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ABSTRACT 18 

Detailed simulation of anaerobic digestion (AD) requires complex mathematical models 19 

and the optimization of numerous model parameters. By performing a systematic 20 

methodology and identifying parameters with the highest impact on process variables in 21 

a well-established AD model, its applicability was extended to various co-digestion 22 

scenarios. More specifically, the application of the step-by-step methodology led to the 23 

estimation of a general and reduced set of parameters, for the simulation of scenarios 24 

where either manure or wastewater were co-digested with different organic substrates. 25 

Validation of the general parameter set involved the simulation of laboratory-scale data 26 

from three continuous co-digestion experiments, treating mixtures of different organic 27 

residues either at thermophilic or mesophilic conditions. Evaluation of the results 28 

showed that simulations using the general parameter set fitted experimental data quite 29 

well, indicating that it offers a reliable reference point for future simulations of 30 

anaerobic co-digestion scenarios. 31 

KEYWORDS 32 

Anaerobic digestion, mathematical modeling, dynamic simulation, organic residue, 33 

parameter set. 34 

1 Introduction 35 

Throughout the years, various mathematical models simulating both anaerobic 36 

mono- and co-digestion processes have been proposed. From simpler empirical models 37 

(Andrews, 1969; Graef and Andrews, 1974; Hill and Barth, 1977; Kleinstreuer and 38 

Poweigha, 1982), to more complex ones (Angelidaki et al., 1999, 1993; Batstone et al., 39 
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2002b; Costello et al., 1991; Siegrist et al., 1993). All of these models have been used to 40 

describe, to a certain extent, the anaerobic digestion of complex substrates. 41 

The majority of the complex models are specialized in anaerobic digestion of 42 

specific feedstocks such as agricultural energy crops, residues, manures and wastewater 43 

sludge. For instance, the Anaerobic Digestion Model No. 1 or ADM1 (Batstone et al., 44 

2002b) has been the most prominent among scientists working in the field of anaerobic 45 

wastewater treatment processes and more recently in solid waste bioconversion 46 

technologies. Likewise, the model (BioModel) proposed by Angelidaki et al. (1999) 47 

gives a good description of manure-based anaerobic digestion systems. The BioModel 48 

focuses on ammonia inhibition, which is often relevant in manure-based digestions, and 49 

includes a detailed description of pH and temperature, in order to simulate free 50 

ammonia concentrations. Compared to the ADM1, which expresses the concentration of 51 

solid substrate and product components using the indirect Chemical Oxygen Demand 52 

(COD), the BioModel features a more convenient, mass-based unit system. This allows 53 

for the characterization of substrates and products using simpler sampling and 54 

measurement techniques more appropriate for slurries and solid wastes, than COD. 55 

Despite their extensive application, the optimal use of such complex models requires the 56 

adjustment or modification of numerous parameters, depending on the type and nature 57 

of the simulated case (Donoso-Bravo et al., 2011). General experience shows, however, 58 

that the more parameters are contained in a mathematical model, the more difficult it 59 

becomes to verify their values for individual cases. Specifically, the large number of 60 

reactions and chemical species involved in these models gives a better description of the 61 

process, but complicates modeling, and – depending on the system to be “modeled” – 62 

the selection of the model itself to use. This also implies that existing complex models 63 
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are currently incapable of simulating dynamic processes describing diverse 64 

experimental conditions, without a considerable amount of customization. Criteria to 65 

select among models must weigh the trade-off between increased information 66 

requirements and potentially better process description. Moreover, the model refinement 67 

is an iterative procedure where the experimental and expert guided process of adding, 68 

excluding, or modifying assumptions until a model that satisfactorily explains the 69 

experimental data is obtained, is in general a difficult and time-consuming task (Sales-70 

Cruz and Gani, 2006). 71 

Based on aforementioned premises, the objective of this study was to identify a set 72 

of “benchmark” parameters that can be used without previous calibration for specific 73 

digestion cases and which can satisfactorily describe different digestion cases such as 74 

manure- or wastewater-based digestions. This was achieved through the application of a 75 

systematic methodology, which essentially consisted of the following. First, parameter 76 

selection was performed to reduce the parameter space for further treatment, based on a 77 

detailed assessment of complex bioconversion model parameters, found to be reported 78 

in literature with the greatest variations in their values. Second, detailed parameter 79 

sensitivity analysis using Latin Hypercube Sampling (LHS) and the Partial Rank 80 

