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Abstract
Background: The number of corpora, collections of structured texts, has been increasing, as a result of
the growing interest in the application of natural language processing methods to biological texts. Many
named entity recognition (NER) systems have been developed based on these corpora. However, in the
biomedical community, there is yet no general consensus regarding named entity annotation; thus, the
resources are largely incompatible, and it is difficult to compare the performance of systems developed on
resources that were divergently annotated. On the other hand, from a practical application perspective, it
is desirable to utilize as many existing annotated resources as possible, because annotation is costly. Thus,
it becomes a task of interest to integrate the heterogeneous annotations in these resources.

Results: We explore the potential sources of incompatibility among gene and protein annotations that
were made for three common corpora: GENIA, GENETAG and AIMed. To show the inconsistency in the
corpora annotations, we first tackle the incompatibility problem caused by corpus integration, and we
quantitatively measure the effect of this incompatibility on protein mention recognition. We find that the
F-score performance declines tremendously when training with integrated data, instead of training with
pure data; in some cases, the performance drops nearly 12%. This degradation may be caused by the newly
added heterogeneous annotations, and cannot be fixed without an understanding of the heterogeneities
that exist among the corpora. Motivated by the result of this preliminary experiment, we further
qualitatively analyze a number of possible sources for these differences, and investigate the factors that
would explain the inconsistencies, by performing a series of well-designed experiments. Our analyses
indicate that incompatibilities in the gene/protein annotations exist mainly in the following four areas: the
boundary annotation conventions, the scope of the entities of interest, the distribution of annotated
entities, and the ratio of overlap between annotated entities. We further suggest that almost all of the
incompatibilities can be prevented by properly considering the four aspects aforementioned.

Conclusion: Our analysis covers the key similarities and dissimilarities that exist among the diverse gene/
protein corpora. This paper serves to improve our understanding of the differences in the three studied
corpora, which can then lead to a better understanding of the performance of protein recognizers that are
based on the corpora.
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Background
Named entity recognition plays an important first role in
information extraction and text mining. Recently, due to
the increase in biomedical research literature, biomedical
NER (bio-NER), which aims at the automatic identifica-
tion of gene and protein names, has become a research
focus. Human-annotated corpora are widely used in the
development of bio-NER systems. There are several well-
known corpora that have gene/protein mention annota-
tions, such as GENIA [1], GENETAG [2], AIMed [3], Pen-
nBioIE [4], etc. Based on these corpora, many protein
mention recognizers have been developed, some of which
are able to achieve state-of-the-art performance [5-7].

Nevertheless, a well-known problem remains. Since the
protein annotations are made by different groups, and
lack an explicit, unanimous rule that defines what should
be annotated, it is likely that the annotations in the differ-
ent corpora are incompatible.

The incompatibility among the corpora brings about sev-
eral significant problems. For example, it is difficult to
effectively utilize more than one corpus to develop a pro-
tein mention recognizer. There are very few high quality
protein recognizers that are developed by utilizing multi-
ple corpora, because it is unlikely for the recognizer to
directly benefit from corpus integration. It is also difficult
to compare systems that are developed using different cor-
pora. Although there are many systems that recognize pro-
tein mentions from the PubMed text, the reported
performance varies significantly, even for instance where
the systems were developed with the same method. For
example, methods based on conditional random fields
(CRFs) report F-scores of 79.82% on GENIA [8] and
86.83% on GENETAG [9]. If each of the two recognizers
were evaluated on the other corpus, the performance
would be much lower [10]. Ultimately, the problems are
largely caused by the incompatibility of different protein

annotations, and cannot be resolved effectively without
understanding the differences in the annotations.

In this paper, we explore the sources of incompatibilities
among three well-known corpora with gene/protein
annotations, GENIA, GENETAG and AIMed, and seek
solutions to overcome the incompatibilities. We first
observe the reduction in performance that results from
using two of the three corpora together (as a single
resource). Then, we carefully study the documentation of
the three corpora, in order to determine the sources of
incompatibility. Through a series of experiments, we
quantify the incompatibility problems, while finding rea-
sonable strategies to avoid the problems that are caused
by the incompatibility of protein annotations. This study
aims at analyzing the sources of incompatibility, and
reducing the corpus inconsistencies.

Results and discussion
Our research is based on the three selected corpora:
GENIA, GENETAG and AIMed. Here, we present the find-
ings from studying the documentation of the corpora, and
from the results of our experiments. Refer to the Methods
section for further details regarding preliminary experi-
ments, significance tests, related works, and information
on the corpora and on the protein mention recognizer
used in this research.

Characteristic of the corpora
We investigate three corpora that are often used in bio-
medical natural language processing (bio-NLP). Table 1
summarizes the differences between the three corpora,
which are determined by analyzing the corpora's pub-
lished literature.

All three corpora contain annotations that identify entities
in the text, including proteins and genes; however, only
GENIA contains information that specifies the types of the

Table 1: Characteristic of corpora

AIMed GENETAG GENIA

Size abstracts 225 1,999
sentences 1,987 10,000 18,554

Entity scope human P/G P/G/R human P/G/R
number 4,075 11,739 34,264(P)/10,002(G)/944(R)
coverage specific occurrence specific occurrence all occurrences
type no no Ontology

7 types(P)/5 types(G)/5 types(R)

Legend:
Size: Number of abstracts or sentences in the corpus used in this research
Entity scope: Types of the named entities identified in the corpus: (P)rotein, (G)ene, (R)NA 
Entity number: Number of the annotated in-scope entities in the corpus 
Entity coverage: Coverage of in-scope entity occurrences in each sentence
Entity type: Explicit identification of the types of the annotated in-scope entities
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entities. This study benefits from the fine-grained protein
annotation of GENIA. We compare the other two corpora
to GENIA. GENIA aims at including an exhaustive anno-
tation of entities of types that are relevant to the corpus,
while the other two corpora have based entity annotation
on a specific constraint that the tagged entity must ulti-
mately be traceable to a specific gene/protein (e.g. "tumor
necrosis factor 1" would be annotated, while "tumor
necrosis factor" would not be annotated).

In terms of text organization, compared to GENETAG,
GENIA and AIMed are closer to each other. GENIA and
AIMed are focused on the "human" domain, but GENE-
TAG covers a more general domain of PubMed. GENIA
and AIMed exhaustively collect sentences in abstracts, but
GENETAG collects sentences that are relevant to NER, in
other words, GENETAG contains both true and false gene/
protein names in a variety of contexts. In terms of text
selection for entity annotation, GENIA and GENETAG are
closer to each other, compared to AIMed. The former two
corpora tend to select longer text fragments as entity refer-
ences (see section on "Incompatibility one: boundary of
protein mentions").

