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Abstract 

Polyamines are essential for the growth and proliferation of mammalian cells and are intimately involved in biological 
mechanisms such as DNA replication, RNA transcription, protein synthesis, and post-translational modification. These 
mechanisms regulate cellular proliferation, differentiation, programmed cell death, and the formation of tumors. 
Several studies have confirmed the positive effect of polyamines on the maintenance of health, while others have 
demonstrated that their activity may promote the occurrence and progression of diseases. This review examines 
a variety of topics, such as polyamine source and metabolism, including metabolism, transport, and the potential 
impact of polyamines on health and disease. In addition, a brief summary of the effects of oncogenes and signaling 
pathways on tumor polyamine metabolism is provided.
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Introduction
Polyamines, which are small polycationic compounds 
with a positive charge, are found in all types of living cells, 
including those of mammals, plants, and prokaryotes [1]. 
It is well known that there are three primary types of 
polyamines present in mammalian cells: putrescine (Put), 

spermidine (Spd), and spermine (Spm). The discovery of 
polyamines, specifically spermidine and spermine, dates 
back to 1678 when Antonie van Leeuwenhoek made the 
initial observation [2]. Throughout the twentieth century, 
their structure was characterized and their biosynthetic 
pathway was determined as a result of ongoing research 
[3]. Although all eukaryotic cells are capable of synthesiz-
ing the three major polyamines, polyamines can also be 
obtained through diet and other alternative sources [4], 
including intestinal bacteria. In addition, polyamines are 
essential for the growth and proliferation of mammalian 
cells and are intricately linked to biological processes, 
such as replication, transcription, translation, and post-
translational modification, which modulate cellular pro-
liferation, differentiation, apoptosis, and tumorigenesis 
[4, 5]. Briefly, polyamines within mammalian cells are 
irreplaceable, as the depletion of polyamines will com-
pletely halt cell growth and proliferation.

Numerous empirical studies support the claim that 
spermidine, the most abundant polyamine in mam-
mals, acts as an elixir of life [6, 7]. Previous studies have 
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demonstrated that polyamine concentrations tend to 
decrease with age, demonstrating a negative correla-
tion with advancing age [8, 9]. One study, for instance, 
elucidated the relationship between polyamine levels 
and age, revealing that individuals aged 31–56 years and 
over 90  years have significantly lower total polyamine 
concentrations than those aged 60–80  years and older. 
Surprisingly, however, the concentrations of spermidine 
and spermine in the aforementioned two age groups are 
greater than in those aged 60 to 80 years, and individu-
als aged over 90  years have the highest relative propor-
tion of spermine among these three age groups [10]. In 
this experiment, the relationship between polyamine 
concentration and age differed from the above state-
ment. There were two primary factors that contributed to 
the observed results, namely, a small sample size of only 
78 individuals, and the discrepant levels of polyamines 
in plasma as compared with those found in tissue [11]. 
Additionally, the administration of Spm has been demon-
strated to markedly increase the lifespan of several model 
organisms (such as yeast, fruit flies, worms, and etc.), 
which suggests that spermidine may be a promising agent 
for enhancing health and longevity [8, 12].

It has been experimentally demonstrated that polyam-
ines exert a crucial function in ensuring the survival of 
cells and promoting their growth [13, 14]. Consequently, 
the regulation of polyamine concentration and activity 
is of the utmost importance and is achieved via a com-
plex network of pathways. The regulation of intracellular 
polyamine levels and activities is governed by pathways 
involved in polyamine synthesis, degradation, and trans-
port, which have been extensively studied in bacteria, 
yeast, and higher organisms [15]. Consequently, fluctua-
tions in polyamine concentrations and disruptions in pol-
yamine metabolism will inevitably have negative effects 
on overall health, possibly even initiating the occurrence 
and progression of diseases, such as acute kidney injury, 
Alzheimer’s disease, diabetes, etc. [16–18]. Furthermore, 
it is essential to acknowledge that numerous studies have 
elucidated notable alterations in the quantities and func-
tions of polyamines in cancer [19, 20].

The primary objective of the present review is to exam-
ine the source and metabolic mechanism of polyamines 
in humans, investigate the functions and mechanisms of 
polyamines in both non-neoplastic and neoplastic dis-
eases, and ultimately provide potential insights for the 
treatment of said ailments.

The source and metabolism of polyamine
Polyamine biosynthesis
The biosynthesis pathway of mammalian polyamine is 
depicted in Fig. 1 as a series of enzymatic reactions that 
lead to the production of these important intracellular 

components. Numerous microorganisms and higher 
plants have the ability to synthesize putrescine from 
agmatine via decarboxylation of arginine (ADC) [21, 
22]. Despite the presence of evidence for ADC in mam-
mals, Coleman et  al. observed that ADC within mito-
chondrial extracts lack catalytic activity [23]. However, 
Wang et al. has indicated that the deficiency of ornithine 
decarboxylase (ODC) in ovine conceptus trophectoderm 
would ultimately result in an elevation of the activity of 
ADC [24]. Accordingly, the prevailing pathway for the 
de novo biosynthesis of putrescine in these species is via 
the enzyme ODC [25]. ODC is a pyridoxal phosphate-
dependent enzyme and is frequently thought to be the 
rate-limiting factor in modulating the concentration of 
Put [26]. Ornithine, which is obtainable from the plasma 
and can also be generated intracellularly through argin-
ase (Arg 1) activity, serves as the substrate for the synthe-
sis of Put. Thus, it is possible that arginase, which is more 
widely distributed than other urea cycle enzymes, is pre-
sent in extrahepatic tissues in order to ensure the availa-
bility of ornithine for polyamine synthesis. Arginase can, 
therefore, be regarded as the first step in the polyamine 
biosynthetic pathway [27].

A group of aminopropyl-transferases, specifically sper-
midine synthase (SRM) and spermine synthase (SMS), 
catalyzes the conversion of putrescine to spermidine and 
spermine during the synthesis of higher polyamines [28]. 
The aforementioned aminopropyl group originates from 
methionine and undergoes a two-step process consisting 
of conversion to S-adenosylmethionine and decarboxy-
lation [27]. Subsequently, the decarboxylated S-aden-
osylmethionine (dcAdoMet) serves as an aminopropyl 
donor in a manner comparable to the use of S-adenosyl-
methionine as a methyl donor. Despite a close similarity 
in their responses, human SRM and SMS are discrete 
enzymes and exhibit stringent selectivity for their respec-
tive substrates [29]. Human SRM, a dimer comprised of 
two identical subunits, encompasses an active site within 
its C-terminal domain that shares a structural similar-
ity with that of SMS [30]. Although the configurations of 
their active sites are comparable, they differ primarily in 
the constricted spatial allowance for the amine substrate 
within the framework of SRM, which guarantees putres-
cine is the only substrate for SRM [5].

During the synthesis of spermidine and spermine, the 
aminopropyl donor dcAdoMet produces the secondary 
metabolite 5’-methylthioadenosine (5’-MTA) [19]. In 
the methionine salvage pathway, MTA is initially phos-
phorylated by 5′-methylthioadenosine-phosphorylase 
(MTAP), after which it is converted into adenine (one 
of the primary components of ATP) and 5-methylthior-
ibose-1-phosphate. Methionine metabolism involves the 
conversion of 5-methylthioribose-1-phosphate into a 
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metabolite that can serve as a substrate for AdoMet syn-
thesis through a cascade of enzymatic reactions. This is 
facilitated by methionine adenosyl-transferase 2 (MAT2), 
which catalyzes the final step of AdoMet synthesis by 
facilitating the ATP-dependent transfer of an adenosyl 
group to methionine. MTAP deficiency results in the 
inability of endogenous MTA to salvage methionine or 
adenine, resulting in impaired polyamine biosynthesis 
and the accumulation of dcAdoMet and 5’-MTA [31].