Correlation Coefficient (PRCC) methods was performed, so that the less sensitive 81 

parameters could be further discriminated/eliminated. Third, numerical optimization 82 

using the Simulated Annealing (SA) method was carried out to estimate optimal 83 

parameter values and statistical information was obtained to determine the feasibility of 84 

the model parameters. Finally, the resulting set of optimized parameters was validated 85 

with three selected experimental case studies, in order to demonstrate improved model 86 

efficiency when using optimized parameters for simulation. 87 
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2 Materials and MethodsModel Description 88 

The core dynamic model (BioModel) of this work was developed by Angelidaki et 89 

al. (1999, 1993) and describes the degradation of complex substrates, along with the co-90 

digestion of different types of organic wastes. In the BioModel, the substrate is 91 

described in terms of its basic organic components’ composition – carbohydrates, lipids 92 

and proteins –, the concentration of intermediates such as volatile fatty acids (VFA) and 93 

long-chain fatty acids (LCFA), and important inorganic components, such as ammonia, 94 

phosphate, cations and anions. The model was upgraded to include the hydrolysis of 95 

lipids so that it includes three enzymatic hydrolytic and eight bacterial steps, and 96 

involves 19 chemical compounds, together with a detailed description of pH and 97 

temperature characteristics. Free ammonia, VFA and LCFA constitute the primary 98 

modulating factors. The BioModel was previously calibrated with experimental co-99 

digestion scenarios utilizing substrates rich in carbohydrates, proteins and lipids 100 

(Angelidaki et al., 1999, 1997). For a detailed description of the model, see Table SI in 101 

the Supplementary material. 102 

2.2 Computational Methods 103 

Initially written in Microsoft Pascal, and later translated to the Delphi Pascal 104 

programming language, the BioModel was recently implemented in MATLAB, 105 

combined with a Microsoft Excel-based data input and output platform. The MATLAB 106 

model is able to simulate the AD process in one anaerobic fermenter, considering the 107 

composition of the inoculum, a primary substrate and up to three optional co-substrates. 108 

Organization and processing of parameters defining substrates, pump and flow rates, 109 

metabolic steps and chemical components, as well as the collection of model output 110 

variables was set up similar to as described by Angelidaki et al. (1999). Integration of 111 
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model equations in time and the selection of a suitable time step for calculations also 112 

resembled the method outlined in this earlier publication, and for the solution of the 113 

model ordinary differential equation system, MATLAB’s ode15s solver was used. 114 

2.3 Systematic methodology 115 

The four steps describing the systematic methodology are depicted in Figure 1 and 116 

are described further in the following subsections. During the analysis, the model 117 

structure was kept as taken from the literature (Angelidaki et al., 1999).  118 

2.3.1 Step 1: Parameter selection 119 

In this step, a preliminary selection of the model parameters was performed based 120 

on the assessment of available literature (Batstone et al., 2002a; Biernacki et al., 2013; 121 

Bułkowska et al., 2015; López and Borzacconi, 2010; Lübken et al., 2007; Nguyen, 122 

2014; Ramirez et al., 2009; Rivera-Salvador et al., 2014; Rosén and Jeppsson, 2006). 123 

Details of this process are explained in the Supplementary material and the complete list 124 

of parameters considered is shown in the Supplementary material, Table SII. As a 125 

systematic reduction of the complete model parameter space and based on the 126 

comparison of studies, biochemical parameters that showed significant variance and are 127 

included in the BioModel were selected for subsequent sensitivity analysis in Step 2. 128 