Incompatibility of heterogeneous annotations
These differences suggest that combining the corpora into
one training data will harm the performance of protein
mention recognizers. We eventually identified four main
sources of incompatibilities, which thoroughly explained
the performance degradation when training with the
united data. We applied corresponding strategies toward
each aspect of the sources, to reduce performance degra-
dation. Table 2 sums up the improvements of minimizing
each of these negative effects.

As expected, the F-score performance, when training with
combined data, was significantly lower than when train-
ing with the pure corpora. Based on the exact matching
criterion (correct beginning and ending positions of the
required annotations), the performance is degraded about
11.5% and 6.0%, when AIMed and GENETAG are respec-
tively combined with the GENIA protein annotations as

training data (the pure AIMed and GENETAG corpora are
correspondingly used as test data, shown in the first data
row of Table 2). (See the Methods section for details about
these preliminary experiments, and for the experimental
settings.)

The succeeding sections detail the sources of the incom-
patibility, and describe each of the improvements listed in
Table 2. Ways to avoid the negative sides of the heteroge-
neities are also explained in detail.

Incompatibility one: boundary of protein mentions
The selection of text spans, e.g. the beginning and ending
boundaries, to be annotated is identified as one of the
major sources for the incompatibility that exists for pro-
tein annotation across the three corpora.

Since it is difficult to determine whether the category of an
entity, which occurs before or after the entity, can be con-
sidered as part of the entity name or not, the selection of
boundaries is complicated [11]. For example, the English
word "protein" can be treated differently in the following
two text expressions, "p21ras protein" and "tumor sup-
pressor protein". In the first case, "p21ras" is considered
to be sufficient in naming the object. The term denoting
the semantic category, "protein" is redundant, and may
not be annotated as a part of the entity name. In fact, the
decision to annotate "protein" in such a case often does
not affect the utility of a NER system, because the system
has correctly identified "p21ras" as a protein, and this
information is adequate for mining the relationship
between "p21ras" and another protein. Similarly, "the
p21ras protein" or "the p21ras" could also be considered
to be acceptable. However, in the second case, without
"protein", "tumor suppressor" is inadequate in denoting
the protein. The actual meaning is changed when omit-
ting "protein". The semantic category "protein", which
serves as an important clue, is quite essential in distin-
guishing this specific entity from a more general one.
Thus, the inclusion of the word "protein" in the protein
annotation is dependent on annotation scheme. GENIA
and GENETAG almost always include the word "protein"

Table 2: Improvement of minimizing the negative effects caused by the differences

Difference Strategy A A+GENIA G G+GENIA

- - 77.68 66.16 69.65 63.62

boundary of annotated entities to loosen matching criterion 85.20 80.23 84.11 77.33

annotated entities of interest to find compatible annotations 85.21 82.17

sentence selection to select compatible sentences only 85.96 83.75

The scores shown in this table are the F-scores of training with the following data: A(IMed), A(IMed)+GENIA, G(ENETAG) and 
G(ENETAG)+GENIA.
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in protein annotations, which indicates their schemes on
words like "protein", but AIMed excludes "protein" in
most cases.

The difference in boundary word selection between differ-
ent protein annotation schemes can be measured in two
ways: by calculating the average length of protein men-
tions and annotation entropy of boundary words.

Average length of protein mentions
The ambiguous annotation of boundary words is also a
factor that affects the average length of the protein men-
tions in the three corpora. The average length per protein
mention is 1.3 tokens in the AIMed corpus, 1.9 tokens in
the GENIA corpus, and 2.1 tokens in the GENETAG cor-
pus.

Many long protein mentions are introduced when we add
the GENIA annotations into AIMed, creating another pos-
sible source of performance degradation in recognizing
the shorter protein mentions in the AIMed corpus.

This observation suggests that the GENIA and GENETAG
corpora are inclined to select more descriptive expressions
for the protein annotation, in comparison with AIMed.

Annotation entropy of boundary words
In a given corpus, some words are annotated inside of
protein mentions, while other words are not. The annota-
tion entropy of boundary words is calculated by Formula
(1).

where Eb denotes the annotation entropy of a given word,

Pa denotes the percentage of the occurrences of this word

that is annotated, and  denotes the percentage of the

occurrences of this word that is not annotated.

For the sake of brevity, the (boundary) "word" discussed
in this section describes the word that appears at the
beginning or end of an annotated entity, or describes the
word that abuts an annotated entity. The value of the
annotation entropy of a boundary word Eb ranges from 0
(consistent) to 1 (inconsistent). When the annotation
entropy of a boundary word Eb is 0, this word is perfectly
annotated (the word is always inside or outside protein
names), and keeps this annotation consistency through-
out the entirety of the corpus. On the contrary, when the
annotation entropy of a boundary word Eb is 1, the word's
annotation is so disorderly (half of the occurrences of the
word are inside and the remaining half of the occurrences
of the word are outside protein names), that we can
hardly find any rules about whether to regard this word as
a part of the protein mentions or not.

In general, there are two types of ambiguous boundary
words: descriptive adjectives, which usually occur before
protein names as modifiers, such as "normal", "activated"
or "human", and nouns, which usually occur after protein
names as heads (such as "protein" or "molecule"). Some
boundary words appearing in each corpus are listed in
Table 3. In order to characterize the differences among the
three corpora in terms of the annotation entropy of
boundary words, the words with an annotation entropy
close to 1 (in any one of the three corpora) were included
in Table 3. The GENIA tagger [12] was used to determine

E P P P Pb a a a a= − +( log log ),2 2
(1)

Pa

Table 3: List of boundary words 

Category Word AIMed GENIA GENETAG
Na Nn Eb Na Nn Eb Na Nn Eb

Adjective constitutive 0 0 0.0000 12 11 0.9986 2 2 1.0000
endogenous 0 0 0.0000 22 11 0.9183 9 9 1.0000
exogenous 0 0 0.0000 9 16 0.9427 2 3 0.9710
inducible 0 0 0.0000 18 17 0.9994 0 0 0.0000
low 0 0 0.0000 14 11 0.9896 2 3 0.9710
major 0 0 0.0000 25 15 0.9544 1 5 0.6500
putative 0 0 0.0000 15 15 1.0000 0 0 0.0000
recombinant 1 8 0.5033 36 24 0.9710 26 2 0.3712
soluble 1 10 0.4395 14 15 0.9991 1 4 0.7219

Noun before factor 0 0 0.0000 5 26 0.6374 17 15 0.9972
plasma 0 0 0.0000 13 1 0.3712 17 12 0.9784
protein 12 34 0.8281 159 18 0.4743 53 10 0.6313

Noun after form 0 0 0.0000 21 14 0.9710 0 0 0.0000
pathway 0 0 0.0000 0 0 0.0000 8 10 0.9911
protein 40 17 0.8791 794 14 0.1262 241 2 0.0688

Here, "Noun before" indicates the noun occurring before an entity as a modifier, "Noun after" indicates the noun occurring after an entity as a 
head. Na represents the number of the annotated occurrences, and Nn represents the number of un-annotated occurrences.
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the Parts-Of-Speech of the words. For the entire boundary
words list, see "Additional file 1: the boundary words of
the GENIA, GENETAG and AIMed corpora".

