold cross-validation procedure. The respective mathematical
expressions for linear and RBF kernels are in (3) and (4),

k(x, x′) = xT · x′, (3)

k(x, x′) = exp(−γ ||x − x′||2), (4)
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where k(x, x′) is a kernel on element x and x′ in the data set; ||(x − x′)||2 is the squared
Euclidean distance between x and x′; and γ is a non-negative constant.

Proposedmethods

In previous studies, hybrids of IG and GA were used for feature selection [17, 38] and
improving the precision of text categorization as well as reducing the high dimensional-
ity of the text which could be as high as the number of swine SNPs used in this study. In
our most recent study [15], IG+modified GA+FFS was successfully used to select PCSNPs
which were then input into SVM to accurately classify swine breeds. FFS was used to
select features with high frequency of occurrences in several randomly-seeded data sets
derived from the training data set. The essential procedural steps of this method are
described in the flowchart in Fig. 2. More detailed explanations about them can be found
in [15]. Modified GA and FFS are explained in the immediate sections below followed
later by an explanation of IG+modified GA+FFS.

Modified GA

The modified GA used in this study, the same one used in our most recent study [15],
was modified from basic GA. In particular, the mutation operator was modified following
the proposal in [8]. Basically, the modification assigns different mutation probabilities for
flipping bits, from 1 to 0 versus from 0 to 1, in order to reduce the number of selected
features. Bit flipping is done as expressed in (5) below,

g(i) =
⎧
⎨

⎩
1 ; r ≤ Pm
0 ;Otherwise

, (5)

where g(i) is the flipped bit at the position i of a mutating gene, r is a random number
between 0 and 1, and Pm is the mutation rate.

Frequency feature selection

Here, frequency feature selection means feature selection according to the frequency
of occurrences of features that appear in every subset of features selected by IG and
IG+modified GA. In our previous study [15], by using FFS, the number of PCSNPs
selected by IG and IG+modified GA were reduced to a smaller number of the most sig-
nificant ones. Moreover, IG+modified GA+FFS not only provided the smallest number
of the best PCSNPs that provided the most accurate classification results. FFS procedure
finds the frequency of occurrences of each feature in the entire randomly-seeded train-
ing data sets and selects only the features with equal or higher frequency of occurrences
than a specified frequency threshold (t). For instance, if there are 10 randomly-seeded
training sub-data sets and the frequency threshold for a feature was specified as 9, only
the features that have the frequency of occurrences of 9 and 10 in all 10 randomly-seeded
sub-data sets are selected. An example is shown in Fig. 13a. The higher the threshold, the
smaller the number of features that get selected. In the previous study, the best value for
this threshold, 8, was found from trial and error. In this study, since there were two fea-
ture subsets of features selected by IG+modified GA+FFS, one from the linear kernel and
the other one from RBF kernel, we combined the selected features from both kernels to
be the final subset of selected features, i.e., the final subset is the union of the selected fea-
tures from both kernels. The reason for combining them was that the features selected by
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Fig. 13 Frequencyofoccurrencesof PCSNPs in all subsets of selected features from IG and IG+modified GA versus
the number of PCSNPs that occurred with that frequency (a); and a schematic diagram of FFS operation (b)

each kernel were high frequency features hence most relevant and significant, and com-
bining them together should give us more classification power. FFS operation is shown in
Fig. 13b, and the pseudocode of FFS is shown in Algorithm 2.

Hybrid of information gain, modified gA, and frequency feature selectionwith sVM

The pseudocode of IG+FFS and IG+modified GA+FFS in combination with SVM are
shown in Algorithm 3. IG+FFS is a combination of a filter method and a selection method
while IG+modified GA+FFS combines a filter method with a wrappermethod. They had a
distinct advantage of concise selection of statistically significant porcine-classifying SNPs
(features), and, in particular, the FFS selection method contributed to more reduction of
the number of selected features as demonstrated in [15].
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Algorithm 2: Frequency feature selection
Data: m // Method

t // Frequency threshold
Result: OptimalFeatureSubset
switchm do

casem is IG+FFS
Read RankedFeatureSubset
OptimalFeatureSet ←− select the elements of which frequency is greater than
or equal to t in RankedFeatureSubset

casem is IG+modified GA+FFS
Read FeatureSubsetLinear and FeatureSubsetRBF
FeatureSetLinear ←− select the elements of which frequency is greater than
or equal to t in FeatureSubsetLinear
FeatureSetRBF ←− select the elements of which frequency is greater than or
equal to t in FeatureSubsetRBF
OptimalFeatureSubset ←− FeatureSetLinear union FeatureSetRBF

endsw
return OptimalFeatureSubset

Algorithm 3: IG+FFS and IG+modified GA+FFS in combination with SVM
Data: r // Number of training sub-data sets

m // Method
Result: OptimalFeatureSubset, TestAccuracyLinear and TestAccuracyRBF
for i ← 1 to r do

RankFeature ←− rank the features of the training sub-data sets(i) by IG
RankedFeatureSubset(i) ←− select RankFeature by using an elbow method

end
switchm do

casem is IG+FFS
OptimalFeatureSubset ←− perform FFS

casem is IG+modified GA+FFS
for i ← 1 to r do

FeatureSubsetLinear(i) ←− select features from RankedFeatureSubset(i) by using the modified GA
with SVM (Linear)
FeatureSubsetRBF(i) ←− select features from RankedFeatureSubset(i) by using the modified GA
with SVM (RBF)

end
OptimalFeatureSubset ←− perform FFS

endsw
[TrainAccuracyLinear, C] ←− use OptimalFeatureSubset to train the SVMmodel with the training data set
(Linear)
[TrainAccuracyRBF, C, γ ] ←− use OptimalFeatureSubset to train the SVMmodel with training data set (RBF)//
TestAccuracyLinear ←− use OptimalFeatureSubset and C to test the model based on the SVM classifier with the
test data set (Linear)
TestAccuracyRBF ←− use OptimalFeatureSubset, C, and γ to test the model based on the SVM classifier with the
test data set (RBF)
return OptimalFeatureSubset, TestAccuracyLinear and TestAccuracyRBF
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