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Abstract. Consistent forest loss estimates are important to

understand the role of forest loss and deforestation in the

global carbon cycle, for biodiversity studies, and to esti-

mate the mitigation potential of reducing deforestation. To

date, most studies have relied on optical satellite data and

new efforts have greatly improved our quantitative knowl-

edge on forest dynamics. However, most of these studies

yield results for only a relatively short time period or are

limited to certain countries. We have quantified large-scale

forest loss over a 21-year period (1990–2010) in the tropi-

cal biomes of South America using remotely sensed vegeta-

tion optical depth (VOD). This passive microwave satellite-

based indicator of vegetation water content and vegetation

density has a much coarser spatial resolution than opti-

cal data but its temporal resolution is higher and VOD is

not impacted by aerosols and cloud cover. We used the

merged VOD product of the Advanced Microwave Scan-

ning Radiometer (AMSR-E) and Special Sensor Microwave

Imager (SSM/I) observations, and developed a change de-

tection algorithm to quantify spatial and temporal varia-

tions in forest loss dynamics. Our results compared reason-

ably well with the newly developed Landsat-based Global

Forest Change (GFC) maps, available for the 2001 on-

wards period (r2
= 0.90 when comparing annual country-

level estimates). This allowed us to convert our identified

changes in VOD to forest loss area and compute these from

1990 onwards. We also compared these calibrated results to

PRODES (r2
= 0.60 when comparing annual state-level esti-

mates). We found that South American forest exhibited sub-

stantial interannual variability without a clear trend during

the 1990s, but increased from 2000 until 2004. After 2004,

forest loss decreased again, except for two smaller peaks in

2007 and 2010. For a large part, these trends were driven

by changes in Brazil, which was responsible for 56 % of the

total South American forest loss area over our study period

according to our results. One of the key findings of our study

is that while forest loss decreased in Brazil after 2005, in-

creases in other countries partly offset this trend suggesting

that South American forest loss as a whole decreased much

less than that in Brazil.

1 Introduction

There are large uncertainties in the spatial and temporal pat-

terns of forest loss and associated fluxes of carbon in the trop-

ical ecosystems (Grainger, 2008; Hansen et al., 2010; Malhi,

2010; Pan et al., 2011). Forest loss can be either natural,

for example due to wind-throw or natural fires, or anthro-

pogenic, usually labelled deforestation. Deforestation carbon

emissions are a significant but declining fraction of total an-

thropogenic CO2 emissions (van der Werf et al., 2009). In

Amazonia, tropical deforestation was the main source of car-

bon emissions (Morton et al., 2008), at least during their

2003 to 2007 study period. More than half of the total for-

est carbon is stored in tropical intact forests, of which more

than 50 % is stored in living biomass, about a third in the

soil, with the remaining carbon being stored in dead wood

and litter (Pan et al., 2011). In South America, deforestation

is mainly caused by the expansion of agriculture and the area
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used for cattle ranging (FAO, 2006; Fearnside, 2005; Geist

and Lambin, 2002), and the continent is responsible for al-

most half of the tropical deforestation emissions (Harris et

al., 2012; Pan et al., 2011). Over the last 30 years soybean

production has expanded rapidly in Amazonia, partly driven

by improved yield-increasing and labour-saving technologies

(Grau et al., 2005; Naylor et al., 2005).

Historically, the widely used data sets for forest area

changes and timber harvesting in the 1980s and 1990s are

the forest resource assessments (FRAs), as reported by coun-

tries to the United Nations Food and Agriculture Organiza-

tion (UN FAO) (FAO, 2006), but which are known to suffer

from issues regarding consistency (Grainger, 2008). Satel-

lite observations overcome some of the issues found in ear-

lier FAO data sets, because they systematically monitor in

space and time. Over the last three decades several satellite-

based deforestation data sets have been developed. Landsat

satellite imagery is the longest operative option for monitor-

ing vegetation. From 1972 through January 1999 the Landsat

Multispectral Scanner (MSS) provided continuous data at a

relatively high spatial resolution of 90 m. For 1982 onwards

the Landsat (Enhanced) Thematic Mapper ((E)TM) provides

vegetation cover at an even higher spatial resolution of 30 m,

with a 16-day revisit time. However, the effective temporal

resolution is much lower because of issues related to cloud

cover, which often persists not only in the wet season but

also during the dry season between June and November in the

Amazon basin south of the Equator (Costa and Foley, 1998).

Therefore, these observations are mostly used in annual or

multi-year analyses, but there is a need for alternative non-

optical data techniques to provide time series on a monthly or

higher temporal resolution (Asner, 2001). Other widely used

satellite data sets for vegetation are the Normalized Differ-

ence Vegetation Index (NDVI), often derived from the Ad-

vanced Very High Resolution Radiometer (AVHRR). NDVI

is sensitive to canopy greenness (Anyamba and Tucker, 2005;

Tucker et al., 2005; Zhu et al., 2013). This data set has a

higher temporal, but coarser spatial resolution than Landsat,

and is also sensitive to aerosols and cloud cover. Other vege-

tation data sets that can capture vegetation dynamics are for

example the observations based on long-wavelength radar

backscatter (Joshi et al., 2015), where deforestation, forest

degradation and the follow-up vegetation cover could be cap-

tured, and those based on observations from the SeaWinds

Ku-band scatterometer (Frolking et al., 2012), which have

been shown to capture gross forest loss in the Tropics. Also

lidar data can be used to estimate forest biomass, and can thus

capture vegetation dynamics (Mitchard et al., 2012). Data

availability for radar and lidar data sets is usually from 1998

onwards.

Over the past years, the number of data sets quanti-

fying vegetation dynamics, carbon stocks, and other rele-

vant vegetation quantities on both the global and regional

scales has thus increased substantially, often using Landsat

and AVHRR data but also other data sources including the

Moderate-resolution Imaging Spectroradiometer (MODIS,

launched in 1999 on board of Terra and in 2002 on Aqua),

Medium Resolution Imaging Spectrometer (MERIS, 2002–

2012), and Satellite Pour l’Observation de la Terre Vege-

tation Program (SPOT VGT, from 1986 onboard different

satellites) (Achard et al., 2014; Baccini et al., 2012; Broich

et al., 2011; Ernst et al., 2013; Eva et al., 2012; Frolking et

al., 2012; Jones et al., 2011; de Jong et al., 2013; Kim et al.,

2015; Koh et al., 2011; Mayaux et al., 1998; Morton et al.,

2005; Potapov et al., 2012; Saatchi et al., 2011; Verbesselt et

al., 2012; Verhegghen et al., 2012; Wasige et al., 2012).