2.3.2 Step 2: Parameter sensitivity analysis 129 

Following the parameter selection (Step 1), a detailed sensitivity analysis was 130 

performed on the selected parameters, in order to evaluate the magnitude of the 131 

parameters’ individual effect on specific simulation output variables. The output 132 

variables chosen were biogas and methane production, VFA and total ammonium 133 

nitrogen-TAN concentration, pH, commonly reported as good indicators of the AD 134 

process performance (Boe et al., 2010; Labatut and Gooch, 2012). Values of the 135 
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parameters selected in Step 1 were allowed to vary between lower and upper 136 

boundaries, defined based on the literature assessment of Step 1, and sampling of the 137 

available parameter space was performed with the Latin Hypercube Sampling (LHS) 138 

method (McKay, 1992; McKay et al., 1979). LHS was an integral part of the analysis, 139 

in order to make sure that the parameter values were selected from the whole range 140 

available, avoiding bias and maintaining statistical accuracy. Concerning the 141 

distribution of parameter intervals by the LHS method, uniform parameter distribution 142 

was assumed (Manache and Melching, 2007), and the number of parameter sample sets 143 

generated by the method was ten times the number of parameters selected for analysis. 144 

Following the sampling process, simulations were performed with every set of 145 

parameter samples generated previously. The length of the simulated periods 146 

corresponded to the periods where experimental data were available. Furthermore, to 147 

reduce computational demand, four approximately equidistant time points of each case 148 

simulation period were selected and only the output variable values of these time points 149 

were used thereafter. 150 

Sampling-based Partial Rank Correlation Coefficient (PRCC) method (Marino et 151 

al., 2008; Pennington, 2015; Wu et al., 2013; Zi, 2011) was used to perform sensitivity 152 

analysis. As the PRCC method does not account for time as an independent variable, 153 

PRCC analyses for the previously selected, equidistant time points were conducted 154 

separately, in order to produce statistically representative results for complete 155 

simulation periods. Further to that, for PRCC results to be considered relevant, their 156 

probability values (p-values) were required to be smaller than 0.05 (Jackson and 157 

Radunskaya, 2015). For each case study, results of the PRCC analyses for individual 158 

time points were combined, providing an aggregate PRCC value over the entire 159 
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simulated period. Parameters were ranked according to their PRCC values to define the 160 

most sensitive parameters with respect to each model output variable specified in Step 161 

2. Both LHS and the PRCC analyses were carried out using the MATLAB-based 162 

Sampling and Sensitivity Analyses Tool (SaSAT) (Hoare et al., 2008). 163 

2.3.3 Step 3: Parameter estimation 164 

After identification of the most sensitive parameters in Step 2, numerical estimation 165 

of their values was performed for both case studies. Variation in parameter values was 166 

allowed according to lower and upper parameter boundaries specified in Step 2. The 167 

parameters were estimated by minimization of the sum of squares of the differences 168 

between predicted and experimental data sets (see Table SIII of the Supplementary 169 

material). For the optimization task, the Simulated Annealing (SA) method was used 170 

(Ingber, 1996; Kirkpatrick et al., 1983). Implementation of the method was done in 171 

MATLAB, using the simulannealbnd function. Each case study was simulated with 250 172 

iterations (a number used also by López and Borzacconi (2010)), in three consecutive 173 

parameter estimation cycles to support the results of the stochastic optimization method 174 

statistically. At the last step, SA iteration histories, objective function values and 175 

estimated parameter values were collected from all simulations, and were used for 176 

comparing the different scenarios on a quantitative and qualitative basis. 177 

2.3.4 Step 4: Validation and evaluation of the results 178 

First, performance criteria simulations – benchmark simulations – with the original 179 

model parameter values were compared against simulations using the optimized 180 

parameter values identified in Step 3, for both case studies used during parameter 181 

estimation. Second, following the unification of optimized parameter values used in 182 

case study 1 and 2 – by calculating the mathematical average of the respective 183 
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parameter values – validation of optimized parameters was performed with the data of 184 

three lab-scale CSTR experiments. Finally, conclusions were drawn based on the results 185 

of validation. 186 

2.4 Case studies 187 

Below a short overview of the two experimental case studies, which were used 188 

during parameter estimation is provided. For further details on simulated substrate and 189 

process characteristics, see the Supplementary material, Table SIV and SV. 190 

2.4.1 Case study 1 (C1) 191 

Process data was collected from the doctoral dissertation of Schön (2009). In his 192 

work, the author investigated the applicability of ADM1 for the simulation of the AD 193 

process of a demonstration biogas plant, and lab-scale reactors fed only with manure. 194 