From Table 3, the boundary annotation problem appears
for various words. The distribution of these words is
diverse, particularly for adjectives. Since the number of
characters tagged in the AIMed corpus was kept to a min-
imum, only the names of protein mentions were anno-
tated, most of which are proper nouns, and most of the
adjectives were not annotated. However, the developers of
the GENIA corpus followed an annotation strategy for
which generic terms were annotated. In the GENIA anno-
tation scheme, specifiers (determiners, ordinals or cardi-
nals) do not appear in tagged entities, but qualifiers,
including adjectives and noun modifiers, remain. The
adjectives before the protein mentions are annotated only
if they are required for clarifying the meaning of the pro-
tein mentions (e.g. in the protein mention of "inducible
cAMP early repressor", "inducible" is annotated, because
it is needed to understand the meaning of the protein
mention). Furthermore, the GENETAG annotators chose
some semantic constraints, which state that the tagged
entity must contain its true meaning in the sentence con-
text (e.g. the word "receptor" is necessary in differentiat-
ing "IGG receptor" from "IGG", which is an important
semantic distinction). These constraints were geared
towards multi-word entities, and especially for entities
that include numbers, letters and acronyms.

Because the conventions on boundary words vary signifi-
cantly, to prevent underestimating performance of pro-
tein mention recognizers, we need an alternative
matching criterion, other than the exact matching. To pro-
vide alternative evaluation perspectives, researchers have
developed a variety of evaluation criteria that loosens the
matching to varying degrees. Partial matching is also con-
sidered [13,14] (if any part of a protein mention is identi-
fied, it will be considered to be a correct answer), because
it has previously been shown to capture the presence of an
entity with disregards to its exact textual representation.
According to this partial matching criterion, the perform-
ance for the pure and combined data are shown in the sec-
ond data row of Table 2. Though by loosening the
matching criterion, the performance of the training with
the combined data still can not compete with the per-
formance of the training with the pure data, under-estima-
tion can be avoided.

Incompatibility two: scope of the entities of interest
Although all three corpora include gene/protein mention
annotations, the target tasks are different. The GENIA cor-
pus aims at providing linguistically rich annotations on
biological expressions. The GENETAG annotation follows
a wide definition with the constraint that a gene/protein

entity annotation must refer to a specific entity. The
AIMed annotation focuses on extracting interactions
among individual proteins. This difference has affected
the scope of the annotated proteins: GENIA is concerned
with all of the protein-mentioning terms, GENETAG is based
on specific genes/proteins, while AIMed focuses only on refer-
ences from individual proteins.

Categories of annotated entities
The extent to which the proteins annotated in the GENIA
corpus is defined in the GENIA ontology [15]. In addition
to the protein class, other classes such as DNA, RNA,
cell_line and cell_type are also included. Further, the pro-
tein class is categorized into seven subclasses:
Protein_complex, Protein_domain_or_region,
Protein_family_or_group, Protein_molecule,
Protein_substructure, Protein_subunit and Protein_ETC.
Thus, in GENIA, "protein" is defined to include these
seven concepts.

For AIMed, the scope of the proteins annotated is
described by the following statement in the tagging guide-
lines: generic protein families are not tagged, only specific
names that could ultimately be traced back to specific
genes in the human genome are tagged [16]. That is, for
example, "tumor necrosis factor" would not be tagged,
while "tumor necrosis factor alpha" would be tagged.

Finally, based on the gene names from GenBank [17], the
GENETAG annotations include domains, complexes, sub-
units, and promoters when the annotated entities refer to
specific genes/proteins.

Hence, for the scope of annotated proteins, the documen-
tation of the three corpora explicitly states that:

(1) The mentions of protein families are annotated in
GENIA, but not in AIMed.

(2) Individual proteins (Protein_molecule) are anno-
tated in all of the corpora.

(3) Both GENIA and GENETAG contain protein
domain, complex and subunit annotations.

Compatible protein annotations
The published literature of the three corpora provides
three aspects of the inclusion/exclusion of annotations of
some classes of the GENIA protein subcategories. For
example, for AIMed and GENIA, Item (1) and Item (2)
relate to the Protein_molecule and Protein_family_or_group
annotations. For GENETAG and GENIA, Item (2) and
Item (3) relate to the Protein_molecule,
Protein_domain_or_region, Protein_complex and
Protein_subunit annotations. However, there are other pro-
Page 5 of 15
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tein subcategories annotated in GENIA; and so far, we are
unable to find any clue regarding the inclusion or exclu-
sion of these protein subcategories in the scope of the
annotations in AIMed or GENETAG. For instance, it is
unclear whether the GENETAG annotations are compati-
ble with the GENIA Protein_family_or_group annotations
or not. It is also unclear whether the GENIA
Protein_domain_or_region, Protein_complex and
Protein_subunit annotations are compatible with the
AIMed annotations. We performed a series of experiments
to confirm the three aspects that we found, and to find
other clues on the other protein subclasses.

For training, we used each of the GENIA protein sub-
classes, one by one, together with the AIMed corpus and
the GENETAG corpus (in separate experiments for each).
Each time, we regarded the annotations from a different
GENIA protein subclass as positive examples. The experi-
mental results are listed in Table 4.

As indicated on the table, it was found to be the most
harmful to combine the GENIA Protein_family_or_group
annotations together with AIMed, which supports Item
(1): the mentions of protein families are annotated in
GENIA, but not in AIMed. Also, Item (2) is confirmed by
the results that the GENIA Protein_molecule annotations
least negatively affect the performance in recognizing the
proteins tagged in the AIMed and GENETAG corpora. It
also indicates that the GENIA Protein_molecule definition
is the closest to the GENETAG and AIMed protein defini-
tions, when compared with other GENIA protein subcate-
gories.