One of the regions most closely monitored is the Brazil-

ian Legal Amazon, where the Brazilian National Institute

for Space Research (INPE) developed the Program for De-

forestation Assessment in the Brazilian Legal Amazon with

Satellite Imagery (PRODES). PRODES estimates annual de-

forestation since 1988 based on a multi-data approach mostly

based on Landsat data but also the China–Brazil Earth Re-

source Satellite (CBERS-2B) and UK-DCM2 from the Dis-

aster Monitoring Constellation International Imaging (DM-

Cii) (Shimabukuro et al., 1998). Other efforts include the re-

cently published global maps of global forest gain and loss

for the 2001–2012 period also using Landsat data (Hansen et

al., 2013).

In addition to the previously mentioned data sets mostly

based on visible and infrared wavelengths, passive mi-

crowave observations can also be used to characterize veg-

etation dynamics. Vegetation optical depth (VOD) is a vege-

tation attenuation parameter in the microwave domain. This

parameter was first described by Kirdiashev et al. (1979) in a

zero-order radiative transfer model for vegetation canopies.

VOD is primarily sensitive to the vegetation water con-

tent and also captures information about vegetation structure

(Jackson and Schmugge, 1991; Kerr and Njoku, 1990; Kir-

diashev et al., 1979).

The longer wavelengths of passive microwave enables sen-

sitivity of VOD not only to the leafy part, but also to woody

parts of vegetation (Andela et al., 2013). Therefore VOD

yields information about both the photosynthetic and non-

photosynthetic parts of aboveground vegetation, based on the

water content (Jones et al., 2011; Shi et al., 2008). VOD

is shown to be highly correlated with aboveground biomass

(Liu et al., 2011a; Owe et al., 2001) and thus yields infor-

mation about the net forest loss – the balance between de-

creases in forest loss due to deforestation and degradation

and increases in forest extend due to regrowth or thickening.

Furthermore, the advantage of low-frequency (< 20 GHz) mi-

crowave remote sensing is that aerosols and clouds have a

negligible effect on the observations, so even areas with reg-

ular cloud cover are observed frequently, which makes it suit-

able to use for global vegetation monitoring at daily time

steps.

Comparing AVHRR NDVI and passive microwave-based

VOD data sets with a record longer than 20 years, Liu et

al. (2011a) showed that both data sets had similar seasonal
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cycles. VOD however, also showed interannual variations in

regions with water stress, which correspond for a large part

to variations in precipitation. VOD was more sensitive to

changes in woody vegetation compared to NDVI, whereas

NDVI was more sensitive to herbaceous changes (Andela et

al., 2013). This is the result of NDVI being more sensitive

to canopy greenness (Myneni et al., 1995) and VOD being

more sensitive to water content, relatively speaking. Thus,

when forest is converted to large-scale cropland, the canopy

greenness does not necessarily drop, whereas the total wa-

ter content of the aboveground biomass decreases (Liu et al.,

2011a).

The main disadvantage of these low-frequency passive ob-

servations is that a large footprint is needed to yield an ob-

servable signal, making this data set most suitable for large

regional and continental-scale studies. These retrievals there-

fore have a relatively coarse resolution, compared to obser-

vations in the visible and near-infrared parts of the spectrum.

Furthermore, the presence of open water regions affects the

signal. This, in combination with the large footprint of the

gridded product, may lead to underestimation of VOD when

grid cells are close to large open waters (Jones et al., 2011).

VOD is retrieved from several satellite sensors. The observa-

tions retrieved from the Advanced Microwave Scanning Ra-

diometer (AMSR-E) and Special Sensor Microwave Imager

(SSM/I) have been merged to one data set with a spatial res-

olution of 0.25◦, based on Cumulative Distribution Function

(CDF) matching. This merged VOD data set has been used

to study vegetation dynamics in different ecosystems on both

global and regional scales (Andela et al., 2013; Liu et al.,

2012, 2013, 2015; Poulter et al., 2014; Zhou et al., 2014).

Guan et al. (2012) compared QuickScat Ku-band backscat-

ter coefficients (dB) with VOD and NDVI and noted that the

three data sets are comparable, but that dB shows abnormal

high values when more bare soil is present in the pixel.

This paper aims to estimate large-scale forest loss in South

America. We show how the merged VOD product can be

used to estimate forest loss for South America on a country-

level scale, but we also point towards limitations of our ap-

proach and the data set. The main novelty of our approach is

the relatively long (1988–2011) time series based on a con-

sistent data stream. We detail how we translated the VOD

signal to forest loss area by calibrating our results to the

Global Forest Change maps of Hansen et al. (2013), which

are subsequently compared to the Landsat-derived PRODES

data set. We provide a country-level analysis of the newly

derived maps, and zoom in on Brazil to present a state-level

analysis of forest loss over the 1990–2010 period. This time

period is somewhat shorter than the time span of the VOD

data set due to the requirements of the change detection al-

gorithm we developed.

2 Data sets

In this section we describe the data sets we used in our anal-

ysis. First, we give more information on the VOD data set

that is used for our estimation of forest loss (Sect. 2.1), fol-

lowed by describing the two data sets we used for compar-

ison: the Global Forest Change (GFC, Sect. 2.2), which be-

sides being used for comparing the spatio-temporal variabil-

ity is also used to translate our results to area estimates, and

the PRODES data set (Sect. 2.3).

2.1 Vegetation optical depth

Forest loss estimates in this paper are based on VOD, which

is derived from passive microwave remote sensing. Passive

microwave remote sensing differs from active microwave re-

mote sensing (radar) in the sense that radar transmits a long-

wavelength microwave signal through the atmosphere and

then records the amount of energy backscattered, whereas

passive systems record electromagnetic energy that was re-

flected or emitted from the surface of the Earth. VOD was

first introduced by Kirdiashev et al. (1979), and then mod-

ified to be used in the well-known omega-tau model (Mo

et al., 1982). Kirdiashev et al. (1979) already described

the relationship between VOD and vegetation water con-

tent. This relationship was further simplified by Jackson and

Schmugge (1991) where the vegetation water content was

directly related to VOD. The algorithm of the VOD data

set we used here is based on the land parameter retrieval

model (LPRM) (Meesters et al., 2005; Owe et al., 2001,

2008). LPRM is based on a radiative transfer model and

solves simultaneously for soil moisture and VOD. It can be

applied to passive microwave sensors and has been used in

numerous studies (see de Jeu et al., 2014). VOD can be used

to estimate biomass (Liu et al., 2015), and changes therein

correspond to net forest loss (equals the net sum of defor-

estation, degradation, and regrowth) in a 0.25◦ grid cell.