The reactor selected for simulation had a volume of 75 L and was operated at 195 

mesophilic conditions (37 °C), with a hydraulic retention time (HRT) of 10 days, in four 196 

consecutive periods. Period 1 (day 0-8): no influent feed, operated as batch with only 197 

inoculum. Period 2 (day 9-15), Period 3 (day 16-22) and Period 4 (day 23-30) fed solely 198 

with manure of varying composition (Supplementary material, Table SIV). Due to the 199 

simplicity of the experimental setup and the availability of relevant data such as input 200 

manure characteristics, biogas production and pH, this case was selected as the initial 201 

case study for analysis. 202 

2.4.2 Case study 2 (C2) 203 

A continuous lab-scale experiment, carried out by Wang et al. (2016) using GTO 204 

and ammonia as co-substrates, was used as the second case study. The reactor had a 205 

working volume of 1.8 L, its inoculum originated from digestion of a mixture of cattle 206 

and pig manure, while cattle manure served as the primary substrate for reactor feeding 207 
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(Supplementary material, Table SV). Reactor temperature was kept at 54 °C throughout 208 

the whole experiment. Feeding took place with an HRT of 15 days, throughout the 209 

experiment. The experiment was divided into two main phases; in the first phase, 210 

manure feed was mixed with rapidly increasing concentrations of GTO, raising the 211 

organic loading rate (OLR) from 3.2 g-VS L-1d-1 to 5 g-VS L-1d-1 in 54 days, which 212 

ended with the collapse of the reactor. Following re-inoculation, the reactor in the 213 

second phase was fed with manure and a gradually increasing concentration of GTO, 214 

reaching from 3.2 to 4 g-VS L-1d-1 added organic material in 91 days, after which OLR 215 

was kept stable. Meanwhile, ammonia addition in this last period increased from 2.1 to 216 

5 g-N L-1, during the course of 157 days. Thus for the simulation, 9 feeding periods 217 

were defined, based on data provided by Wang et al. (not shown).  218 

3 Results and Discussion 219 

Base case simulations for the two case studies (C1 and C2) were generated with the 220 

original BioModel parameters. The response of the model in terms of biogas or methane 221 

productivities, and total VFA concentrations (where applicable) is shown in Figure 2a 222 

(C1) and Figure 2b (C2), and are discussed in the following sections. pH simulations 223 

were included in the Supplementary material (Figure S1 and S2).  224 

Following the steps outlined in the systematic methodology, 44 parameters were 225 

initially selected in Step 1 for sensitivity analysis, with lower and upper boundaries 226 

defined based on the smallest and largest values reported for anaerobic digestion of 227 

complex substrates. The list of initially selected parameters, along with their lower and 228 

upper limits, can be found in the Supplementary material, Table SVI. In Step 2, the 229 

most sensitive parameters were identified for the individual estimation case studies 230 

(average PRCC values shown in Table SVII of the Supplementary material). Out of 44 231 



11 
 

initial parameters tested, model output variables were found to be sensitive to mainly 13 232 

specific parameters. These 13 parameters included: Hydrcarb,in, Hydrprot,in, KsAA, KsHPr, 233 

KsHVal, KsHAc, KiNH3,HAc, pKhAc, KdAA, KdHPr, KdHBut, KdHVal and KdHAc. These 234 

parameters and their quantified effect (PRCC values) on the output variables are shown 235 

in Figure 3. As seen from the graphs, parameter effects show significant variations 236 

depending on the output variables considered, but the trends in PRCC values, and thus 237 

the overall parameter effects on the simulated systems appear similar. Once the most 238 

sensitive parameters were identified, Step 3 was then executed, the results of which are 239 

discussed in the next sections, for each case study respectively. 240 

3.1 Case study 1 (C1) 241 

In the first benchmark simulation, the response of the model with the original set of 242 

parameters is shown in red color in Figure 2a. As observed, model response fitted well 243 

the trend exhibited by experimental data, particularly in Periods 1, 2 and 3 at which 244 

biogas production increased – due to an increase in the organic loading rate – and then 245 

stabilized at a new steady state level. In contrast with the trend exhibited by the 246 