Polyamine catabolism
It is generally accepted that the biochemical reactions 
catalyzed by spermidine synthase and spermine synthase 
are effectively irreversible. However, it has been estab-
lished for many years that the transformation of spermine 

into spermidine and spermidine into putrescine can 
occur in vivo [28, 32, 33]. Spermine oxidase (SMOX) cat-
alyzes the conversion of spermine to spermidine, 3-ami-
nopropanaldehyde, and H2O2, with negligible effect on 
spermidine [33]. On the other hand, the enzyme acetyl-
polyamine oxidase (PAOX) catalyzes the transformation 
of N1-acetylspermidine into putrescine and N-acetyl-
3-aminopropanaldehyde [34–37]. PAOX is also highly 
efficient at converting N1-acetylspermine to spermidine. 
The substrates required for PAOX-mediated reactions 
are produced through the catalytic activity of spermi-
dine/spermine-N1-acetyltransferase (SSAT) [38]. The 
enzyme SSAT, encoded by the gene SAT1, typically exists 
at minimal concentrations but can be easily stimulated by 
increased levels of free polyamines [38]. SSAT facilitates 

Fig. 1  The source and metabolism of polyamine. a The presence of polyamines is ubiquitous in virtually all food sources. The main polyamines 
in breast milk are spermidine and spermidine, and the content and distribution of polyamines in plant-derived and animal-derived foods differ 
based on their respective categorizations. b The intestinal microbiota has the capability to produce polyamines. c The biosynthesis of polyamines 
commences with the conversion of L-ornithine into putrescine via the action of ornithine decarboxylase (ODC). Subsequently, the addition 
of an aminopropyl group, which is contributed by dcAdoMet, results in the formation of spermidine and spermine. In the process of polyamine 
catabolism, the enzyme SSAT are responsible for the acetylation of spermine and spermidine, resulting in the production of N1-acetylspermine 
and N1-acetylspermidine. SMOX can oxidize spermine directly to spermidine These metabolites are either secreted from cells or undergo 
reconversion back into spermidine and putrescine via the enzyme PAOX. Created with BioRender.com
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the formation of N1-acetylspermine and N1-acetylsper-
midine, which may be extruded from the cellular envi-
ronment or converted into 3-acetylaminopropanal, H2O2, 
and either Spd or Put, through the action of PAOX. The 
products generated via the reactions SMOX and PAOX, 
as well as acrolein, a toxic byproduct of spontaneous 
deamination of 3-aminopropanal [39] and Spm oxidation 
produced following cellular injury by copper-dependent 
oxidases present extracellularly [40], have been associ-
ated with renal insufficiency [41], ischemia–reperfusion 
[42] and injury cerebral infarction [43].

Polyamine uptake
Aside from intracellular biosynthesis, the systemic avail-
ability of polyamines also depends on two other essential 
sources: extrinsic (oral) absorption via dietary intake and 
synthesis by intestinal microflora (Fig.  1) [44]. Surpris-
ingly, it is believed that food consumption and endoge-
nous production by intestinal microbiota are the primary 
sources of polyamines in healthy adult humans [45–47]. 
Following absorption by the gastrointestinal tract, poly-
amines are rapidly assimilated [48], resulting in a rapid 
elevation of portal vein concentrations and subsequent 
dispersion throughout the entire spectrum of organs 
and tissues [49]. Polyamines are ubiquitously present in 
all food types, such as shellfish with elevated polyam-
ine concentrations per unit of caloric intake, albeit with 
substantial variation in their concentrations [50]. Given 
the abundance of polyamine sources, it appears that 
any effort to reduce the concentration of polyamines in 
order to promote health or alleviate disease must involve 
the elimination of all polyamine sources. Otherwise, the 
residual sources of polyamines could compensate for the 
maintenance of optimal polyamine levels [45].

Polyamine transport
Due to the protonation of the primary and secondary 
amino groups of polyamines at the physiological pH of 
the extracellular environment [51], polyamine is con-
ceptually incapable of diffusing passively through cel-
lular membranes. While there exists a certain degree 
of comprehension regarding the polyamine transport, 
further researches are required to substantiate the pre-
cise transport mechanism and the transportation carri-
ers involved. There have been three postulated models 
regarding the transport of polyamine, which include 
glypican-mediated endocytosis, plasma transport and 
vesicular sequestration, and caveolin-mediated endocy-
tosis [52]. The glypican-1 molecule possesses a side chain 
consisting of heparan sulfate that can bind with Spm 
and facilitate its transport into the cytoplasm [53]. It has 
been hypothesized that polyamine transport may also 
involve transporters on the plasma membrane, which are 

similar to those found in yeast and bacteria [54]. Solute 
carrier (SLC) transporters and ATP transporters (such 
as ATP13A2 and ATP13A3) serve as a mediator for the 
transport of polyamine in mammalian cells [52, 55–57]. 
For instance, SLC family 3 member 2 (SLC3A2) facilitates 
the export of acetylated polyamines through a reaction 
involving the exchange of polyamines with arginine [58]. 
In addition, the finding of a vesicular polyamine trans-
porter (VPAT, also known as SLC18B1) in astrocytes [59] 
and mast cells [60] highlights the potential neuro- and 
immune-modulatory effects of this transport mecha-
nism [60, 61]. Moreover, the activated K-RAS modulates 
polyamine transport in colon cancer cells by regulating 
the expression of caveolin-1, which exerts a suppressive 
effect on caveolar endocytosis [62]. Therefore, the accu-
rate delineation of the polyamine transport system will 
generate novel perspectives regarding the management 
and prognosis of certain diseases.

The effect and mechanism of polyamine on disease
Growing evidence suggests that polyamines exert a sub-
stantial effect on the pathogenesis and progression of 
numerous diseases. In this regard, it has also been estab-
lished that polyamines have diagnostic value in certain 
conditions, including cardiovascular disease [63, 64] and 
metabolic syndromes [65, 66]. Furthermore, their prog-
nostic potential in predicting disease outcomes has also 
been demonstrated. Tables  1 and 2 provide extensive 
data on the properties and potential biological functions 
of polyamines in both neoplastic and non-neoplastic 
diseases.

Non‑neoplastic diseases
Polyamines in cardiovascular protection
Polyamines are essential to the angiogenesis process, 
which occurs in response to tissue damage or tumor 
growth [4]. It has been demonstrated that the inhibi-
tion of polyamine synthesis inhibits angiogenesis in 
both gastric ulceration models [119] and tumor models 
[100, 120].