The VOD time series used here is based on merging ob-

servations from two sensors (Liu et al., 2011a). The different

observations come from SSM/I (1988–2007) and AMSR-E

(July 2002–September 2011). These two sensors have differ-

ent specifications regarding wavelength, viewing angle, and

spatial footprint and therefore the absolute values of the re-

trieved VOD values differ. Their relative dynamics, however,

are similar (Liu et al., 2011a). In the merging procedure the

AMSR-E retrievals were used as a reference, because this

product has the higher accuracy due to its relatively low fre-

quency. The cumulative distribution frequency (CDF) match-

ing technique was used for rescaling SSM/I to match AMSR-

E. For the period July 2002 through September 2011 AMSR-

E data are used. Before July 2002, SSM/I observations are

used. Full details on the merging process can be found in Liu

et al. (2011a, b). In this study, we used monthly values, which

were derived from the merged VOD data set (version January

2015) by averaging the daily data fields, and were resampled
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to 0.25◦. VOD observations are dimensionless and their val-

ues range from 0 to 1.5. At a certain point, when VOD val-

ues exceed 0.8, the vegetation becomes so dense that the soil

component in the radiative transfer becomes very small. This

is a gradual process and when VOD values are higher than

0.8 additional checks are necessary before using the values

in vegetation studies. When VOD exceeds 1.2, smaller-scale

variations in the vegetation canopy cannot be captured any-

more (Owe et al., 2001).

2.2 Global Forest Change (GFC)

Hansen et al. (2013) released early 2014 the Global For-

est Change (GFC) project gridded data set, which is prob-

ably the most data-rich and computer-intensive production

of global forest change maps. It contains annual maps over

the time period 2001–2013 at a 30 m resolution. The maps

are based on the 30 m Landsat 7 Enhanced Thematic Mapper

Plus (ETM+) scenes, which were resampled and normalized

to create a gridded data set of cloud-free image observations.

Forest loss is defined in GFC as a change from forest to

non-forest state, comprising deforestation and degradation.

In our analysis, we used the annual forest loss data set and

reprocessed these to the 0.25◦ resolution of our analysis by

summing the 30 m values. While regrowth is detected and re-

ported, we focused on the forest loss data when we used GFC

for comparison; regrowth is thus not included in our analy-

sis of GFC. We did not include the 2000 forest cover map

as mask for forested areas to avoid omitting areas that were

deforested before 2000.

2.3 PRODES deforestation

The Brazilian space agency INPE provides annual gross de-

forestation maps of the Brazilian Legal Amazon within the

Program for Deforestation Assessment in the Brazilian Le-

gal Amazonia (PRODES). INPE defines deforestation as the

gross deforestation rate of the conversion of intact forests

(old growth forest) to a different land use such as agro-

pasture, wood exploration areas, and silviculture. Degrada-

tion and deforestation of regenerating secondary forests are

not monitored by PRODES (INPE, 2013).

Although PRODES covers a relatively long time period,

the method of detection of deforestation has changed over

time. For the time period 1988–2002 the detection of de-

forestation polygons was done by visual interpretation of

Landsat 5 and Landsat 7 scenes. More recently these poly-

gons were manually digitized in the PRODES Analog project

(INPE, 2013). After 2002, PRODES started to use digital

image processing and visual interpretation of Landsat bands

3, 4, and 5, creating and interpreting images of soil, shade,

and vegetation fractions (INPE, 2013; Shimabukuro et al.,

1998). Deforestation is reported once per year in August

based on changes over the previous 12-month period. Defor-

estation within PRODES is defined as clear-cut areas of pri-

80°W 60°W 40°W

40°S

20°S

0°

  
  
  
  
  
  
  
  
  
  
V
O
D
A
V
G
<

0
.6

  
  
  
  
  
  
  
  
  
  
&

 G
L
W
D

  
  
  
  
  
  
  
  
  
  
G
L
W
D

  
  
  
  
  
  
  
  
  
  
V
O
D
A
V
G
>

1
.2

  
  
  
  
  
  
  
  
  
  
V
O
D
A
V
G
<

0
.6

Figure 1. Grid cells that were excluded from our analysis: VOD

avg: grid cells with an average VOD that is either above 1.2 or below

0.6 and thus outside the usable range for our study. GLWD: grid

cells containing more than 50 % open water, which makes the VOD

signal unreliable. Both: grid cells containing more than 50 % open

water and where VOD is outside the usable range.

mary forests exceeding 6.25 ha. Because of this threshold in

detection omitting deforestation smaller than 6.25 ha, INPE

reports that underestimation of deforestation occurs. Further-

more, there may be unobserved areas due to cloud cover in

the Landsat images during the time period of visual interpre-

tation until 2005 (INPE, 2013).

3 Methods

In this section we will first explain the pre-processing of the

data (Sect. 3.1), and then describe the methodology used

to detect forest loss (Sect. 3.2). Finally, we will explain

how the detected changes were converted to forest loss area

(Sect. 3.3)

3.1 Data selection

We aimed to estimate gross forest loss for each 0.25◦ pixel

on an annual basis, which will be explained in Sect. 3.2. We

first filtered the available data to circumvent false detections

related to the use of microwave data. The excluded grid cells

are shown in Fig. 1, and the data exclusion was based on two

criteria:

1. Average VOD values should be below 1.2. This is to

prevent false detection in densely vegetated areas with-

out clear forest loss. The value was based on Owe et

al. (2001), who stated that VOD values larger than 1.2

cannot be used to detect significant vegetation changes.

When vegetation is very dense, the VOD signal be-

comes noisy and potential changes in forest cover can-

not be detected anymore. These pixels are mainly found

Biogeosciences, 13, 609–624, 2016 www.biogeosciences.net/13/609/2016/
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(a)

(b)
Summed

Su
m
m
ed

Figure 2. Example 0.25◦ grid cell in the Brazilian state of Mato Grosso. A: Observed monthly VOD signal and 19-month moving average

(VODMovingAVG). B: Interyearly difference (IYD), whether it met the t test criteria, and annually summed IYD values taking only negative

values into account. For comparison the corresponding GFC values are also given.

in the middle of the Amazon forest, where forest loss

rates are low. In addition, we excluded grid cells where

VOD values were on average below 0.6 to maintain a fo-

cus on forested grid cells. Also when forest loss occurs

in the early stages of the time series, the average VOD

value will not be below this limit of 0.6. This value was

based on the comparison between VOD and MODIS-

based Vegetation Continuous Fields (VCF), which pro-

vides information about the fraction tree cover in a

pixel. Our VOD threshold of 0.6 corresponds to 10 %

tree cover for two-thirds of the pixels, a percentage

sometimes used to define forest (Saatchi et al., 2011;

UNFCCC, 2006) although there is no consensus about

this definition.