Furthermore, adding the GENIA Protein_subunit,
Protein_complex and Protein_domain_or_region annotations
also helps to recognize the AIMed and GENETAG anno-

tated proteins (mentioned in Item (3)). Because there are
only a few Protein_substructure and Protein_ETC annota-
tions in GENIA (103 and 85, respectively), the two pro-
tein subcategories are excluded from further
consideration. In addition to the three mentioned aspects,
we also found that besides the Protein_molecule annota-
tions, the Protein_family_or_group annotations were the
most helpful for our recognizer to find the GENETAG pro-
tein annotations.

We further observe that when adding only the GENIA pro-
tein subcategory annotations to a pure corpus, the preci-
sion on both AIMed and GENETAG is quite high, but the
recall is very low. This observation suggests that if we also
add the other helpful protein subclass annotations into
the training material, we might improve the recall, while
maintaining a reasonable level of precision. The No.1 and
No.2 data blocks in Table 5 show the experimental results
based on this hypothesis. The experimental results show
that when we collectively use the helpful GENIA protein
subclass annotations, the recall improves significantly,
while minimizing the decrease in precision. For ease of
comparison, the preliminary experimental results men-
tioned in the Methods section are also listed in the last
two data blocks of Table 5.

Since our goal is to find a way to prevent the system per-
formance degradation, we set the performance of the pure
AIMed or GENETAG corpus training as the (minimum)
goal. Then, the potential (maximum) reduction rate of
incompatibility can be calculated by using Formula (2):

R
Fe Fb
Fr Fb

e = −
−

×100%, (2)

Table 4: Experimental results of the GENIA protein subcategory annotations plus AIMed and GENETAG, respectively

AIMed + GENIA GENETAG + GENIA
Matching criterion Protein subcategory Precision Recall F-score Precision Recall F-score

Exact complex 76.60 41.38 53.73 77.27 27.97 41.07
domain_or_region 78.74 41.63 54.47 75.94 27.46 40.34
ETC 81.38 40.74 54.30 78.89 26.58 39.77
family_or_group 68.49 41.63 51.79 73.58 34.61 47.08
molecule 81.83 66.16 73.16 74.78 47.99 58.46
substructure 81.27 41.00 54.50 78.46 26.52 39.64
subunit 82.40 43.04 56.54 79.16 27.53 40.85

Partial complex 91.96 49.68 64.51 92.89 33.63 49.38
domain_or_region 88.41 46.74 61.15 90.45 32.71 48.05
ETC 91.58 45.85 61.11 93.77 31.59 47.26
family_or_group 81.09 49.30 61.32 88.62 41.69 56.70
molecule 91.47 73.95 81.78 92.40 59.30 72.24
substructure 91.39 46.10 61.29 93.99 31.76 47.48
subunit 91.93 48.02 63.09 93.77 32.61 48.39
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where Re denotes the corpus incompatibility reduction
rate of a given experiment, Fe denotes the F-score of the
given experiment, Fr denotes the reference F-score of the
pure source corpus training (e.g. AIMed or GENETAG
only), and Fb denotes the baseline F-score of the training
with the pure source corpus plus the GENIA protein anno-
tations.

By combing the AIMed corpus with the GENIA
Protein_molecule, Protein_subunit and Protein_complex
annotations, we reduced the corpus incompatibility by
71.43%, based on the partial matching criterion. (We
adopt the looser criterion for calculating the reduction

rate of incompatibilities, but also provide the exact match-
ing scores, for reference.) Thus, when combining the
annotations from the GENIA corpus with the AIMed cor-
pus, we can use the annotations of these three protein
subclasses, since they were found to be compatible to
some extent.

Moreover, if we combine the GENETAG corpus with the
GENIA Protein_molecule, Protein_subunit,
Protein_domain_or_region, Protein_family_or_group and
Protein_complex annotations, the corpus incompatibility
reduction rate (3.39%) is not as notable as the rate
achieved on AIMed (71.43%). Subsequently, other than

Table 5: Experimental results of the GENIA subcategory annotations plus AIMed and GENETAG, respectively 

No. Data Criterion Precision Recall F-score

1 AIMed+ molecule+ subunit Exact 81.69 66.67 73.42
Partial 91.39 74.58 82.14

AIMed+ molecule+ subunit+ complex Exact 77.78 66.16 71.50
Partial 91.14 77.52 83.78

AIMed+ molecule+ subunit+ complex+ domain Exact 76.45 67.18 71.52
Partial 89.39 78.54 83.62

2 GENETAG+ molecule+ family Exact 71.08 55.03 62.03
Partial 87.40 67.66 76.27

GENETAG+ molecule+ family+ subunit+ complex+ domain Exact 69.90 58.28 63.56
Partial 85.30 71.11 77.56

3 AIMed+ DNA Exact 75.69 41.76 53.83
Partial 87.96 48.53 62.55

AIMed+ filtered DNA Exact 80.48 42.66 55.76
Partial 92.29 48.91 63.94

4 GENETAG+ DNA Exact 69.82 36.44 47.89
Partial 83.97 43.82 57.59

GENETAG+ filtered DNA Exact 76.57 35.18 48.21
Partial 92.70 42.60 58.38

5 AIMed+ molecule+ subunit+ complex+ filtered DNA Exact 77.49 67.69 72.26
Partial 91.37 79.82 85.21

AIMed+ molecule+ subunit+ complex+ domain+ filtered DNA Exact 75.78 68.33 71.86
Partial 89.09 80.33 84.49

GENETAG+ molecule+ family+ subunit+ complex+ domain+ filtered DNA Exact 70.97 66.14 68.47
Partial 85.14 79.34 82.14

GENETAG+ molecule+ family+ subunit+ complex+ domain+ filtered DNA+ RNA Exact 71.34 67.02 69.11
Partial 84.82 79.68 82.17

6 pure AIMed Exact 80.44 75.10 77.68
Partial 88.24 82.38 85.20

AIMed + GENIA Protein Exact 65.06 67.31 66.16
Partial 78.89 81.61 80.23

7 pure GENETAG Exact 71.38 68.00 69.65
Partial 86.21 82.12 84.11

GENETAG + GENIA Protein Exact 69.75 58.48 63.62
Partial 84.77 71.08 77.33

Here, DNA represents the GENIA DNA_domain_or_region and RNA represents the GENIA RNA_molecule.
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the five protein subcategories, there might be other cate-
gory annotations that are compatible with the GENETAG
annotations. This situation will be explored in the follow-
ing paragraphs.