The process of aging induces two critical alterations in 
arteries, which markedly elevate the susceptibility to car-
diovascular diseases (CVD): 1. The rigidity of the major 
elastic arteries (viz. the aorta and carotid arteries) and 
2. The emergence of vascular endothelial dysfunction 
[121, 122]. Arterial stiffening results from age-related 
changes in the arterial wall, including increased collagen 
deposition, decreased elastin content, and cross-linking 
of these and other structural proteins via the formation 
of advanced glycation end products (AGEs) [123]. Age-
related vascular endothelial dysfunction is primarily the 
result of decreased nitric oxide (NO) bioavailability, as 
indicated by impaired endothelium-dependent dilation 
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Table 1  The regulation and function of polyamine in carcinogenesis

Neoplasm 
type

Target 
gene

Regulation Expression Associated 
protein

Inhibitor Concentration/
Activity

Polyamine 
level

Function Refs

OC MYC positive High ODC DFMO ↓ ↓ inducing 
apoptosis 
through regula-
tion of AP-1 
by DFMO

 [67]

/ / / ODC DEMO + aza ↓ ↓ Increasing 
anti-tumor M1 
macrophages 
through DFMO 
and aza

 [68]

/ / / ODC DFMO ↓ ↓ enhancing 
the cytotoxicity 
of PARP inhibi-
tors via DFMO

 [69]

/ / / ODC SBP-101 ↓ ↓ suppressing OC 
via SBP-101

 [70]

HCC MAT1A positive Low MATI/III / ↓ ↓ increasing HCC 
cell proliferation

 [71–73]

MAT2A positive High MATII / ↑ ↑ activating 
MAT2A in turn

 [74]

/ / / GSK-3β SSAT ↓ ↓ suppressing 
tumor progres-
sion and metas-
tasis

 [75]

/ / / HDAC4 Spd ↓ ↑ enhancing 
autophagy flux

 [76]

GC SMO positive High SMO / ↑ ↓ promotes H. 
pylori-induced 
carcinogenesis

 [77]

/ / / SMO / ↑ ↓ increasing gastric 
cancer risk by H. 
pylori-induced 
overexpression 
of SMO

 [78]

CagA positive High SMO / ↑ ↓ increasing 
malignant 
transformation 
through CagA

 [79]

AMD1 positive High AMD1 SAM486A ↓ ↓ suppressing 
tumor growth 
by inhibiting 
AMD1

 [80]

CRC​ MAT2A positive High MATII / ↑ ↑ activating 
MAT2A in turn

 [74]

MYC positive High ODC / ↑ ↑ activating ODC 
through mutant 
APC

 [81–83]

APC positive High ODC DFMO ↓ ↓ suppressing 
colorectal 
carcinogenesis 
by DFMO

 [83]

/ / / GSK-3β SSAT ↓ ↓ suppressing 
tumor progres-
sion and metas-
tasis

 [75]

K-RAS negative High Caveolin-1 / ↓ ↑ boosting poly-
amine uptake 
via caveolin-1 
phosphorylation

 [84]
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(EDD) mediated by NO [124, 125]. LaRocca et  al., sug-
gested that spermidine has a remarkable anti-aging effect 
on arteries, which is due to its ability to increase the bio-
availability of nitric oxide, reduce oxidative stress, alter 
structural factors, and enhance autophagy [101]. In addi-
tion, Eisenberg et al., concurred that spermidine admin-
istration promoted myocardial autophagy, mitophagy, 
and mitochondrial respiration, while simultaneously 
enhancing the mechanical and elastic properties of car-
diomyocytes in vivo, which was accompanied by elevated 
titin phosphorylation and the suppression of subclini-
cal inflammation [63]. Following the experiments con-
ducted by Eisenberg et  al., numerous researchers have 
endeavored to determine the precise mechanism by 
which spermidine promotes cardiac protection. As evi-
dent from the studies conducted by Yan et  al., increas-
ing autophagy via Spd-mediated targeting of the AMPK/
mTOR signaling pathway improves cardiac dysfunction 
after myocardial infarction [104]. Notably, the aforemen-
tioned conclusions were all derived from in vivo experi-
ments conducted on mice. Holbert et  al. definitively 
highlighted that bovine serum amine oxidase in  vitro 

experimentation can catalyze the oxidation of exogenous 
polyamines and subsequently trigger the release of reac-
tive oxygen species (ROS), leading to the induction of 
autophagy [126]. Therefore, it is challenging to establish 
the particular mechanism of polyamines, particularly 
Spd, in facilitating cardiac protection. In 2020, Wang 
et  al., conducted a study proving that Spd stimulates 
mitochondrial biogenesis [105]. The protective effect of 
Spd on the cardiovascular system has been confirmed in 
quite a few studies [102, 103]. This activation occurred 
as a result of SIRT1-mediated deacetylation of PGC-1α, 
which subsequently led to the alleviation of cardiac aging. 
Multiple other studies have verified the cardioprotective 
properties of spermidine on the cardiovascular system 
[127–129]. Therefore, spermidine is a potentially effective 
nutraceutical intervention for the mitigation of arterial 
aging and the prevention of age-related cardiovascular 
diseases (Fig. 2).

Polyamines in alzheimer’s disease
Alzheimer’s disease (AD) is recognized as the leading 
cause of cognitive dysfunction or dementia in individuals 

Table 1  (continued)

Neoplasm 
type

Target 
gene

Regulation Expression Associated 
protein

Inhibitor Concentration/
Activity

Polyamine 
level

Function Refs

PDAC / / / EP300 Spd ↓ ↑ inhibiting EP300 
via Spd

 [85–87]

MTAP negative Low ODC / ↑ ↑ increasing ODC 
through the loss 
of MTAP

 [88, 89]

PCa / / / MTAP; SSAT MTDIA + BENSpm ↓;↑ ↓ Delaying or pre-
venting PCa 
recurrence

 [90]

PTEN negative Low AdoMetDC / ↑ ↑ promoting 
tumor growth

 [91]

MYC positive Low ODC PGC1-α ↓ ↓ suppressing PCa  [92]

Neuroblas-
toma

MYCN positive High ODC DFMO ↓ ↑ inhibiting 
MYCN-induced 
Neuroblas-
toma initiation 
and progression 
by DFMO

 [93–96]

MYCN positive High SLC3A2 / ↑ ↑ increasing poly-
amine synthesis 
by regulating 
SLC3A2

 [97]

MYC positive High ODC DFMO + AMXT-
1501

↓ ↓ emphasizing 
the necessity 
of polyamines 
in Neuroblas-
toma

 [98]

MYC positive Low ODC / ↓ ↓ inhibiting poly-
amine metabo-
lism by glucose 
deprivation

 [99]
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aged 65 and older and is rapidly emerging as one of the 
most expensive, lethal, and burdensome diseases of the 
twenty-first century [130, 131]. Alzheimer’s disease is 
characterized by the deposition of beta-amyloid (Aβ) 
plaques and subsequent memory loss [132, 133]. The ini-
tial neuronal impairment in Alzheimer’s disease patients 
typically occurs in regions of the brain responsible for 
cognitive processes such as memory, language, and 
thought. This, in turn, results in the emergence of early 
symptoms that typically involve difficulties in these par-
ticular cognitive domains [134, 135].