2. Large open water should be avoided. Open water affects

microwave emissions and can lead to underestimation

of VOD (Jones et al., 2011). Therefore 0.25◦ grid cells,

which contain more than 50 % open water based on the

Global Lakes and Wetlands Database (GLWD, Lehner

and Döll, 2004), were masked out.

We excluded these grid cells also from GFC and PRODES

data when we compared the results. Therefore, total South

American forest loss over 2001–2010 for GFC reported here

are on average 4 % lower than without the data exclusion,

which also gives an indication of our underestimation due to

masking out of these grid cells.

3.2 Detection of forest loss

Our method is a change detection method based on the prin-

ciple that VOD is directly related to the aboveground living

biomass. Therefore persistent changes in VOD over time are

related to changes in biomass (Liu et al., 2015), for example

when forest is converted to non-forest. Basically we track the

full time series and inspect whether there are sudden drops in

the signal that could be the result of forest loss. Our approach

is based on four steps and explained using an example grid

cell located in the Brazilian state of Mato Grosso, where for-

est loss has been high during the 2000–2005 interval accord-

ing to Hansen et al. (2010).

As a first step we deseasonalized the time series based on a

19-month moving average of VOD (VODMovingAVG, Fig. 2a):

VODMovingAVG(lat, long,m)= Average(VODobs (lat, long, m− 9 :m+ 9)) (1)

where lat, long, m is the latitude (lat), longitude (long) and

month (m). With m− 9 :m+ 9 we refer to all data points 9

months before until 9 months after the specific month. This

approach was preferred over taking out the seasonal cycle

based on the average of all cycles because the seasonal cycle

from forest and non-forest is different. In addition, a longer

moving average masks part of the signal due to droughts

or anomalous wet periods which also influence VOD. We

also tested longer averaging windows (see Sect. 4.5 for de-

tails about the tested windows), but the results were rela-

tively insensitive to this and it decreased the numbers of

years over which we could report. In the example grid cell

VODMovingAVG decreased most strongly during 2002–2005

(Fig. 2a).

To estimate where forest loss potentially occurred and how

this was partitioned over different year(s), in the second step

we calculated the difference of VODMovingAVG with the same

variable 12 months earlier, and label this the inter-yearly-

www.biogeosciences.net/13/609/2016/ Biogeosciences, 13, 609–624, 2016
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difference (IYD, Fig. 2b).

IYD(lat, long,m)= VODMovingAVG(lat, long,m)

−VODMovingAVG(lat, long,m− 12) (2)

When the IYD was below 0, this specific month was de-

tected as a possible moment for forest loss. In the third step,

we tested using a two-sided t test whether IYD was negative

because of forest loss, or because of other reasons, for exam-

ple due to natural interannual variability related to rainfall.

The first group of the t test consisted of all VOD observa-

tions preceding the month where IYD was negative. The sec-

ond group consisted of all other VOD observations from that

moment until the end of the time series. When the p value

was smaller than 0.05, we flagged the grid cell and month as

forest loss (Fig. 2b). These three steps were done for every

grid cell and month from October 1989 until January 2011.

In the fourth and final step, we calculated the sum of the

absolute IYD values, which we will refer to as VODoutliers in

the rest of this paper. This was done from 1990 through 2010

to get annual values (Fig. 2b).

3.3 Conversion to area forest loss

Our method yields the number of VODoutliers per year for

each grid cell, which is related qualitatively to the amount of

forest loss and may thus yield insight into the spatial and tem-

poral dynamics of forest loss. However, to go one step further

and convert our results to the area of forest loss we calibrated

our results to the gross forest loss estimates of GFC. Because

of the large differences in spatial resolution (30 m for GFC

and 0.25◦ for VOD) and because our data set is most use-

ful for large-scale assessments, we calibrated the conversion

of the VODoutliers to area based on a country-level approach

for the overlapping time period (2000–2010). In general, our

method yields net forest loss per grid cell within one year, be-

cause we considered decreases in VOD, which is the net re-

sult of deforestation, forest degradation, and regrowth within

a grid cell per year.

Because VOD and biomass are not linearly related, we

binned VOD into five groups comprising the average VOD

values between 0.6 and 1.2 (0.6–0.7, 0.7–0.8, 0.8–0.9, 0.9–

1.0 and 1.0–1.2). The last bin was larger to arrive at more ro-

bust regression outcomes, because there are fewer grid cells

with VOD above 1.0. For every bin we performed a Pear-

son regression (Pearson performed preferably, compared to

Spearman) forced through the origin, with all VODoutliers per

year related to the same GFC values. Based on the linear re-

gression, we obtained a slope for each VOD bin, which was

used to convert VODoutliers to gross forest loss area per 0.25◦

grid cell.

VODarea forest loss(year)=

5∑
bin=1

VODoutliers( year, bin)× slope (bin) (3)

Figure 3. Forest loss extent based on the VODoutliers for the 5-year

epochs. Grey areas are masked out (Fig. 1).

4 Results

4.1 Spatial extent

The largest feature over our study period is the well-known

arc of deforestation along the Southern edge of the Ama-

zon basin (Fig. 3), showing high forest loss in every period.

Highest forest loss was observed in the Brazilian states Mato

Grosso, Pará, and Maranhão. However, forest loss rates were

not uniform in space and time, Fig. 3 shows that forest loss

rates have fluctuated with lowest forest loss observed during

the 1995–1999 period and highest forest loss observed in the

2000–2004 period.

While forest loss in South America is most often associ-

ated with this arc of deforestation, also other regions expe-

rienced forest loss. One is the region extending from north-

ern Argentina to Bolivia via Paraguay (Fig. 3a, label 1), also

known as the Chaco region, showing high forest loss over

the full time period. Forest loss in this region is expanding

and increasing in intensity over time. Another region extends

from the southeastern part of Paraguay into Brazil along the

border of the Brazilian state Mato Grosso do Sul (Fig. 3a,

label 2). During the 1995–1999 period forest loss was on the

rise here and increased to a maximum during the 2000–2004

period, but decreased during the 2005–2009 epoch.