experimental data during Period 4, where biogas production is shown to decrease 247 

throughout the whole period, the model predicted a slight decrease at the beginning and 248 

subsequently reached a new steady state level. This discrepancy is explained by the fact 249 

that during this operational period experimental values were not recorded properly as 250 

pointed out by the authors. Figure 2a shows in green color the response of the model 251 

when the set of optimized parameters (see Table II) was used. Although qualitative 252 

improvement is difficult to assess, improvements in the fitting were obtained. This was 253 

further confirmed by the value of the objective function, which was reduced from 0.498 254 

to 0.356 representing a 28.5% improvement in the model response (Table I). 255 
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Meanwhile, the quality of the pH simulation was unchanged and remained highly 256 

accurate (see Figure S1 in Supplementary material). Compared to the ADM1 simulation 257 

that is shown in Figure 2a in blue color, both the benchmark and optimized simulations 258 

fit experimental data with high accuracy, especially in Period 2, where a rapid increase 259 

in biogas productivity is observed. This indicates that the BioModel appeared to 260 

produce more accurate simulations for anaerobic manure digestion than the ADM1.  261 

3.2 Case study 2 (C2) 262 

In the second benchmark simulation, the response of the model with the original set of 263 

parameters is shown in Figure 2b in red color. First, two operational periods can be 264 

observed with a considerable degree of uncertainty. Operational Period 2 between days 265 

50 and 80, where simulated methane productivity increased more rapidly compared to 266 

the experimental trend, while the simulated total VFA concentrations only reached 267 

about half of the experimental values. Periods 8 and 9 (between day 300 and 420), on 268 

the other hand, showed an opposite trend, with a significant delay in the decrease of 269 

methane productivity and an overestimation in total VFA concentration simulated. The 270 

value of the objective function for the benchmark simulation was found to be 461.289 271 

(see Table I). Figure 2b shows in green the response of the model when the set of 272 

optimized parameters (see Table II) were used. As observed, by using the optimized 273 

parameters a significant improvement (82.5%) was obtained in the objective function 274 

value (see Table I), which is well represented by the satisfactory fit of the total VFA 275 

experimental data – particularly between days 300 and 420 (see Figure 2b, bottom in 276 

green). 277 
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3.3 Parameter set validation 278 

As a result of the parameter optimization process carried out using the two 279 

aforementioned case studies, a general set of estimated parameters was compiled (see 280 

Table II), with parameter boundaries defined based on the lowest and highest optimized 281 

parameter values used by the SA algorithm. For validating the above, generally 282 

applicable set of parameters, three case studies are described below. They were selected 283 

from a wide range of experiments, and covered manure co-digestion with 284 

carbohydrates, manure co-digestion with complex substrates and wastewater co-285 

digestion with complex substrates. 286 

3.3.1 Validation case study 1 (V1) 287 

Experimental material for the first validation case scenario was taken from 288 

Søndergaard et al. (2015), who investigated the effect of meadow grass on biogas 289 

productivity, when added to manure and co-digested in CSTR-type reactors 290 

(Supplementary material, Table SVIII). By gradually increasing the concentration of 291 

meadow grass in the reactor, while using the same manure substrate, the experiment had 292 

four distinct feeding periods. Period 1 (day 0-12): manure feed without additional 293 

meadow grass. Period 2 (day 13-61): manure feed with 12 g L-1 meadow grass. Period 3 294 

(day 62-91): manure feed with 23 g L-1 meadow grass. Period 4 (day 92-107): manure 295 

feed with 34 g L-1 meadow grass. Operation temperature was 54 °C and the working 296 

volume was 3.5 L. 297 

Benchmark simulations can be seen in Figure 4 in red, covering biogas productivity 298 