We found sentences that include GENIA Protein_subunit,
Protein_complex and Protein_domain_or_region annota-
tions, which will not cause an incompatibility during cor-
pus combination. That is, in GENIA, these entities are
regarded as proteins that are compatible with the AIMed
and GENETAG annotations, so we can introduce most of
the GENIA annotations of these entities into AIMed or
GENETAG without causing a negative influence. Some
examples are shown (see Appendix). In order to show the
original corpus annotation, all of the entity annotation
types are presented.

Ambiguity between DNA and genes
The annotations in the AIMed and GENETAG corpora
also include some gene names, without differentiating
them from proteins. For the GENIA corpus, the Protein
annotation is applied only to proteins, while genes are
annotated in the scope of DNA annotations. Treating gene
annotations in the GENIA corpus in the same way as for
the AIMed and GENETAG corpora would improve the
consistency; nevertheless, the GENIA annotation does not
include explicit gene annotation. Instead, genes are anno-
tated as instances of DNA_domain_or_region, which is also
applied to other DNA regions (e.g. binding sites and c-ter-
minals). We assume that if the DNA_domain_or_region
annotations that are not pure genes can be filtered out
from DNA_domain_or_region annotations, examples in
the remaining GENIA DNA_domain_or_region annota-
tions will positively affect the corpus combination. Con-
sequently, if we assume that the performance of a
recognizer trained with the AIMed corpus is sufficiently
good, it will find most of the gene mentions in the GENIA
corpus, based on the gene definitions in AIMed. The other
DNA_domain_or_region annotations that are not compati-
ble with the AIMed gene definitions will then be filtered
out. (This filtering would only work perfectly if the per-
formance of the recognizer was perfect, so it will be a
rough filtering.) The true positives, which are annotated as
DNA_domain_or_region in the GENIA corpus and also
detected by the recognizer, will include
DNA_domain_or_region instances, which are "AIMed-like"
genes. In a similar way, we can also find the "GENETAG-
like" gene mentions.

To examine the performance of the filtering, we added all
of the DNA_domain_or_region annotations into the train-
ing set in one experiment, and only added the filtered
"genes" into the training set of another experiment. The
results (as indicated in the No.3 and No.4 data blocks in
Table 5) show the disambiguation between DNA and

genes works, although the improvement resulting from
the filtering is modest, the improvement was relatively
small for GENETAG. This may be due to the fact that, in
addition to genes and proteins, the GENETAG corpus also
includes RNA, domains, complexes, sequences, fusion
proteins, etc. No distinction is made between these
classes, so the filtering on GENETAG is more difficult than
filtering on AIMed. The simple filtering cannot effectively
filter out most of the real genes from so many other
classes; however, simple filtering helps to filter out some
DNA_domain_or_region annotations that are not necessary
for the tagger. In fact, even some well-known machine
learning algorithms did not perform well against a
human-labeled model, even though human experts could
not achieve a high agreement rate on protein, gene and
RNA labels [18].

As mentioned earlier, adding only the Protein_molecule,
Protein_subunit and Protein_complex annotations from
GENIA resulted in the best performance for the AIMed
corpus thus far. Then, in addition to the three annotation
types, we also added the filtered DNA_domain_or_region
annotations to train our protein mention recognizer. The
same experiment was performed with GENETAG. The
experimental results are shown in the first three rows of
the No.5 data block in Table 5. In comparison the first two
rows of the No.5 data block with the No.6 data block in
Table 5, we can tell that the corpus incompatibility
between GENIA and AIMed is removed completely,
because our current best result on AIMed (85.21) is better
than the performance of training with the pure AIMed cor-
pus (85.20). In Comparing the third row of the No.5 data
block with the No.7 data block in Table 5, in the case of
GENIA and GENETAG, the corpus incompatibility was
reduced by 70.94%.

RNA annotations in GENETAG
In addition to the GENIA annotations that have already
been confirmed to be compatible with the GENETAG
annotations, there is another GENIA subcategory that
should contain compatible annotations: namely the
RNA_molecule.

In addition to the six subcategory annotations mentioned
above, we have also added the GENIA RNA_molecule
annotations to the GENETAG corpus. The experimental
results are shown in the last row of the No.5 data block in
Table 5. By comparing the F-scores shown in the last two
rows of the No.5 data block in Table 5, we can see that the
reduction of the incompatibility on GENETAG was
improved by adding the RNA_molecule annotations.

The improvements thus far are shown in the third data
row of Table 2. After we have explored as many compati-
ble annotations between the corpora as possible, we can
Page 8 of 15
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:403 http://www.biomedcentral.com/1471-2105/10/403
observe that the F-score performance gap between the
pure source corpus training, and the GENIA-combined
training is about 1.9% in F-score on GENETAG alone. For
AIMed, the performance of the GENIA-combined training
competes with that of the pure source corpus training.

Incompatibility three: sentence selection
Although all of the possible compatible GENIA annota-
tions have already been explored, there are still some
sources that are responsible for the remaining incompati-
bilities between GENIA and GENETAG. When some sen-
tences with the compatible annotations are introduced,
some incompatible "missing" or "extra" annotations in
these sentences may also be included.

To confirm this assumption, we applied a sentence selec-
tion policy. For a given subcategory, sentences that only
contain annotations of this subcategory are selected for
our corpus integration experiment. For instance, in the
case of Protein_molecule, DNA_domain_or_region and
RNA_molecule, with the exception of these three subcate-
gories, if there are no other Protein subcategory, DNA sub-
category, RNA subcategory or Peptide annotations in a
sentence, then that sentence will be combined with
AIMed or GENETAG as the training data. The results of the
experiments with the selected sentences are shown in
Table 6.

As evidenced in Table 6, adding 7,771 selected GENIA
sentences with the Protein_molecule, Protein_subunit,
Protein_complex, Protein_domain_or_region and the filtered
DNA_domain_or_region annotations, with the partial
matching criterion, further obtained a better performance
with the corpus integration than the results obtained by
training on the pure AIMed corpus. Moreover, we can see
that combing the selected GENIA sentences with GENE-
TAG also helped our protein mention recognizer work
better on the GENETAG corpus. The corpus incompatibil-
ity reduction rate improves to 94.69%.

We also summarize the improvement obtained by the
sentence selection strategy in the last row of Table 2. The
incompatibility between AIMed and GENIA has then
been eliminated completely, but for GENETAG and
GENIA, a very small performance degradation remains
(0.36% in F-score). The cause of the remaining incompat-
ibility between GENETAG and GENIA will be explained in
the next section.