Finally, the region north of Manaus in the Brazilian states

of Roraima and Amazonas (Fig. 3a, label 3) which partly

consists of wooded savanna, also showed high forest loss.

Here the forest loss increased and expanded during the 1990s
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Table 1. Statistics for the comparison between GFC forest loss (km2 yr−1) and IYD (yr−1). This was done for all grid cells and when

aggregating the grid cells in a country-level analysis. The coefficient of variation (CV in %) was based on the Root Mean Square Error

(RMSE in km2) between both data sets.

VOD bin Based on all grid cells Country level

Slope r2 CV (%) RMSE (km2) r2 CV (%) RMSE (km2)

0.6–0.7 22.4 0.63 804 15.7 0.63 203 666

0.7–0.8 34.8 0.52 163 3.7 0.84 122 586

0.8–0.9 61.7 0.80 147 5.0 0.84 83 567

0.9–1.0 79.4 0.72 134 4.7 0.88 92 684

1.0–1.2 82.7 0.72 253 3.2 0.96 53 366

with the biggest change between the first and second half of

the 1990s. Forest loss stayed relatively stable during the first

half of the 2000s. During the 2005–2009 time window some

areas with intense forest loss in previous periods did not show

up anymore, for example large parts of the arc of deforesta-

tion. Besides these three large regions, several smaller fluctu-

ations occurred. These can mostly be seen in the southeastern

Brazilian state Minas Gerais.

4.2 Calibration with GFC

We converted the summed VODoutliers to a forest loss area

according to Eq. (3), where the slopes varied between the

five different bins (Table 1). The Pearson correlation on a

grid-scale was lowest (r2
= 0.52) for the bin with the aver-

age VOD from 0.6–0.7. The other four bins had correlations

ranging from r2
= 0.63 to 0.80 (Table 1). The largest errors

are found in the regions with dense vegetation and relatively

little forest loss (Figs. 4 and 5). The RMSE on a grid-cell

scale shows that the bin with the lowest average VOD values

(0.6–0.7) has the highest error compared to GFC (Table 1).

On a country scale, the correlations per bin were higher

with the lowest (r2
= 0.63) again for the bin with the low-

est average VOD (0.6–0.7), and the four other bins had

increasing correlations from r2
= 0.84 to 0.96 (Table 1).

The country-level comparison of our VODoutliers with GFC

forest loss had a Pearson linear agreement of r2
= 0.90

(p < 0.001). In Fig. 6 the country-level VOD and GFC for-

est loss area estimates are plotted against each other along

with the 1 : 1 line. Most data points were reasonably close to

this line, although VOD overpredicted forest loss towards the

lower end of the spectrum. Especially in the countries with

the lowest forest loss, including Surinam, Uruguay, French

Guiana, and Guyana, our method yielded more forest loss

than GFC. As a percentage of the available area per coun-

try (Table 2) Uruguay (0.65 %), Surinam (0.22 %), French

Guiana (0.14 %), and Guyana (0.13 %) also showed higher

average forest loss over the overlapping time period based

on VOD. Chile is on the other hand the country where VOD

provides lower forest loss estimates for the overlapping time

period (−0.18 %) compared to GFC. The country with the

Figure 4. Error estimates for each grid cell. The error is defined as

VOD minus GFC forest loss area expressed as a percentage of GFC

for the overlapping time period. White indicates that both data sets

had no forest loss.

Figure 5. Error as a function of mean GFC forest loss, where the

error is defined as VOD minus GFC forest loss area as a percentage

of GFC for the overlapping time period.
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Table 2. Country-level forest loss estimates (total area, contribution to total South American forest loss, contribution of forest loss as a

percentage of the masked-country area, as well as absolute and relative trends) for VOD and GFC for the overlapping time period (2001–

2010). Asterisks indicate the significance, where ∗ = p > 0.25; ∗∗ = p < 0.25; ∗∗∗ = p < 0.05.

Average forest loss 2001–2010 Slope 2001–2010

Absolute (km2 yr−1) Percentage of total Percentage of masked Absolute (km2 yr−2) Relative

forest loss area country area (%) (Absolute/Average)

(Absolute/Total) (%) (%)

VOD GFC VOD GFC VOD GFC VOD GFC VOD GFC

Argentina 4517 3329 11.73 8.29 0.61 0.53 79∗ 358∗∗ 1.68 11.00

Bolivia 3045 2338 8.07 5.89 0.39 0.33 21∗ 166∗∗∗ 0.75 7.84

Brazil 21 926 27 317 55.18 67.81 0.32 0.39 −1385∗∗ −1530∗∗ −6.47 −5.55

Chile 173 408 0.50 1.04 0.12 0.30 35∗∗ 17∗∗∗ 18.62 4.19

Colombia 1899 1861 4.95 4.75 0.20 0.21 −2∗ 65∗∗ −0.13 3.46

Ecuador 450 305 1.24 0.79 0.18 0.15 −63∗∗ 19∗∗ −14.19 6.21

Fr. Guiana 115 17 0.33 0.04 0.16 0.02 13∗∗ 0∗ 11.08 1.18

Guyana 288 50 0.75 0.13 0.16 0.03 −3∗ 0∗ −1.24 −0.61

Peru 1077 1047 3.06 2.69 0.12 0.13 52∗ 84∗∗∗ 4.46 8.24

Paraguay 3030 2556 7.68 6.49 1.05 0.98 115∗ 213∗∗∗ 3.93 8.78

Surinam 276 29 0.75 0.08 0.25 0.03 34∗∗∗ 2∗∗ 12.57 8.69

Uruguay 868 122 2.28 0.31 0.77 0.12 131∗ 18∗∗∗ 13.61 15.43

Venezuela 1322 658 3.46 1.70 0.21 0.11 −148∗∗∗ 20∗ −13.65 3.12

Total 38 987 40 038 100.00 100.00 −1121∗ −568∗ −2.94 −1.42

Linear

Figure 6. Country-level comparison of calibrated VOD and GFC

forest loss based on annual totals (2001–2010). The inset shows the

same data on a linear scale. The red lines depict the 1 : 1 line.

largest relative forest loss is Paraguay for both VOD (1.05 %)

and GFC (0.98 %). In Fig. 7 we show these derived annual

forest loss data from VOD for the full time period, along

with GFC for 2001 through 2010. Obviously the average for-

est loss area for the overlapping period agrees between both

data sets because our approach was tuned to match GFC, but

the spatial and temporal variability can be different, poten-

tially yielding new insights.