(top) and total VFA concentrations (bottom). Although the trend in total VFA 299 

concentrations is well captured by the BioModel, the total amounts are higher than the 300 

experimentally measured values. This is inversely true for the biogas productivity 301 
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simulation, where the curve in the second half of Period 2 and in Period 3 and 4 falls 302 

below the zone where experimental points are found. A clear improvement is achieved 303 

in biogas productivity simulation using the general set of optimized parameters (curves 304 

in green), as the curve becomes higher, fitting experimental data quite well in Period 2 305 

and 3 and almost reaching experimental levels in Period 4. This is achieved by 306 

increasing the simulated total VFA concentration slightly, which decreases simulation 307 

accuracy somewhat further in Period 3 and 4. However, it also provides a better 308 

description of the elevated total VFA concentration in the first half of Period 2 and 309 

keeps the overall trend marked by experimental points. 310 

3.3.2 Validation case study 2 (V2) 311 

A complex experiment published by Fitamo et al. (2016a, 2016b) served as source 312 

material for the second validation case study, where the authors were co-digesting 313 

mixed wastewater sludge (MS) with different urban organic wastes (UOW), such as 314 

food waste, grass clippings and garden waste (Supplementary material, Table SIX). 315 

Although the experiment involved two reactors, only the first one was considered in 316 

present study. According to the description of the process, five feeding periods were 317 

defined during the experiment, where the first covered only MS digestion and UOW 318 

were added from Period 2.  Between Period 2 and 5, the volatile solid-based mixture of 319 

the four substrates was kept constant, meaning an approximately 10:68:15:7 mixing 320 

ratio for mixed sludge, food waste, grass clippings and garden waste, respectively. The 321 

distribution of feeding periods is as follows. Period 1 (day 0-75): MS digestion with an 322 

HRT of 30 days. Period 2 (day 76-130): MS and UOW, HRT of 30 days. Period 3 (day 323 

131-164): MS and UOW, HRT of 20 days. Period 4 (day 165-203): MS and UOW, 324 
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HRT of 15 days. Period 5 (day 204-230): MS and UOW, HRT of 10 days. The reactor 325 

working volume was 3 L and operation temperature was 55 °C. 326 

Results of the simulation carried out by Fitamo et al., with default parameters 327 

(Figure 5, curves in blue) indicate that biogas productivity (top) was captured very well, 328 

along with total ammonia concentrations (bottom) outside Period 2. The total VFA 329 

simulation (middle), however, showed higher levels than seen during the experiment. 330 

By running simulations with the general set of optimized parameters (Figure 5, curves 331 

in green), significant improvements were achieved in fitting experimental data. 332 

Moreover, the simulation of total ammonia concentrations was now highly accurate, 333 

including that of Period 2, while the biogas productivity did not change considerably. 334 

Interestingly, simulated total VFA concentrations were lowered, to about half of what 335 

was simulated by Fitamo et al., providing a more accurate fit of experimental data. The 336 

simulated peak in Period 2 is most probably the result of starting the addition of UOW, 337 

where food waste contained high amounts of soluble lipids and carbohydrates. In 338 

contrast, low experimental values might indicate a microorganic community already 339 

well adapted to such concentrations. 340 

3.3.3 Validation case study 3 (V3) 341 

For the simulation of the third validation case study, lipid hydrolysis with first-order 342 

kinetics was included as a structural part of the BioModel and it was set up assuming 343 

inert and soluble fractions as described in Miron et al. (2000). Information about 344 

substrates and process decisions used during the case study were collected from Fezzani 345 

and Cheikh (2008, 2007), who described the co-digestion of olive mill wastewater and 346 

olive mill solid waste at different HRTs and influent concentrations (Supplementary 347 

material, Table SX). The selected experiment used an influent total Chemical Oxygen 348 
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Demand (TCOD) of 80 g-COD L-1 and was divided into three periods. Period 1 (day 0-349 

70): mixed feed with an HRT of 36 days. Period 2 (day 71-120): mixed feed with an 350 

HRT of 24 days. Period 3 (day 121-150): mixed feed with an HRT of 12 days. The 351 

reactor, despite being a tubular type, was completely mixed and had a working volume 352 

of 18 L. Operation temperature was 37 °C. 353 

The response of the model with the original set of parameters is shown in Figure 6 354 

in red. For operation Period 1 and 2, qualitatively the model prediction was good. 355 

However, the model was not able to forecast the third period at which a rapid decrease 356 

in biogas productivity and accumulation of VFA were observed. Another important 357 

aspect to point out is the sharp maximum in biogas productivity that the model predicts 358 

in Period 1 (between days 1-5), which happens early, yet is well in line with the 359 

experimental trend. Using the general set of optimized parameters and together with a 360 

slight increase in biogas productivity in Period 1 and 2 (Figure 6, top), a favorable 361 

increase in total VFA concentrations  was experienced, visible principally in Period 3 362 