Considering the close association between the genes 
expressed by glial cells and AD, genetic studies suggest 
that AD research should shift its focus from neurons to 

glial cells and neuroinflammation [136]. Evidence from 
prior studies suggests that Put has the ability to pro-
duce GABA via the enzyme MAO-B (monoamine oxi-
dase B) in astrocytes, which may pose a risk for memory 
impairment [137, 138]. In addition, a recent study dem-
onstrates that the administration of β-amyloid induces 
a noteworthy upregulation of Put and GABA expres-
sion within astrocytes through the activation of spe-
cific intracellular signaling cascades [137]. Arg 1 and 
ODC are enzymes that catalyze the putrescine synthe-
sis process, and inhibiting their activity would lead to 
a significant reduction in the production of putrescine. 
Therefore, inhibition of specific enzymes represents a 
potential therapeutic avenue for ameliorating cognitive 

Table 2  The regulation and Function of polyamine in non-neoplastic diseases

Non-neoplastic 
Diseases

Organism Tissue Associated 
protein/
cytokine

Function Treatment Concentration/
Activity

Effect Ref(s)

Circulatory 
system

mice vessel in gastric 
cancer

ODC biosynthesis 
of polyamine

DFMO ↓ decreasing 
the vessel 
density

 [100]

mice artery ODC biosynthesis 
of polyamine

extracellular 
spermidine

↓ increasing 
NO bioavail-
ability

 [101, 102]

mice heart TNF-α inflammation 
of cardiomyo-
cytes

spermidine ↓ decreasing 
the passive stiff-
ness of cardio-
myocytes

 [63, 103]

rats heart AMPK activation 
of autophagy

/ ↑ promoting 
autophagy 
by Spd-acti-
vated AMPK

 [104]

rats heart SIRT1 biogenesis 
of mitochon-
drion

/ ↑ improving 
mitochondrial 
biogenesis 
by Spd

 [105]

Alzheimer’s 
disease

mice cerebrum Arg 1; ODC biosynthesis 
of polyamine

/ ↑ inducing 
memory loss

 [106, 107]

Asthma mice lung SSAT; SMO catabolism 
of polyamine

MDL72.527 ↓ airway epithelial 
injury

 [108]

mice lung ODC biosynthesis 
of polyamine

/ ↑ airway hyperre-
sponsiveness

 [109]

Obesity mice WAT​ SSAT catabolism 
of polyamine

/ ↑ increasing lipid 
oxidation

 [110–112]

drosophila abdomen SPDSY; SPMSY biosynthesis 
of polyamine

/ / regulating 
triglyceride 
storage

 [113]

mice WAT​ SSAT catabolism 
of polyamine

/ ↑ decreasing fatty 
acid synthesis

 [114]

Pancreatitis rats pancreas SSAT catabolism 
of polyamine

/ ↑ increasing 
trypsinogen 
activation

 [115–117]

Psoriasis mice skin Arg 1 biosynthesis 
of polyamine

nor-NOHA ↓ inhibiting self-
RNA sensation 
within keratino-
cytes

 [118]
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impairments and potentially reducing β-amyloid plaque 
burdens [106, 107].

Polyamines in asthma
Asthma is a respiratory disorder characterized by 
intermittent bronchospasm, which results in dyspnea 
and wheezing [139, 140]. It is characterized by airway 
inflammation, airway hyperresponsiveness, and mucus 
hypersecretion, all of which contribute to variable air-
flow obstruction. The heterogeneous underlying inflam-
matory mechanisms in asthma further add complexity 
to the disease [140]. In this regard, elevated polyamine 
concentrations have been observed in the circulation 
of individuals experiencing asthma attacks, in addition 
to significantly elevated polyamine concentrations in 
bronchoalveolar lavage fluid collected from asthmatic 
patients [109, 141, 142].

The pathologic characteristics of asthma are intimately 
connected to the pathologic reactions and morphologic 
alterations of inflamed and structural cells. Moreover, 
the interaction between polyamines and immune and 
structural cells in the context of asthmatic pathophysiol-
ogy implicates the polyamine pathway as having a ben-
eficial effect on asthmatic responses [143]. SSAT and 
SMOX play significant roles in the process of polyam-
ine catabolism [33, 38]. Knocking-down of the genes of 
these enzymes results in a decrease in polyamine catabo-
lism, ultimately leading to an increase in the concentra-
tion of spermidine and spermine which will result in the 
induction of stress and apoptosis in bronchial epithelial 
cells [108]. In addition, research has shown that upregu-
lation of Arg1 expression results in an increase in poly-
amine synthesis, ultimately leading to the development 
of airway hyperresponsiveness, which may be partially 
attributed to the inhibiting effect of Arg1 overexpression 

Fig. 2  Cardiovascular protective effect of polyamines. (I) Spd effectively reinstates the NO-mediated endothelium-dependent dilation (EDD) 
by augmenting the level of NO bioavailability and abating oxidative stress, therefore reducing blood pressure. (II). Spd increases autophagy flux 
through the AMPK-mTOR signaling pathway, contributing to the stimulation of cardiomyocyte protective autophagy. (III). The structure and function 
of cardiomyocytes can be improved through Titin phosphorylation and mitochondria formation. And Spd can activate mitochondrial biogenesis 
through SIRT1-mediated PGC-1α deacetylation. (IV). Spd effectively suppresses the release of TNF-α by immune cells, consequently lowering levels 
of subclinical chronic inflammation and ultimately preventing the onset of myocardial injury. Created with BioRender.com
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on NO synthesis [109]. Inflammatory cells can release 
a number of inflammatory factors that result in trachea 
spasms and severe asthma attacks [144]. Furthermore, 
it has been discovered that polyamines enhance the dis-
ease-causing capacity of cells involved in inflammatory 
responses, specifically mast cells and granulocytes such 
as eosinophils and neutrophils, by stimulating the libera-
tion of their pro-inflammatory agents or extending their 
lifespan [143, 145, 146]. The underlying mechanisms by 
which polyamine contributes to the onset and progres-
sion of asthma have the potential to facilitate the devel-
opment of therapeutic interventions.

Polyamines in obesity
Obesity constitutes a hazard in relation to a multitude 
of ailments encompassing metabolic morbidities (such 
as type 2 diabetes and hepatic steatosis), cardiovascular 
infirmities (such as coronary heart disease and cerebro-
vascular accidents), neoplastic disorders (such as hepa-
tocellular and renal cell carcinoma), depressive illnesses, 
and other debilitating conditions, all of which have a 
negative effect on the health and lifespan of individuals 
[147–149]. The majority of patients may not benefit from 
traditional and invasive therapeutic approaches [150]. 
Polyamine exerts an extensive role in energy metabolism, 
particularly in regulating lipid metabolism, consequently 
representing a pivotal area of focus in the exploration of 
obesity and its associated ailments.Numerous studies 
have investigated the relationship between polyamines 
and energy metabolism, as well as the effects of varia-
tions in the enzymes involved in polyamine metabolism 
on body mass. The mechanism by which Spm exerts its 
anti-obesity effects was elucidated in the present study 
by Nakatani et  al. [151]. In particular, Spm promotes 
β-oxidation [110–112] and suppresses pre-adipocyte dif-
ferentiation, thereby reducing lipid accumulation [151]. 
The article by Sadasivan et al., demonstrated the signifi-
cant efficacy of intraperitoneal administration of Spm in 
mice fed a high-fat diet, as evidenced by a 24% decrease 
in body weight and a 57% decrease in white adipose tis-
sue (WAT) in comparison to the untreated control group 
[112]. A significant negative association between sper-
midine consumption and obesity was demonstrated by 
the findings of an epidemiological study [152]. Addition-
ally, it was discovered that the administration of spermi-
dine may lead to varying degrees of improvement in the 
weight status of mice whose obesity was induced by a 
high-fat diet [153, 154]. In addition, enzymes involved in 
the metabolism of polyamines regulate the storage site of 
triglycerides [113] and inhibit fatty acid synthesis [114]. 
The discoveries presented herein offer fresh perspectives 
on the pharmacodynamics of polyamine, and its suitabil-
ity as a curative modality for obesity management.