The main differences between VOD and GFC are thus that

VOD estimates higher forest loss for the countries Uruguay,

Paraguay and Chile compared to GFC. Furthermore, al-

though VOD and GFC agreed on Brazil being the main driver

of South American forest loss (54 % for VOD and 68 % for

GFC), VOD estimates show higher interannual variability in

this. This is mainly the case in 2001, 2006 and 2009, where

VOD estimated 36–41 % less Brazilian forest loss compared

to GFC (Table 2).

The main feature in the GFC time series is the peak in

2004 (with values of 49 000 and 58 000 km2 yr−1 for GFC

and VOD respectively). VOD also shows this peak, but indi-

cates that the two preceding years were high as well, making

for a broader peak (2002–2004) with comparable values. The

higher VOD values in 2002 and 2003 than GFC were mainly

the result from higher estimated forest loss in Argentina and

Paraguay. From 2005 onwards both data sets agreed on the

decreasing forest loss rates and the interruptions in 2007,

2008, and 2010, although the exact patterns differed.

Following Brazil, the countries with the highest forest loss

were Argentina, Bolivia, Colombia, and Paraguay, each re-

sponsible for 5–8 % of total South American forest loss. The

difference between VOD and GFC in relative contribution of

each country to the total South American forest loss is on av-

erage 2 %, with the maximum difference of 13 % for Brazil

(all absolute differences, see Table 2).
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Figure 7. Country-level time series of annual totals of forest loss according to GFC (2001–2010) and VOD (1990–2010). VOD data are

unreliable for 1991 as a result of the eruption of Mount Pinatubo.

4.3 Country-level trends

4.3.1 2001–2010

To further compare VOD with GFC, we also calculated the

trends per country, based on linear regression, over the 2001–

2010 period in absolute values and as a percentage relative to

their average forest loss over that time period (Table 2). It

should be noted that not all the trends are statistically sig-

nificant, partly because of the large interannual variability

(Fig. 7, Table 2). The overall trend for all South American

forest loss over the overlapping time period is negative for

both data sets with a relative slope of−2.9 and−1.4 % yr−2,

for VOD and GFC respectively, which in absolute terms cor-

responds to−1121 and−568 km2 yr−2. For individual coun-

tries in general both data sets agreed and these trends were

highly variable (Table 2).

4.3.2 1990–2010

Focusing on the full time series, Fig. 7 indicates that totals

of forest loss in South America were not stable or mono-

tonically in- or decreasing. Instead, they appear to be highly

dynamic – at least from a VOD perspective – especially dur-

ing the first few years of our study period (1990–1994). Af-

ter that, forest loss was fluctuating without a clear trend un-

til about 2001, with 1991, 1995 and 1999 being high forest

loss years. After this fluctuating stage a period with relatively

high forest loss started, with 2002–2005 being four consec-

utive years with high forest loss. After 2005 forest loss de-

creased, with interruptions in 2007 and 2010 (Fig. 7).

We calculated the linear trends over the whole time pe-

riod and the two decades 1990–2000 and 2000–2010 sepa-

rately (Table 3). Over 1990–2010 Uruguay showed a clear

relative increasing trend of almost 7 % yr−2 (in absolute

values 60 km2 yr−2). Over the same time period also Ar-

gentina, Chile, Paraguay, and Venezuela showed substantial

in- or decreasing trends larger than 3 % yr−2. When inves-

tigating the decades 1990–2000 and 2000–2010 separately,

additional patterns emerged. During the 1990s Argentina,

Brazil, Colombia, Ecuador, and Uruguay had trends exceed-

ing 5 % yr−2. During the 2000s, Brazil, Ecuador, and Suri-

nam showed trends below −5 % yr−2. The strongest dif-

ferences per decade were found in Brazil (where the for-

est loss trend changed from +9.8 % yr−2 in the 1990s to
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Table 3. Trends in forest loss based on VOD for the whole time period (1990–2010) and the decades 1990–2000 and 2000–2010. Absolute

values indicate the slope based on Pearson linear regression and the relative values are the absolute values relative to the average forest loss

for that country over the full 21-year time period. Asterisks indicate the significance, where ∗ = p > 0.25; ∗∗ = p < 0.25; ∗∗∗ = p < 0.05.

Slope 1990–2010 Slope 1990–2000 Slope 2000–2010 Difference 2000s–1990s

km2 yr−2 % km2 yr−2 % km2 yr−2 % km2 yr−2 %

Argentina 170∗∗∗ 4.58 182∗∗ 5.76 109∗ 3.43 −73 −2.32

Bolivia 49∗∗ 1.92 92∗ 0.75 72∗ 0.59 −20 −0.16

Brazil −59∗ −0.27 1078∗ 9.79 −765∗ −6.95 −1843 −16.74

Chile 9∗∗ 5.23 35∗∗∗ 3.34 23∗∗ 2.21 −12 −1.13

Colombia −36∗ −1.88 −197∗∗ −16.69 10∗ 0.88 208 17.57

Ecuador −12∗ −2.67 −42∗∗ −14.85 −35∗ −12.58 6 2.27

Fr. Guiana 0∗ −0.31 −8∗ −3.76 13∗∗∗ 6.34 21 10.10

Guyana −8∗∗ −2.72 −16∗ −2.12 4∗ 0.50 20 2.61

Peru −23∗ −1.79 −85∗ −4.55 45∗∗ 2.39 130 6.94

Paraguay 98∗∗ 3.99 32∗ 2.35 12∗ 0.86 −21 −1.49

Surinam 5∗ 2.25 −421∗∗ −4.03 31∗∗∗ 5.91 53 9.94

Uruguay 60∗∗∗ 6.99 130∗∗∗ 11.91 −23∗ −2.08 −152 −13.99

Venezuela −50∗∗∗ −3.97 −57∗ −0.30 −80∗∗ −0.42 −23 −0.12

Total 204∗ 0.55 1122∗ 3.01 −584∗ −1.57 −1706 −4.58

−7 % yr−2 in the 2000s) Colombia (−16.7 to 0.88 % yr−2),

and in Uruguay (+11.9 to −2.1 % yr−2) (Table 3). Other

countries with substantial different trends between the two

periods were Argentina 5.8 to 3.4 % yr−2), French Guiana

(−3.8 to 6.3 % yr−2), Peru (−4.6 to 2.4 % yr−2), and Suri-

nam (−4 to 5.9 % yr−2).