Since sentence selection reduces the number of poten-
tially incompatible examples that were added, the
reduced incompatibility may be explained by the down
sampling involved. To verify that the improvements are
really achieved by sentence selection, we conducted exper-
iments with randomly selected sentences. The same
number of sentences were randomly selected from
GENIA, as introduced in the sentence selection experi-
ments, and are repeated 1,000 times. We then calculated
the confidence intervals of the partial matching F-scores at
the 95% confidence level. The statistical results are shown
in Table 7. Since the F-scores of the sentence selection
experiments fall outside of the range of the random sen-
tence selection F-scores, sentence selection works on both
the AIMed and GENETAG corpora.

Incompatibility four: non-overlapping data
The results thus far indicate that incompatibility still exists
among the corpora; in particular, the performance of
training with GENETAG and GENIA is still a little lower
than the performance achieved by using only GENETAG.
Since the sentences in the three corpora are collected by
different means, it is assumed that the proteins men-
tioned in the three corpora are mainly heterogeneous,
which results in incompatibility.

To quantify this assumption, we examined the ratio of
overlapping entities among different portions of each cor-
pus and among different corpora. We first divided each
corpus into two disjoint portions of the same size. In

Table 6: Experimental results with the selected GENIA sentences plus AIMed and GENETAG, respectively

Experimen
t

Data Size Criterion Precisio
n

Recal
l

F-score

Exp 1 AIMed+ molecule+ subunit+ complex+ filtered DNA 7,433 Exact 76.67 70.50 73.45
Partial 89.72 82.50 85.96

Exp 2 AIMed+ molecule+ subunit+ complex+ domain+ filtered DNA 7,771 Exact 77.03 71.52 74.17
Partial 89.27 82.89 85.96

Exp 3 GENETAG+ molecule+ family+ subunit+ complex+ domain+ filtered DNA 7,771 Exact 71.73 66.85 69.20
Partial 86.81 80.90 83.75

Exp 4 GENETAG+ molecule+ family+ subunit+ complex+ domain+ filtered DNA+ 
RNA

7,675 Exact 71.58 67.22 69.33

Partial 86.30 81.04 83.58

The second column only shows the number of the selected GENIA sentences.
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order to make the comparisons, we down-sampled sen-
tences in each portion of GENIA and GENETAG, so that
the gene/protein mentions in each portion are of the same
number as the ones in one AIMed portion (2039). The
numbers of overlapping entities in and across the corpora
are shown in Table 8. Table 8 shows that the proteins in
the GENETAG corpus are more heterogeneous than the
proteins in GENIA and AIMed. In comparing the number
of the intra-corpus overlapping entities with that of the
inter-corpora overlapping entities, it further shows that
the proteins across any two different corpora are signifi-
cantly more heterogeneous than the proteins in a single
corpus, which supports our assumption. We can therefore
conclude that the heterogeneity of the proteins in the
three corpora is another source of incompatibility. The
incompatibility, however can be considered as a potential
benefit of using all three corpora, rather than as a prob-
lem. The low overlapping ratio of the annotated entities in
the three corpora implies that no single corpus can repre-
sent the annotation for the entire protein. Then, develop-
ing a NER system that can show a good performance on
all three corpora would be ideal; this will remain a task for
our future work.

Conclusion
We have presented a comparative evaluation of protein
annotations, by studying the GENIA, GENETAG and
AIMed corpora. Our preliminary experiments showed a
major performance degradation in protein name identifi-
cation, when using the combined corpora as the training
material (according to the exact matching criterion, the F-
score performance dropped about 12% on AIMed and 6%
on GENETAG, referring to section: "Preliminary experi-
ments"). The documentation of these corpora was studied

to identify the corpus heterogeneities that caused the per-
formance degradation; in effect, a series of experiments
that aimed at removing or avoiding the negative effects of
the corpus differences were performed. We also strove
towards grasping a better understanding of the different
protein annotations implemented in the corpora.

Although all of the corpora are distributed with gene/pro-
tein annotations, the target entities are significantly differ-
ent depending on the documentation of the corpora. The
emphasis on individual proteins (Protein_molecule)
involved in protein-protein interactions in the AIMed cor-
pus is responsible for more than half of the disagreements
between AIMed and GENIA. The scope of the proteins
defined for the protein annotations to GENETAG and
GENIA is the biggest source of the incompatibilities found
between the two corpora: besides protein, the protein def-
inition of GENETAG also includes gene, DNA and RNA,
while the protein definition of GENIA does not. Even
within a single corpus, the boundary word annotation is
not guaranteed to be consistent (see Additional file 1).
Finally, the low overlapping ratio of the annotated entities
between each corpus is another reason for the incompati-
bilities.

These observations suggest the difficulty of benefiting
from an increased size in training data by merging differ-
ently annotated corpora, unless the annotations of indi-
vidual collections are adequately compatible. To address
this issue, we proposed ways of avoiding the heterogenei-
ties that we have already discovered.

We showed that the proposed methods removed the
incompatibilities between AIMed and GENIA, thus show-

Table 7: Statistical analysis of random sentence selection experiments at the 95% confidence level 

Random experiment Mean Confidence interval True mean range F-score of sentence selection experiment

Exp 1 85.38 ± 0.04 85.34 to 85.42 85.96
Exp 2 84.87 ± 0.04 84.82 to 84.91 85.96
Exp 3 82.80 ± 0.02 82.78 to 82.82 83.75
Exp 4 82.91 ± 0.02 82.89 to 82.93 83.58

The experiments are as described in Table 6, with the randomly selected GENIA sentences.

Table 8: Overlapping entities intra-corpus and inter-corpora

The number of overlapping entities
Data AIMed GENETAG GENIA-AIMed GENIA-GENETAG

AIMed 449 113 117 -
GENETAG 113 204 - 108
GENIA-AIMed 117 - 347 -
GENIA-GENETAG - 108 - 332

"GENIA-AIMed" and "GENIA-GENETAG" represent the GENIA data used in Exp 2 and Exp 4 of Table 6, which are compatible with AIMed and 
GENETAG, respectively. The number of gene/protein mentions in each portion is 2039.
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ing an improved NER performance by combining the two
corpora for training. The F-score performance improves
from 80.23 to 85.96 based on the partial matching crite-
rion, which makes the performance competitive with the
performance of the pure AIMed corpus training (85.20).
For GENETAG and GENIA, we also removed a significant
amount of inconsistencies and achieved a comparable
NER performance when combining the two corpora for
training. The F-score performance improves from 77.33 to
83.75, merely 0.36% lower than using the pure GENETAG
corpus training. This may be attributed in part to the fact
that the GENETAG corpus is quite optimized for machine
learning with a balanced number of positive and negative
examples, while the GENIA corpus is not optimized. All
improvements are proved to be statistically significant.