Polyamines in pancreatitis
Acute pancreatitis is a prevalent inflammatory disorder 
of the exocrine gland, the pancreas, which manifests as 
severe abdominal pain and multi-organ dysfunction 
[155]. It can precipitate pancreatic tissue death [156] 
and persistent systemic dysfunction, resulting in a 1–5% 
mortality rate [155]. Due to the severe complications and 
increased mortality associated with pancreatitis, as well 
as the fact that spermidine is found in the highest con-
centration in pancreatic tissue [157] and polyamines are 
involved in the processes of cell proliferation and apopto-
sis [13, 14], it seems plausible that the deficiency of poly-
amines in individuals may serve as a catalyst for the onset 
and progression of pancreatitis.

It is essential to emphasize that SSAT is a key enzyme 
in polyamine catabolism, facilitating the acetylation of 
spermidine and spermine by transferring acetyl groups 
from CoA to produce acetylpolyamines [38]. In the pre-
vious two experiments, zinc administration was used to 
induce pancreatitis in transgenic rats genetically modi-
fied to overexpress the SSAT gene under the control of 
the inducible mouse metallothionein I promoter [115, 
116]. Both of the aforementioned studies came to the 
conclusion that the catabolism of polyamines caused 
pancreatitis. The disagreement between the two groups 
of researchers relates to their divergent perspectives 
regarding the precise mechanism of pancreatitis. The 
former group hypothesized that polyamines function as 
protease inhibitors and demonstrated that SSAT acti-
vated trypsinogen while treatment with polyamine ana-
logs prevented trypsinogen activation [115]. In contrast, 
the latter group hypothesized that H2O2 (a metabolite of 
acetylated polyamine) caused pancreatitis, but they dis-
proved this theory by administering PAOX inhibitors, 
which claimed the inflammatory process was unrelated 
to the production of H2O2 [116]. The administration of 
polyamines has been shown to prevent pancreatitis, 
and the supplementation of polyamine analogs has also 
been observed to alleviate complications associated with 
severe pancreatitis [115–117, 158].

Polyamines on psoriasis
Psoriasis, a persistent and chronic inflammatory con-
dition, has been discovered to exhibit a state of height-
ened arginine metabolism and exaggerated production 
of polyamines [118]. In particular, the absence of protein 
phosphatase 6 (PP6) hinders the maintenance of skin 
homeostasis, and this phenomenon has been shown to 
be associated with increased transcription of ARG1 via 
phosphorylation and activation of the C/EBP-β tran-
scription factor, as well as an increased production of 
polyamines [118]. It is believed that the addition of cati-
onic polyamines, which have a propensity for binding 



Page 10 of 24Xuan et al. Cell Communication and Signaling          (2023) 21:348 

with nucleic acids, accelerates the internalization of self-
RNA by psoriatic keratinocytes and the recognition of 
self-RNA by myeloid dendritic cells [118]. Significantly, 
the improvement of this inflammatory condition has 
been demonstrated through the restoration of the urea 
cycle with the nor-NOHA arginase inhibitor or adminis-
tering DFMO as a treatment, offering a novel therapeutic 
approach for psoriasis [17].

Neoplastic diseases
Ovarian cancer
According to ovarian cancer statistics in the United 
States in 2022, ovarian carcinoma (OC) comprises the 
leading cause of death among reproductive-related 
malignancies, with a prevalence of ~ 20,000 documented 
cases and ~ 13,000 fatalities per year [159]. More than 
70% of OC patients are diagnosed at advanced stages 
(III–IV), placing ovarian cancer as the fifth leading cause 
of cancer-related deaths among women in developed 
nations [160]. Thus, the involvement of polyamines in the 
timely detection and subsequent management of ovarian 
cancer demonstrates great promise and potential.

Elevated levels of putrescine, spermidine, and spermine 
have been found in the urine of individuals with OC [161, 
162]. Correspondingly, they have been utilized as bio-
markers for the early detection of ovarian cancer [163, 
164]. In addition, Fahrmann et  al., presented findings 
of a distinct pattern of polyamines identified in blood 
samples, which holds significant potential for the early 
detection of OC [165]. In addition, this polyamine signa-
ture serves as a valuable complement to CA125 (human 
mucin 16, known as the most optimal marker for the 
early detection of OC) in identifying a greater number 
of ovarian cancer cases that would have been missed by 
CA125 alone [165, 166]. Given the propensity of polyam-
ine to promote the proliferation and invasion of tumors, 
reducing its activity and concentration would be a cru-
cial therapeutic intervention. As an inhibitor of the rate-
limiting enzyme ODC in polyamine biosynthesis, DFMO 
(also known as α-difluoromethylornithine) is reported to 
induce apoptosis by regulating AP-1 signaling through 
JNK phosphorylation [67]. In addition, DFMO has dem-
onstrated the ability to enhance the anticancer poten-
tial of co-administered pharmaceutical agents, such as 
5-azacytidine [68] and poly (ADP-ribose) polymerase 
(PARP) inhibitor [69]. The co-administration of DFMO 
and 5-azacytidine upregulates M1 macrophage, result-
ing in a marked improvement in the survival rate of the 
combined therapeutic modality. In addition, the concom-
itant utilization of DFMO and inhibitors of PARP confers 
not only enhanced susceptibility of cancer cells to PARP 
inhibitors, but also increased cytotoxicity of the cispl-
atin. Moreover, the polyamine analog SBP-101(diethyl 

dihydroxyhomospermine) inhibits tumor cells by 
decreasing the activity of ODC [70]. In a word, the com-
prehensive investigation into the level and metabolism of 
polyamine will bring about new insights in diagnosis and 
treatment of OC.

Hepatocellular carcinoma
Primary hepatic carcinoid tumor, which predominantly 
results from hepatocellular carcinoma (HCC), imposes 
a severe economic and health burden on society, espe-
cially in China and other Asian countries/regions due to 
the high prevalence of chronic hepatitis B virus (HBV) 
infection [167]. HCC is a highly prevalent malignancy 
that ranks as the fourth leading cause of cancer-related 
mortality and the second leading cause of years of life lost 
due to cancer worldwide [168–170]. However, there is a 
lack of consensus regarding the function and mechanism 
of polyamines within the hepatic tissue and adjacent nor-
mal tissues of HCC-afflicted individuals. Thus, further 
investigation is necessary to delve more comprehensively 
in greater depth.