4.4 Brazilian state-level comparison with PRODES

In addition to a comparison on the country scale, we also

compared our results for the Brazilian states within the legal

Amazon using the PRODES data set (Fig. 8). PRODES cov-

ers a longer period than GFC, but provides only data for the

Legal Amazon. We do not expect PRODES and our data set

to compare perfectly given that PRODES detects only defor-

estation of primary forests and VOD detects deforestation,

degradation, and regrowth including forest loss of secondary

forest. Nevertheless, the Pearson’s r2 over the full 21-year

time period between these two data sets was 0.60 (p < 0.001)

with a RMSE of 1.6× 103 km2 yr−1 on a state level.

Our results show for the Brazilian states a highly dynamic

pattern with no steadily in- or decreasing trend (Fig. 8). The

most notable difference between both data sets is that VOD

suggest that 1991, 1999, 2002, and 2010 were high forest loss

years, which PRODES did not show. Furthermore, PRODES

showed increasing deforestation from 2002 until a peak in

2004, whereas VOD peaked in 2005. While there are sub-

stantial differences in the temporal variability in the VOD

and PRODES data sets, they do agree on where most for-

est loss occurred: Pará and Mato Grosso. Combined, these

two states were responsible for 69 and 61 %, for PRODES

and VOD respectively, of all Brazilian Legal Amazon de-

forestation (PRODES) and forest loss (VOD). The total av-

Table 4. Average error for the Brazilian states. The error is defined

as the VOD minus GFC forest loss area expressed as a percentage

of GFC forest loss for the overlapping time period per state in the

Legal Amazon.

State (VOD-GFC) /

GFC (mean % yr−1)

Acre 17

Amapá 50

Amazonas 399

Maranhâo 17

Mato Grosso 35

Pará 94

Rondônia 37

Roraima 705

Tocantins 2

erage forest loss in the Legal Amazon from 1990 through

2010 (excluding 1993, which is missing in PRODES) was

16.6× 103 and 15.2× 103 km2 yr−1 for PRODES and VOD

respectively. The states with largest relative differences be-

tween VOD forest loss and PRODES deforestation are Ama-

zonas and Roraima, with 1307 and 499 km2 yr−1 respec-

tively. These regions have little forest loss. The gridded er-

rors for these states for VOD compared with GFC for the

overlapping time period are relatively large: 705 and 399 %

for Amazonas and Roraima respectively (Fig. 4, Table 4).

4.5 Sensitivity Analysis

Our forest loss detection approach was based on several as-

sumptions, and we tested how sensitive our results are to two
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Figure 8. Time series of deforestation (PRODES) and forest loss area (VOD) for the Brazilian states in the Amazon (1990–2010). PRODES

deforestation data are missing for 1993. VOD data are unreliable for 1991 as a result of the eruption of Mount Pinatubo.

main assumptions. First we tested whether the way we used

the t test (i.e. group 1 consists of all data until IYD is neg-

ative and group 2 consists of all data after this moment) is

valid, or whether a fixed or smaller time period would cap-

ture forest loss better. The main reason to test this is that

based on our method, group sizes in the t test are not equal

and group 2 could become so large, that recovery of vege-

tation could have taken place. Therefore we performed the

same detection method, but now with the t test group sizes

fixed to 12, 24, or 36 months. This implies that the detectable

time period changed to 1990–2010, 1991–2009, and 1992–

2008 for the three different group sizes. The results showed

for both the country-level analysis and the state-level anal-

ysis that our original method (without a fixed time period)

yielded the highest correlations with GFC and PRODES. In

general we found that correlation decreased with decreasing

group sizes.

Besides the t test group sizes, we also tested whether ex-

cluding grid cells that were not normally distributed would

make a difference. This was done because a t test requires

normally distributed data. We tested three scenarios.

1. The standard scenario, where we excluded grid cells

where the total average VOD was either larger than 1.2

or below 0.6, and GLWD was larger than 50 %.

2. As scenario 1, but we also excluded grid cells that were

not normally distributed (p = 0.10).

3. As scenario 1, but we also excluded grid cells that were

not normally distributed (p = 0.05)

Excluding these not-normally distributed grid cells in sce-

narios 2 and 3 implied that respectively 25 and 32 % of the

total South American forest loss based on GFC would be

missed. However, the Pearson’s r2 for all three scenarios

stayed at 0.90. Based on these results we assumed that ex-

cluding the not-normally distributed points did not have an

effect on the large-scale country-level analysis and we used

all grid cells based on scenario 1 in our analysis.
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5 Discussion

Our results indicated that the patterns of forest loss changed

over both space and time, although the well-known arc of

deforestation remained the single largest feature in South

America over our full study period. Our results agree with

earlier work showing that forest loss area, and probably also

carbon emissions, declined after peaking in the year 2004

(Food and Agriculture Organization of the United Nations,

2010; Macedo et al., 2012; Malhi et al., 2008; Nepstad et

al., 2009). This decrease in forest loss is observed mainly

because Brazil reduced forest loss through a combination

of conservation policies (law enforcement, expansion of the

governmental protection of the Amazon area, and strict con-

trol of these enforcement by suspension of credit to landown-

ers violating the rules) and because of changes in prices

of agricultural outputs from 2005 onwards (Nepstad et al.,

2009).

While forest loss in the arc of deforestation, the region

around the southern border of Mato Grosso do Sul (Fig. 3a,

label 2) and the region around Manaus (Fig. 3a, label 3),

declined after 2004, in the Gran Chaco region (Fig. 3a, la-

bel 1) it increased over the time, as shown earlier by Chen et

al. (2013). In this region the observed forest loss is in areas

where deciduous broadleaf forest (> 10 m tall) with closed

canopy is converted to shorter (< 10 m) Chacoan woodlands

and agricultural areas (Steininger et al., 2001) and could be

related to soy bean production in this region (Boletta et al.,

2006; Gasparri and Grau, 2009; Zak et al., 2004). This is in

line with our trends and time series (Fig. 7, Table 2) in which

both VOD and GFC show an increasing trend for Argentina

over 2001–2010, whereas a decreasing trend over that time

period occurred in Brazil (Table 2). One explanation could

be the relocation of agricultural hotspots because of the strict

forest law and effective forest law enforcement within Brazil

(Dobrovolski and Rattis, 2014).