(Figure 6, bottom). 363 

When compared to the performance of ADM1 as seen in Figure 6, the BioModel 364 

performed better for the simulation of the initial increase in biogas production, however, 365 

it was not able to simulate the rapid decline in biogas productivity (Figure 6, top) and 366 

the proportional increase in total VFA concentrations (Figure 6, bottom) seen in the last 367 

feeding period. This is most likely because the BioModel does not include a VFA 368 

inhibition term effective on the growth of methanogenic microorganic groups, while 369 

these inhibitory kinetics were added to the ADM1 by Fezzani and Cheikh. Another way 370 

to decrease biogas productivity forecasted by the BioModel would have been the 371 

reduction of the ammonia inhibition term Ki,NH3 (whose value was 0.259 before and 372 
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became 0.275 after optimization), which takes effect on acetoclastic methanogens. 373 

Being the overall most sensitive parameter among the 13 parameters identified in Step 2 374 

of the methodology, this would have improved the fit in Period 3. Nevertheless, this 375 

adjustment would not be feasible, as the authors have stated that ammonia concentration 376 

was kept constant, at a low concentration of around 1.3 g-N L-1, throughout the whole 377 

experiment (Fezzani and Cheikh, 2008). Assuming, however, that the rapid decline in 378 

biogas productivity was due to the inhibition of acetoclastic methanogenic groups by 379 

the accumulation of phenolic compounds (Borja et al., 1997) justifies the performance 380 

of the BioModel, as this factor is not accounted for in the model and thus could not 381 

decrease the productivity in Period 3. 382 

3.4 Evaluation 383 

The evaluation of above three validation case studies showed that by restricting 384 

future parameter estimations to the 13 sensitive parameters shown, significant 385 

improvements can be expected in simulation results. Further to the above, results of the 386 

present study indicate that in order to improve BioModel simulations, especially for 387 

wastewater-based co-digestion, process inhibition dynamics should be redesigned, 388 

considering certain effects that are currently missing in the microorganic growth 389 

equations. This will form part of subsequent studies carried out by the authors. 390 

As a general comment and regarding the data accuracy of the three case studies, 391 

findings of present study and earlier work of Zielesny (2016) indicate that the inclusion 392 

of experimental measurement errors in objective function calculations might be 393 

favorable. Using such information, weighing the importance of experimental data points 394 

would become possible, in order to discount for the effect of outliers and improve the 395 

optimization system to be solved.  396 
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4 Conclusions 397 

The aim of present work was to develop a parameter estimation methodology, for 398 

the improvement of anaerobic digestion modelling. By identifying the sensitive 399 

parameters of a complex bioconversion model (BioModel) and estimating their optimal 400 

values, it was found that the model was able to simulate the most relevant process 401 

variables with improved accuracy. Although the microbial growth expressions in the 402 

BioModel need further improvement for accurately describing certain inhibition 403 

phenomena, using the optimized parameter set was proven to expand its applicability 404 

for simulating both manure- and wastewater-based co-digestion cases, at either 405 

mesophilic or thermophilic conditions. 406 
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Tables 533 

Table I. A comparison of objective function values throughout the two estimation case studies 534 

Experimental 

case 

Objective function value using 

Improvement reference 

parameters 

estimated 

parameters 

C1 0.498 0.356 28.5 % 

C2 461.289 80.950 82.5 % 

  535 
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Table II. Parameter sets defined for the two estimation case scenarios and the generally applicable case, considering the minimum and 536 

maximum values taken by the SA method and the calculated average values a 537 

Parameter 

category 
Parameter 

Initial 

value 

Values taken  in C1  Values taken in C2  General case (C*) 

Min Max Avg  Min Max Avg  Min Max Avg 

Hydrolysis  

yield  

coefficients 

Hydrcarb,in 0.500 0.128 0.328 0.213  0.303 0.432 0.382  0.128 0.432 0.298 

Hydrprot,in 0.200 0.202 0.295 0.256  0.152 0.309 0.228  0.152 0.309 0.242 

Half-saturation 

constants 

[g L-1] 