Polyamines exert regulatory control over the progres-
sion of the cell cycle and inhibit polyamine biosynthesis, 
resulting in cell cycle arrest and apoptosis [171], as previ-
ously described. A sudden increase in polyamine biosyn-
thesis could potentially promote the rapid proliferation of 
preneoplastic and neoplastic hepatocytes [71–73]. Dur-
ing the progression of hepatocarcinogenesis in rats, there 
is a gradual increase in the expression of the ODC gene, 
as well as a concomitant elevation in ODC activity and 
polyamine synthesis [172, 173]. A similar upregulation 
of genes involved in polyamine synthesis is also observed 
in human hepatocellular carcinoma [174]. Frau et  al., 
supported that SAM, acting as the principal supplier of 
methyl groups and a precursor for the synthesis of poly-
amines, interferes with polyamine synthesis via inhibi-
tion of ODC activity, which is partially dependent on 
the accumulation of 5’-MTA [71]. However, Lauda et al., 
demonstrated that increased expression of MAT2A, 
which encodes for the enzymatic component of MAT 
that catalyzes the formation of SAM [175], leads to more 
SAM for polyamine biosynthesis. The elevation in poly-
amine, specifically putrescine in this instance, resulted in 
a upregulation of mRNA expression levels for MAT2A 
and ODC, consequently augmenting the proliferative 
potential of the neoplastic cell [74]. Strikingly, in mice 
exposed to a potent chemical carcinogen, the administra-
tion of spermidine has been found to inhibit the develop-
ment of HCC [76]. The selective aggregation of truncated 
microtubule-associated protein 1S (MAP1S) in response 
to mitotic arrest results in the disruption of mitochon-
drial function on the mitotic spindle, ultimately leading 
in mitotic cell death [176]. Accordingly, MAP1S has been 
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found to interact with HDAC4 via a designated domain, 
and inhibiting HDAC4 results in increased acetylation 
and enhanced stability of MAP1S [177]. Spermidine 
enhances the acetylation and stability of MAP1S while 
also inducing autophagy flux via the depletion of cyto-
solic HDAC4, thereby reducing the association between 
MAP1S and HDAC4 [76]. Thus, the characterization of 
the autophagic flux induced by MAPS1 in mitigating 
liver cancer in murine models is likely to provide a novel 
strategy for harnessing MAP1S-triggered autophagic flux 
for the prevention, delay, or treatment of HCC [76]. In 
addition, Wang et al. discovered that the β-catenin path-
way, which facilitated HCC cells growth and metastasis, 
can be inhibited through the upregulation of SSAT. This 
upregulation was strongly associated with a decrease in 
polyamines, leading to the inhibition of β-catenin trans-
location into the nucleus [75].

Gastric cancer
According to current statistics, gastric cancer (GC) 
stands as the fifth most prevalent form of cancer world-
wide and the fourth primary mortality-inducing neo-
plasm [178, 179]. Significant regional disparities exist in 
the prevalence of GC, with notable occurrences in East 
Asian countries such as Japan and Northern Europe 
[179]. In addition, there is growing concern regarding the 
escalating incidence of GC among those under 50 years 
old [180]. Prior studies have established a link between 
polyamine metabolism and the infection of gastric epi-
thelial cells, as well as the increased risk of GC mediated 
by Helicobacter pylori (Hp).

Spermine Oxidase (SMOX) is a crucial enzyme in the 
metabolism of polyamines in the gastrointestinal tract 
due to its efficient regulation of spermidine and spermine 
concentration, which is necessary for maintaining proper 
physiological function [181]. Numerous studies have 
elucidated that SMOX can trigger the occurrence of GC 
by instigating DNA damage [78, 182, 183]. The precise 
mechanism underlying DNA damage caused by SMOX 
in Hp-associated gastric cancer requires further elucida-
tion in scholarly literature. The activation of the β-catenin 
oncogenic signaling pathway in gastric epithelial cells 
stimulated by Hp is facilitated by the mediator SMOX, as 
reported by Sierra et al. [77]. As indicated in 2011, there 
is also the opinion that the pathogenesis of Hp-induced 
gastric carcinogenesis is associated with the oncoprotein 
cytotoxin-associated gene A (CagA) of microbiological 
origin [79]. AMD1, also known as S-adenosylmethionine 
decarboxylase (AdoMetDC), is one of the key enzymes of 
polyamine biosynthesis that has a tumorigenic effect on 
human gastric cancer and affects patient prognosis [80]. 
In conclusion, it is evident that polyamines play a com-
plex and sophisticated regulatory role in the occurrence 

and mechanism of Hp-induced GC. The investigation of 
the regulatory pathway of polyamines in the pathogen-
esis of gastric cancer and the search for novel polyamine 
inhibitors have the potential to provide a ray of hope for 
patients afflicted with this malignancy.

Colorectal cancer
In the United States, colorectal cancer (CRC) is the sec-
ond leading cause of cancer-related deaths and the third 
most prevalent malignancy worldwide [184]. Notably, 
approximately a quarter of individuals diagnosed with 
CRC exhibit synchronous liver metastases, and between 
50 and 75% of patients experience liver metastases within 
a three-year timeframe following initial colon surgery 
[185]. Despite some advancements in early detection and 
the use of modern surgical techniques in conjunction 
with radiotherapy and chemotherapy, the prognosis for 
CRC patients remains dismal to this day [186]. Therefore, 
it is crucial to identify the putative molecular mecha-
nisms that drive the progression and metastasis of CRC. 
The WNT signaling pathway has been identified as an 
ODC gene regulator [81]. The WNT signaling pathway, 
when activated, upregulates MYC [82], which acts as a 
transcriptional activator of ODC [187]. While the WNT 
cascade is normally suppressed in adult intestinal tissues, 
it can be disrupted by mutations. In particular, the APC 
tumor suppressor gene, a key component of the WNT 
cascade, has been identified as the cause of familial ade-
nomatous polyposis (FAP) [188]. Over 80% of sporadic 
colorectal cancers are also attributable to APC mutations 
[189]. These mutations and dysregulated WNT signal-
ing ultimately lead to an increase in MYC activity, ODC 
expression, and polyamine pools [83]. K-RAS’s mutations 
are deemed to exert a central influence in both the initial 
stages of malignant progression of colorectal cells and the 
advanced metastatic ailment [190]. Rial et  al., observed 
that mutant K-RAS upregulates ODC transcription and 
downregulates SSAT transcription, leading to an increase 
in polyamine biosynthesis and a decrease in polyamine 
catabolism (Fig.  3) [83]. Moreover, polyamines can be 
internalized by cells via the caveolin-mediated endocyto-
sis pathway. The activation of K-RAS results in the phos-
phorylation of caveolin-1, which effectively enhances the 
endocytic process and subsequently increases the cel-
lular intake of polyamines [84]. As early as 1986, it has 
reported that patients exhibiting elevated levels of poly-
amines in either their blood or urine tend to present with 
more advanced stages of disease and a poorer prognosis, 
especially the type of CRC [191, 192]. Elevated levels of 
polyamines can facilitate the hypusination of eukaryotic 
initiation factor 5A (eIF5A), thereby triggering the bio-
synthesis of MYC and initiating a positive feedback loop 
that consistently promotes the progression of CRC [193, 
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194]. Disrupting either link within this loop efficiently 
inhibits CRC development.