The spatial pattern of forest loss in Northern Brazil in

the states of Amazonas and Roraima (Fig. 3, label 3) can

partly be explained by forest fires (Fearnside, 2000); the

peak during the 1995–2000 time period for example could

be caused by the El Niño drought fire events during 1997

and 1998 (Barbosa and Fearnside, 1999). This is supported

by fire emissions estimates for this region derived from the

Global Fire Emissions Database (van der Werf et al., 2010).

During these droughts, man-made fires destroyed millions of

hectares of fragmented and natural forest (Laurance, 1998).

This increase that continued during the 2000s in Amazonas

and Roraima is not seen anymore in the country-level time

series (Fig. 7), because these changes are relatively small

compared to the changes in the arc of deforestation.

In the country-level analysis between VOD and GFC the

latter indicates higher average South American forest loss,

with a difference of 3126 km2 yr−1 or 7.6% yr−1 of average

VOD forest loss. The country with the largest absolute con-

tribution in both data sets is Brazil. In GFC Brazil had a

10 % larger contribution to the South American total forest

loss than in VOD. This could be caused by the difference

in what both GFC and VOD measure. GFC measures gross

forest loss while, due to our methodology, VOD yields net

forest loss. In areas with much regrowth, VOD will therefore

underestimate forest loss compared to GFC. This also has

the consequence that VOD is most reliable in areas where

deforestation is the dominant change. Another reason could

be the different spatial resolutions of the satellite products

that the data sets are based on. GFC is based on Landsat,

which has a spatial resolution of 30 m and can capture many

small-scale forest loss events which will be missed in our

data set based on VOD with its much coarser 0.25◦ resolu-

tion. The difference in spatial resolution could also be the

reason why other countries, such as Chile, show less forest

loss and higher interannual variability in VOD than in GFC,

and why countries with relatively little forest loss, such as

Uruguay, Surinam, French Guiana, and Guyana had more

forest loss based on VOD (Fig. 6). In Uruguay many for-

est plantations occur (Fig. 1 in the Supplement of Achard

et al., 2014) and the result of these plantations is that for-

est loss is often of small scale. This, in combination with the

overestimation of VOD with smaller scale forest loss, could

explain why Uruguay shows so much higher values at the

country level, although additional research is required to bet-

ter understand these differences. While we would in general

favour GFC over VOD during the overlapping periods for the

reasons mentioned above, the temporal resolution of VOD

is superior to any other data set for our study period from

1990–2010. For areas with frequent cloud cover where Land-

sat may have difficulties in acquiring reliable data, VOD may

be in a better position to map forest loss.

We also compared our results for the whole time period

from 1990 through 2010 with PRODES data in a state-level

comparison, and they had a Pearson r2 of 0.66. As mentioned

earlier, to some degree the comparison is one of apples and

oranges because PRODES provides annual estimates of de-

forestation in pixels where no deforestation has occurred be-

fore, whereas the VOD data set will give information about

deforestation and degradation and potentially regrowth. Al-

though forest loss based on VOD includes degradation and

regrowth, PRODES shows on average over the whole time

period 1451 km2 yr−1 (9.6 % yr−1 of the total average le-

gal Amazon forest loss according to VOD) more deforesta-

tion than VOD. This could be caused by the differences in

methodology and spatial resolution of both data sets we men-

tioned before, but also potential inconsistencies in PRODES

could play a role; until 2002 PRODES was based on visual

interpretation, after which PRODES digital was used. On a

state-level VOD overestimates forest loss area in the states of

Amazonas and Roraima, which is mostly related to the rela-

tively low and small-scale forest loss in these states (Fig. 4,

Table 4).

One of the most striking differences between VOD and

PRODES were the years 1991, 1999 and 2010 when VOD
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was much higher than PRODES. The underlying reasons

may not be directly related to forest loss. In 1991 this differ-

ence could be explained by the eruption of Mount Pinatubo,

which had the result that led to increased VOD in the Trop-

ics (Kobayashi and Dye, 2005; Liu et al., 2011a). The peak

in 1999 in VOD was mainly caused by an increase in the

state of Amazonas. During 1999 heavy flooding occurred in

this region (Chen et al., 2010). Since VOD is sensitive to

large waters, the VOD signal could have been influenced by

this event. Finally, the peak in 2010 could be caused by the

drought that hit the Amazon that year (Lewis et al., 2011).

Amazon forests are sensitive to increasing moisture stress

and this could affect aboveground biomass (Phillips et al.,

2009). This supports the findings of Liu et al. (2012), who no-

ticed that VOD responded to interannual variability in precip-

itation for tropical regions. However, this 2010 peak in forest

loss was also detected by GFC. PRODES did not show this

peak, partly because it was related to secondary forest degra-

dation and deforestation, which is not captured by PRODES

(Fanin and van der Werf, 2015). This indicates the need to

better reconcile the differences between these various esti-

mates and not rely on one single data set.

6 Conclusions

We have used a new satellite-based data set using microwave

observations to estimate forest loss in South America for the

1990–2010 period in a consistent manner. Our approach may

have difficulties in capturing small-scale forest loss and may

be impacted on interannual scales by anomalous dry or wet

conditions, and is therefore most useful for regional, long-

term assessments. The long study period of our study enabled

us to improve on characterizing the spatiotemporal dynamic

nature of forest loss. Our results confirm the well-known de-

crease of forest loss in the Brazilian Amazon since 2005,

but indicate no trend over the full time period for our whole

study region. In the regions south of the arc of deforestation,

however, forest loss has increased over the full time period.

This includes Argentina, Bolivia, Chile, and Paraguay where

trends up to 4 % yr−2 were observed over 1990–2010, partly

offsetting the reductions in forest loss in Brazil.

Each of the data sets used here has limitations for map-

ping forest loss including length of time period (GFC), lim-

ited spatial domain, and focus on detecting only pristine

forest loss (PRODES), and coarse resolution and influence

of anomalously dry and wet periods on the detected sig-

nal (VOD). This indicates that better understanding the dif-

ferences between those, and other, forest loss data sets re-

quires more scrutiny and that uncertainties are large when

relying on one single data set. We presented a first attempt to-

wards a better forest loss data set using VOD to better under-

stand forest loss dynamics. The added value of our analysis

is mostly providing new annual forest loss estimates during

the 1990s, a period not covered by GFC, MODIS, and other

satellite data sets. More research is needed to better under-

stand what VOD exactly represents, potentially comparing

with existing lidar-based benchmark data sets (Baccini et al.,

2012; Saatchi et al., 2011).
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