As the increasing amount of data helps to improve NER
system performance, the creation of standard annotation
guidelines proves to be an important task. The study done
through this work provides insight to the existing protein
annotations, which should be helpful for producing bet-
ter annotation guidelines.

Methods
Preliminary experiments
We performed two preliminary experiments with AIMed
and GENIA in order to confirm the following two
assumptions: first, that we can improve the performance
of a protein mention recognizer by increasing the size of
the training data set; and second, that the system perform-
ance will drop when incompatible annotations are intro-
duced into the training data set.

We divided the AIMed corpus into two parts: 80% for
training and the remaining 20% for testing. In the first
experiment, we only used the AIMed training portion. In
this experiment, we performed eight sub-experiments,
each time adding 10% more AIMed abstracts into the
training portion. In the second experiment, in addition to
the AIMed training portion, we also added all of the
GENIA protein annotations. In order to keep the same
increasing rate with GENIA as with AIMed, we also added
the GENIA corpus in increasing proportions. In both
experiments, we performed evaluation on the AIMed test-
ing portion. In this paper, all evaluations on AIMed are
carried out on the AIMed testing portion (20% of the cor-
pus), unless otherwise noted. Also, for the sake of simpli-
fication, we refer to the AIMed training portion (80% of
the corpus) as the "AIMed corpus".

A learning curve drawn from the results of the two exper-
iments, mentioned above, is shown in Figure 1. The learn-
ing curve is still increasing, even after we used all eight
training portions of the AIMed corpus. We would expect a
further improvement if we were able to add more training

data. When we actually added the protein annotations
from the GENIA corpus to the training data set, a very
small portion of GENIA was used (20 abstracts, one-ninth
of AIMed); we witnessed performance degradation. When
we added the entire GENIA corpus, which is more than
ten times larger than the AIMed corpus, the performance
degradation was found to be drastic. We assume that the
degradation is caused by the incompatibility of the pro-
tein annotations in the two corpora, and we further
assume that by decreasing the incompatibility, the learn-
ing curve will continue to increase, or will level out and
remain constant.

We conducted two similar experiments with GENETAG
and GENIA. For training, first, only the "GENETAG Train"
subset (third-eighths of the corpus) was used, and then
"GENETAG Train" subset plus the GENIA protein annota-
tions were used. The evaluations were carried out on the
"GENETAG Test" subset (one-eighth of the corpus).
Unless otherwise specified, the "GENETAG ROUND1"
subset (one quarter of the corpus) was not used. The other
quarter of the corpus is not publicly available. In this
paper, all evaluations on GENETAG are performed on the

Learning curve drawn from the results of the preliminary experiments with the AIMed and GENIA corporaFigure 1
Learning curve drawn from the results of the prelimi-
nary experiments with the AIMed and GENIA cor-
pora. The numbers represent the F-scores based on the 
exact matching criterion. The red color indicates the experi-
mental results of the training with AIMed, and the blue color 
indicates the experimental results of adding GENIA. The F-
score of 60.9% was obtained when about 10% of the AIMed 
abstracts were used for the training. Following that, 10% 
more AIMed abstracts were added to the training material 
gradually. Note that the best result (77.68% in F-score) was 
achieved when all the AIMed training portions (181 abstracts) 
were used. When 20 more GENIA sentences were added to 
the training material, the F-score degraded to 75.26%. The 
performance kept degrading when the GENIA abstracts were 
added in increasing proportions. Further, when the entire 
GENIA corpus (1,999 abstracts) was included, the F-score 
was as low as 66.16%.
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"GENETAG Test" subset only, and the "GENETAG Train"
subset is simply called the "GENETAG corpus", except
where explicitly noted. Again, the experimental results
verified our assumption that the integration of the two
corpora with heterogeneous annotations will lead to a
performance degradation.

We additionally performed more experiments to further
confirm our assumption. We split the GENIA corpus on
the abstract level, so that 90% was used for training and
the remaining 10% was used for testing. We trained our
tagger with the GENIA training portion, and with the
GENIA training portion plus AIMed and GENETAG,
respectively; we then applied the tagger to the GENIA test-
ing portion. The performance of the training with the inte-
grated data was worse than the result from the training
with the GENIA training portion, even if the added corpus
is as small as AIMed (about 10% of GENIA). Such results
further show that merging two heterogeneous corpora
will degrade the performance, no matter how small one of
the corpora is.

Further, we trained our tagger with two compatible cor-
pora, by merging AIMed and GENETAG. AIMed and
GENETAG were respectively evaluated by this trained tag-
ger, in order to show that merging two corpora with
homogeneous annotations does not guarantee that the
corpus integration will avoid a degradation in the per-
formance.

All results of the mentioned experiments are represented
in Table 9.

Significance tests
For empirical natural language processing, on some test
data set, researchers often evaluate whether some new
technique improves the results, when compared to some
current technique. When the new technique yields a better
result, we must decide whether these result differences are
due to the improvements in the new technique, or
whether the improvements are based on chance. [19]

offers some methods for statistically computing signifi-
cant differences in the balanced F-score metric: by using
computationally intensive randomization tests, and in
particular, by using bootstrap over test set [20-22].

However, the bootstrap variances in elementary experi-
ments were too high to conclude anything, so we instead
used a McNemar paired test on labeling the disagreements
[23-25]. It is over-optimistic to measure NER with the
accuracy rate for individual labeling decisions, but for the
statistical significance tests, individual labeling errors pro-
vide a more convenient basis.

Our protein recognition task labels each word with a label
that indicates whether the word is the beginning of a pro-
tein (B), or the internal of a protein (I), or a general Eng-
lish word (O). With McNemar's test, we compare the
correctness of the labeling decisions. A null hypothesis is
that the disagreements (correct vs. incorrect) are due to
chance. Table 10 summarizes the results of the tests
between our best result and the pure corpus training
result. These tests suggest that the system performance
improves on AIMed and GENETAG, by the introduced
techniques. The experiments are statistically significant.

Related works
Portability and reusability make machine learning attrac-
tive: given the same entity types and similar text types, for
example, a protein name recognizer trained on one corpus
would be able to recognize proteins in another corpus.
However, incompatibility among corpora weakens the
portability and reusability, as mentioned earlier.