Pancreatic cancer
Pancreatic cancer (PC) is a malignant neoplasm with 
an extraordinarily high mortality rate. Pancreatic ductal 
adenocarcinoma (PDAC) represents the predominant 
form of PC, comprising over 85% of all diagnosed cases 
[160]. PDAC is a type of cancer that is primarily driven 
by inflammation and is characterized by a substantial 
fibroinflammatory microenvironment [195]. Notably, 
PDAC’s reliance on polyamine confers a number of sur-
vival advantages. First, the elevated concentrations of 
spermidine within the intracellular environment serve as 
a potential reservoir for the biosynthesis and secretion 
of substantial amounts of immunosuppressive spermine 
[196]. Second, it has been observed that spermidine can 
initiate autophagy by inhibiting EP-300 [85], a process 

that may promote the survival of PDAC cells in light of 
their increased metabolic rate, elevated levels of ROS and 
genomic instability [86, 87]. Elevated levels of spermidine 
synthesis are linked to increased expression of ODC. The 
upregulation of ODC is a consequence of the MTAP loss, 
a frequently observed occurrence in PC [88, 89]. Thirdly, 
the secretion of polyamines can furnish a plethora of 
polyamine substrates that can drive desmoplasia through 
extracellular transglutaminase 2 activity [196]. Desmo-
plasia is observable in both primary PDAC tumors and 
their metastatic counterparts [197]. Briefly stating, PDAC 
proliferation, microenvironment, desmoplasia, and 
immune function are just a few of the many functions of 
polyamines that have been elucidated in a large number 
of published articles. Combinatorial therapies that tar-
get polyamine depletion have demonstrated efficacy in 
inhibiting tumor growth and boosting immune response 
[198–200]. SBP-101, a Spm analogue that effectively 

Fig. 3  The regulatory pathways of polyamines in CRC. a Activation of the Wnt signaling pathway results in the inability of β-catenin to undergo 
phosphorylation by GSK-3β, ultimately leading to its accumulation within the cell and subsequent nuclear translocation. Upon entering the nucleus, 
MYC expression is upregulated through binding to TCF/LEF, which will increase the expression of ODC. B Excessive stimulation of the RAS 
signaling pathway results in the stimulation of ODC expression while suppressing the expression of SSAT. c. PI3K/AKT pathway can regulat the Wnt 
and Ras signaling pathways. Elevating the expression of ODC and reducing the expression of SSAT will result in an augmented intracellular pool 
of polyamines. The elevation in polyamine concentration frequently correlates with an unfavorable prognosis. Created with BioRender.com
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reduces the activity of ODC and slightly promotes the 
catabolism of polyamine, has currently been evaluated 
in Phase 2/3 clinical trials for the treatment of PDAC 
(NCT05​254171) [70]. Eventually, this field represents a 
promising avenue for drug discovery, and the successful 
development of polyamine-targeted therapies could have 
far-reaching implications for a variety of human diseases 
that hinge on polyamines for cellular growth and inter-
cellular communication [201, 202].

Prostate cancers
Prostate cancer (PCa) is the most prevalent non-cutane-
ous neoplasm affecting the male population on a global 
scale, with an expected incidence of approximately 1.6 
million cases and 366,000 deaths per year [203]. Despite 
advances in therapies targeting the androgen axis, 
the emergence of castration-resistant prostate cancer 
(CRPC) among patients is unavoidable [204]. Therefore, 
there continues to be an urgent need for more effective 
PCa treatments.

Luminal epithelial cells of the prostate gland exude 
amounts of acetylated polyamines into the prostatic 
lumen, rendering them vulnerable to disruptions in asso-
ciated metabolic pathways [90]. Affronti et. al., have dem-
onstrated that the rapid rate of flux through polyamine 
biosynthesis in PCa can be utilized in three distinct ways 
[90]. First, models of both androgen-stimulated and cas-
tration-recurrent PCa have revealed that dietary folate 
depletion is an efficacious means of treatment [205, 206]. 
Secondly, androgen-sensitive models have shown that the 
inhibition of the methionine salvage pathway is an effec-
tive approach [207]. The current investigation has estab-
lished that a combination of methionine salvage pathway 
inhibition and activation of polyamine catabolism is syn-
ergistic and highly effective in treating both androgen-
sensitive and androgen-independent models of PCa [90]. 
In addition, a study demonstrates that PGC1-α is a vital 
regulator in the modulation of PCa cell aggressiveness 
and that the depletion of PGC1-αinduces a dependence 
of prostate cancer cells on the polyamine pathway, which 
promotes metastasis [92]. PGC1-αreduces the expression 
of MYC and ODC, thereby significantly decreasing intra-
cellular polyamine levels. In other words, PGC1-α effec-
tively suppresses the metastatic properties of prostate 
cancer cells by downregulating the polyamine biosyn-
thesis pathway. However, Li et al. have reported that the 
exogenous addition of Spm can impede the proliferation 
of CRPC [208]. Thus, further investigations are necessary 
to elucidate the exact function and specific molecular 
mechanisms underlying the influence of polyamine con-
centration on the growth and proliferation of prostate 
cancer cells.

Neuroblastoma
Neuroblastoma is a common childhood tumor that origi-
nates in the peripheral nervous system. The amplification 
of the MYCN proto-oncogene has a strong correlation 
with advanced disease and is the genetic characteristic 
most consistently associated with ineffective treatment 
[209, 210]. The oncogene ODC1, which encodes the 
rate-limiting enzyme in polyamine synthesis and serves 
as a compelling target [211], is a compelling mediator of 
MYC effects [187]. Due to the dysregulation of MYC, the 
activity of ODC is typically upregulated in cancer, result-
ing in an increase in polyamine levels that promote the 
rapid proliferation of tumor cells [99]. The administration 
of DFMO, a selective inhibitor of ODC, has been shown 
to be an effective strategy for the inhibition of both the 
occurrence and progression of MYC-associated Neuro-
blastoma [93–96, 98]. Currently, DFMO has progressed 
to the Phase 2 stage of clinical trials conducted in neu-
roblastoma (NCT02​395666). Furthermore, it has been 
demonstrated that probenecid can exert inhibitory effects 
on the renal clearance of DFMO [212]. Therefore, Schultz 
et al. also indicated that the addition of probenecid as a 
supplementary medication during the course of neuro-
blastoma therapy enhanced the therapeutic outcome of 
DFMO. In this regard, Michael et al., provided evidence 
that the expansion of polyamines via the broad deregula-
tion of regulatory enzymes, including ODC1, was a defin-
ing characteristic of neuroblastomas exhibiting MYCN 
amplification, and they identified a strong correlation 
between elevated levels of ODC1 and unfavorable clinical 
outcomes in a large patient cohort, including those with-
out MYCN amplification [93]. Furthermore, MYC posi-
tively regulates the transcriptional activation of SLC3A2, 
leading to an increase in cellular uptake of polyamines, 
in addition to its role in upregulating ODC activity [97]. 
However, Lodeserto et  al. argued that when the level of 
polyamine in cancer cells surpassed a certain threshold, 
it triggered the generation of oxidative metabolites which 
ultimately causes cell death [213]. Thus, they elicited cell 
death in neuroblastoma cell lines by elevating the poly-
amine concentration of cancer cells through the utiliza-
tion of nanospermidine.

3. The effect and mechanism of oncogenes 
and signaling pathway on polyamine
Changes in polyamine concentrations may cause DNA 
damage [13], which has a close relationship with onco-
gene dysregulation and the development of cancer. Pol-
yamines are integral components of the downstream 
target and signaling pathways of numerous oncogenes 
[75, 165, 214], and the content and activity of polyamines 
in tumors frequently undergo dramatic alterations [215, 

https://clinicaltrials.gov/study/NCT05254171
https://clinicaltrials.gov/study/NCT02395666
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216]. Consequently, a comprehensive examination of 
the significance of the interaction between polyamines, 
oncogenes, and signaling pathways in the development 
and invasion of tumors would yield novel insights into 
the prevention and treatment of tumors (Fig. 4).