KsAA 3.500 1.988 2.968 2.481  0.711 3.373 2.175  0.711 3.373 2.328 

KsHPr 0.259 0.035 0.179 0.113  0.074 0.204 0.137  0.035 0.204 0.125 

KsHVal 0.176 0.015 0.111 0.068  0.110 0.193 0.143  0.015 0.193 0.106 

KsHAc 0.120 0.419 0.599 0.527  0.437 0.604 0.546  0.419 0.604 0.537 

Inhibition constant 

[g L-1] 
KiNH3,HAc 0.259 0.224 0.310 0.264  0.233 0.330 0.285  0.224 0.330 0.275 

Higher pH pKhAc 8.5 8.345 9.643 8.893  8.450 9.248 8.759  8.345 9.643 8.826 
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boundary 

Cell death rates 

[d-1] 

KdAA 0.050 0.089 0.117 0.103  0.025 0.154 0.095  0.025 0.154 0.099 

KdHPr 0.050 0.109 0.134 0.119  0.114 0.174 0.144  0.109 0.174 0.132 

KdHBut 0.050 0.040 0.069 0.053  0.019 0.111 0.076  0.019 0.111 0.065 

KdHVal 0.050 0.027 0.115 0.067  0.057 0.170 0.100  0.027 0.170 0.084 

KdHAc 0.050 0.026 0.050 0.041  0.010 0.018 0.013  0.010 0.050 0.027 

 538 

a Where Hydr are the hydrolysis constants; carb,in and prot,in indicate inert carbohydrate and protein substrates; Kssub are the half-539 

saturation constants of substrates; AA indicates soluble proteins; HPr, HBut, HVal and HAc are propionic, butyric, valeric and acetic acid, 540 

respectively; KiNH3.HAc is the ammonia inhibition constant effective on methanogenic microorganisms; pKhAc is the upper pH limit where 541 

the microorganic growth rates are approximately 50% of the uninhibited rate;  Kdsub are the death rates of substrate degrading microorganic 542 

cells. Default and suggested parameter values are shown in bold.  543 
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Figure legends 544 

Figure 1.  Flowsheet representation of the systematic methodology used for analysis. 545 

Figure 2. C1 and C2: Comparison of experimental and simulated biogas productivity, 546 

where BM_ben indicates the BioModel benchmark simulation and BM_opt 547 

indicates the BioModel simulation after the parameter estimation with the 548 

best objective function. ADM1 indicates the ADM1 simulation carried out by 549 

Schön. Dashed vertical lines represent the boundaries between feeding 550 

periods. 551 

Figure 3.  PRCC values of the most sensitive parameters in the two calibration case 552 

scenarios. Each indicator output variable is represented by a different 553 

polygon, and the peaks indicate the effects of respective parameters on the 554 

variable, on a scale of -1 to 1. Abbreviations are as in Table II. 555 

Figure 4. V1: Comparison of experimental and simulated biogas productivity (top) and 556 

total VFA concentrations (bottom), where BM_ben indicates the BioModel 557 

benchmark simulation and BM_opt indicates the BioModel simulation with 558 

optimized parameters. Dashed vertical lines represent the boundaries between 559 

feeding periods. 560 

Figure 5. V2: Comparison of experimental and simulated methane productivity (top), 561 

total VFA concentrations (middle) and total ammonia concentrations 562 

(bottom), where BM_Fit indicates the BioModel simulation with default 563 

parameters (carried out by Fitamo et al.) and BM_opt indicates the BioModel 564 

simulation with optimized parameters. Dashed vertical lines represent the 565 

boundaries between feeding periods. 566 
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Figure 6. V3: Comparison of experimental and simulated biogas productivity (top) and 567 

total VFA concentrations (bottom), where BM_ben indicates the BioModel 568 

benchmark simulation, BM_opt indicates the BioModel simulation with 569 

optimized parameters and ADM1 indicates the ADM1 simulation carried out 570 

by Fezzani & Cheikh. Dashed vertical lines represent the boundaries between 571 

feeding periods. 572 
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