To eliminate the negative influence of the inconsistencies,
[26,27] converted several corpora into one unified format,
without altering the semantics of the corpus. Further-
more, some methods have been proposed, aiming at
improving the system performance on one corpus rela-
tively different from the training corpus (e.g. domain
adaptation [28], transfer learning [29], etc). None of the
methods dealt with the essential distinctions between the
training and testing corpora. [30] compared five corpora
annotated for protein names, and analyzed the cause forTable 9: F-score performance of the inter- and intra corpus 

experiments according to the exact matching criterion 

Testing data Training data
AIMed GENETAG GENIA

AIMed 77.68 69.34 66.16
GENETAG 68.96 69.65 63.62
GENIA 78.36 77.80 78.76

"Testing data" represents the corpus used for evaluation. "Training 
data" represents the corpus which was "added" to the training 
portion of the "Testing data" corpus for training. For example, the 
score in the cell AIMed-GENETAG represents the performance of 
training on the training portion of the AIMed and GENETAG corpora, 
and testing on the testing portion of AIMed.

Table 10: McNemar's tests on labeling disagreements 

Null hypothesis P-value

Exp1 vs. AIMed 2.04e-09
Exp2 vs. AIMed 3.57e-11

Exp3 vs. GENETAG 0.0254
Exp4 vs. GENETAG 0.00013

The experiments are as described in Table 6. AIMed and GENETAG 
represent the experiments with the pure AIMed and GENETAG 
corpora, respectively.
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the boundary errors and for the increased number of false
positives. However, [30] did not explore the classification
of proteins, and some of the five corpora are not so wide-
spread today.

We previously studied the AIMed and GENIA corpora
[31]. In this work, we extended our analysis to also cover
the GENETAG corpus.

Materials
Here, we briefly introduce the corpora selected in this
research, and focus on their size and covered domains.
Finally, we describe the protein mention recognizer used
in our work.

The GENIA corpus
The GENIA corpus (version 3.02) [32] is a collection of
articles extracted from the PubMed database with the
MeSH terms: "human", "blood cells" and "transcription
factors". There are 1,999 abstracts and 18,554 sentences in
total. The corpus has been annotated with various levels
of linguistic and semantic information. The term annota-
tion is based on a taxonomy of 48 classes that are estab-
lished on a chemical classification. Among the classes, 36
terminal classes were used to annotate the corpus. The
total number of annotated terms/entities is 94,639. A sim-
plified version called the JNLPBA corpus [33] is also used
in the biomedical text mining domain. In recent years, the
GENIA corpus has become one of the most frequently
used corpora in the biomedical domain [34,35], and has
been widely used for training natural language processing
(NLP) tools such as NER [36] and relation miner [37].

The GENETAG corpus
The GENETAG corpus [38], which was used for the Bio-
CreAtIvE Competition Task 1A [39], is described as the
tagged gene/protein names in the PubMed text. The cor-
pus was designed to contain sentences both with and
without gene/protein names, in a variety of contexts.
Gene/protein names are defined widely, but are subject to
the specificity and the semantic constraints. The annota-
tion guidelines were designed to allow flexible matching
to the gold standard, while retaining the true meaning of
the tagged entities.

There are 20,000 sentences and a total of 23,996 gene/
protein names annotated in the GENETAG corpus. An
additional file of 17,531 acceptable alternatives to the
tagged gene/protein names is made available. The 20,000
sentences were split into four subsets called Train (7,500
sentences), Test (2,500 sentences), Round1 (5,000 sen-
tences) and Round2 (5,000 sentences). With the excep-
tion of Round2, all of the data is now freely available.

The AIMed corpus
The AIMed corpus [40] is now one of the most widely
used corpora for protein-protein interaction extraction
[27]. The original corpus consists of 230 PubMed
abstracts. 200 abstracts are identified by the Database of
Interacting Proteins (DIP) [41], as describing interactions
between human proteins. The protein annotations are
either parts of the protein interaction annotations, or are
uninvolved in any protein interaction annotation. Since
negative examples for protein interactions are rare in the
mentioned 200 abstracts, the other 30 abstracts were
manually selected. This would allow for the selected sen-
tences to have more than one protein; however, the situa-
tion does not refer to any interaction (according to DIP).
The currently released corpus consists of 225 abstracts
(200 abstracts with positive examples and the other 25
abstracts with negative examples). In the release, there are
2,212 sentences and 4,084 protein references.

Due to the ambiguities involved in human gene/protein
names, the creators of the AIMed corpus developed a set
of conventions for consistent tagging [16].

The protein mention recognizer
The protein mention recognizer used in our work is a
Maximum Entropy Markov Model n-best tagger [42]. To
reduce our task to a simple linear sequential analysis
problem, we performed some preprocessing on the cor-
pora before using them in the experiments. For AIMed
and GENIA, we removed all of the embedded tags, and
only retained the outermost tags. There were 143 (3.4%)
embedded occurrences in the AIMed corpus, five of which
were triple-nested. There were 1,595 (1.7%) embedded
cases in the GENIA corpus. For GENETAG, the alternatives
were ignored, and the longest annotations were kept.
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Appendix - Sentences including the same 
annotated entities
The boldface represents an annotated entity, and in the
GENIA examples, the word under the line represents the
class used to annotate the entity.

Protein_subunit

Thus, after 4 hr of exposure to  and

, the expression of  was

SEA
Protein molecule_

SEB
Protein molecule_

IL-2R beta 
Protein subunit_
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down-regulated,  was slightly up-regulated,

while  remained largely unaffected.

(GENIA PMID 7479924)

Interaction of IL-2R beta and gamma c chains with Jak1
and Jak3: implications for XSCID and XCID. (AIMed
PMID 7973658)

Our results demonstrate that distinct cytoplasmic
domains of these cytokine receptors elicit convergent sig-
naling pathways and provide evidence that beta c and IL-
2R beta function as a complete signal transducer. (GENE-
TAG PMID 8721989)

Protein_complex

 revealed the presence of a previously

 for both the

 and 

at . (GENIA PMID 10022897)

The death domain of tumor necrosis factor (TNF) recep-
tor-1 (TNFR1) triggers distinct signaling pathways leading
to apoptosis and NF-kappa B activation through its inter-
action with the death domain protein TRADD. (AIMed
PMID 8612133)

The decrease of TNF receptors by IL-4 was accompanied
by down-regulation of TNF-induced activities, including
cytotoxicity, caspase-3 activation, NF-kappaB and AP-1
activation, and c-Jun N-terminal kinase induction.
(GENETAG PMID 9837907)

Protein_domain_or_region

The

 is an essential component of the receptors for

 and . (GENIA PMID

9199305)

Interaction of IL-2R beta and gamma c chains with Jak1
and Jak3: implications for XSCID and XCID. (AIMed
PMID 7973658)

Our results demonstrate that distinct cytoplasmic
domains of these cytokine receptors elicit convergent sig-
naling pathways and provide evidence that beta c and IL-

2R beta function as a complete signal transducer. (GENE-
TAG PMID 8721989)
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