MYC
The MYC gene cluster, which consists of the c-MYC 
(MYCC), MYCN, and MYCL genes, has been inten-
sively studied in cancer and developmental biology [217]. 
MYC activation has been observed in numerous types of 

Fig. 4  Regulation of polyamine by oncogenes and signaling pathways. a The translation product of TP53, known as p53, regulates the expression 
of ODC, a key enzyme in polyamine synthesis. Mutations in the TP53 gene will have a significant impact on the metabolism and function 
of polyamines. The tumor suppressor gene TP53 can be inactivated in four ways: Missense mutation; Truncating mutation; Frameshift mutation; 
Splice mutation. b Activated MYC exerts regulatory effects on several crucial enzymes involved in polyamine metabolism, including ODC, SRM 
and SMS. Genetic aberrations, transcriptional regulation, and protein instability can activate MYC. Increasing phospho-serine 62 (P-S62)-MYC 
and decreasing phospho-threonine 58 (P-T58)-MYC stabilize MYC protein. c. RAS-RAF-MEK-ERK signaling pathway upregulates the expression 
of ODC and downregulates the expression of SSAT. d PI3K-mTORC1 signaling pathway increases the expression of dcAdoMet, thus regulating 
the biosynthesis of polyamine. Created with BioRender.com
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cancer, which results from genetic mutations, transcrip-
tional regulation, and protein stabilization.

The first indication of direct interaction between poly-
amine metabolism and oncogene was the demonstration 
that the MYC oncogene targeted the transcription of 
ornithine decarboxylase (ODC) [187]. The stimulation of 
growth, which results in the elevated expression of MYC, 
induces an increase in ODC1 mRNA, ODC protein, and 
ODC activity, thereby supplying the cells with the poly-
amines required for proliferation [187, 218]. Further-
more, Forshell et  al. observed in their research that the 
stimulation of MYC directly led to the induction of SRM 
[219]. They also demonstrated that the chemical preven-
tion of B-cell lymphoma via the suppression of SRM rep-
resented a promising therapeutic strategy. In addition, 
the expression of MYC may potentially influence the 
concentration of Spm through the direct stimulation of 
SMS [220]. Thus, the MYC signaling pathway is deemed 
as being among the principal culprits responsible for the 
dysregulation of polyamine metabolism in cancer [19]. 
As MYC family members are frequently amplified or 
overexpressed in cancer, the regulation of polyamine bio-
synthesis by MYC family genes emerges as a significant 
contributory factor in various cancer types, such as mye-
loproliferative neoplasms (MPNs) [221, 222], neuroblas-
toma [93, 223], CRC [224] and breast cancers [225, 226].

TP53
The TP53 gene is responsible for encoding the essential 
tumor suppressor protein p53, which is necessary for the 
maintenance of normal cellular growth and the preven-
tion of tumorigenesis [227]. The p53 inhibits the expres-
sion of key enzymes involved in the urea cycle, resulting 
in a decrease in the overall rate of urea synthesis and the 
accumulation of excess ammonia [228]. The excessive 
accumulation of ammonia can induce a notable decrease 
in the expression levels of ODC mRNA [229], the rate-
limiting factor in polyamine biosynthesis. As a result, the 
concentration of polyamines within the cell decreases. 
Moreover, spermine has the ability to induce autophagy 
by stimulating p53 [230], contributing to the suppression 
of tumorigenesis. Given the vital role polyamines play in 
cell proliferation and survival [13, 14], p53 can potentially 
exert anticancer effects by regulating the urea cycle and 
suppressing polyamine synthesis [228, 229]. Unfortu-
nately, TP53 mutations are common in the vast major-
ity of human cancers, resulting in impaired anti-tumor 
activity of the p53 protein and the protein’s endowment 
with oncogenic properties [231, 232].

PI3K‑mTOR complex 1 (mTORC1) signaling pathway
A fundamental signaling molecule that integrates meta-
bolic and growth pathways is the mechanistic target of 

rapamycin (mTOR) [233, 234], an evolutionarily con-
served serine/threonine kinase classified as a member 
of the phosphoinositide 3-kinase-related kinase (PI3K) 
family [235]. The central function of mTOR in cellular 
proliferation has been ascribed to mTORC1 [236], which, 
upon activation stimulates protein and lipid synthe-
sis while inhibiting autophagy and lysosome formation 
[235]. In part, these responses are triggered by the phos-
phorylation of mTORC1 substrates, such as ribosomal 
S6 kinase 1 (S6K1), eukaryotic translation initiation fac-
tor 4E (eIF4E)-binding proteins 1 and 2 (4EBP1/2), and 
p70S6K1 [236, 237].

Akinyele et  al., have confirmed that the modulation 
of polyamine levels results in significant changes in the 
phosphorylation levels of 4EBP1 and p70S6K, thereby 
affecting translation initiation in breast cancer cells, 
and that the knockdown of the mTOR gene inhibits cell 
proliferation while simultaneously causing a decrease 
in putrescine and spermidine content [214]. In addi-
tion, it has been shown that the PI3K-mTOR complex 
1 (mTORC1) signaling pathway is associated with poly-
amine metabolism in PCa via the induction of AMD1 
expression [91, 238, 239]. Current studies demon-
strate that mTORC1 is required for the upregulation of 
AdoMetDC activity and levels of dcAdoMet, and the 
suppression of mTOR results in a significant decrease in 
AdoMetDC activity and intracellular polyamine levels 
[19, 91]. Initiation of polyamine catabolism also induces 
a shift in the positioning of mTOR in glioma cells, which 
has a negative effect on mTOR-related protein synthesis 
and ultimately leads to apoptosis [240].

RAS‑RAF‑MEK‑ERK signaling pathway
The RAS/RAF/MEK/ERK signal transduction pathway 
is essential for cellular communication both within and 
between cells, regulating fundamental cellular processes 
such as growth, survival, differentiation, and oncogenesis 
[241]. As a substrate of RAS, ODC is composed of four dis-
tinct splice variants, each of which contains unique intronic 
sequences. Notably, all splice variants can be translated by 
means of IRES (internal ribosome entry site) mechanisms 
[242]. When the RAS signaling pathway is suppressed in 
non-cancerous cells, the IRES activity of ornithine decar-
boxylase (ODC) is reduced; however, in cells that have 
undergone RAS transformation, there is a noticeable rise in 
the activity of ODC IRES, leading to heightened levels of 
ODC activity [243]. Notably, RAS is highly prone to muta-
tions in various types of human cancers, resulting in ODC 
activity [242]. Activated KRAS substantially enhances the 
uptake of polyamines, thereby altering the localization of 
the urokinase-type plasminogen activator receptor (uPAR) 
ligand and resulting in the stimulation of SRC [243]. When 
stimulated, the SRC enzyme catalyzes the addition of 
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phosphate groups onto caveolin-1, an inhibitor of caveo-
lar endocytosis [84], which has been shown to be associ-
ated with increased polyamine uptake in CRC cells [84]. 
Moreover, the impact of KRAS on the inhibition of SSAT 
has been proven through its disruption of the peroxisome 
proliferator-activated receptor-γ (PPARγ) mediated trans-
activation of SAT1. This interference enables transformed 
cells to maintain enhanced polyamine levels [19, 244].

Summary
Our work focuses primarily on summarizing the func-
tion and mechanism of polyamines in maintaining health 
and contributing to disease. A brief summary of the origin 
and metabolism of polyamine is also provided. Ultimately, 
the manuscript describes the influence of oncogenes and 
signaling pathways on polyamine metabolism in a variety 
of cancer types via enzyme modulation. We hope that this 
review will provide some insights for the further elucida-
tion and empirical study of polyamines.
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