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Abstract 10 

National dietary guidelines are directed at the general population. However, these guidelines may be 11 

perceived as unrealistic by a substantial part of the population, as they differ considerably from 12 

individual consumption patterns and preferences. Personalized dietary recommendations will probably 13 

improve adherence and it has been shown that these recommendations can be derived by mathematical 14 

optimization methods. However, to better account for risks and benefits of specific foods, the 15 

background exposure to nutrients and contaminants needs to be considered as well. This background 16 

exposure may come from other foods and supplements, and also from environmental sources like the 17 

air and the sun. The objective of this study was therefore to analyse the effect of including individual 18 

variation in background exposure when modelling personalized dietary recommendations for fish. We 19 

used a quadratic programming model to generate recommended fish intake accounting for personal 20 

preference by deviating as little as possible from observed individual intake. Model constraints ensure 21 

that the modelled intake meets recommendations for eicosapentaenoic acid (EPA), docosahexaenoic 22 

acid (DHA), and vitamin D without violating tolerable exposure to methyl mercury, dioxins, and 23 

polychlorinated biphenyls (dl-PCBs). Several background exposures were analysed for 3,016 Danish 24 

adults, whose food intakes and body weights were reported in a national dietary survey. We found that 25 

the lower nutrient constraints were critical for the largest part of the study population, and that a total of 26 

55% should be advised to increase their fish intake. The modelled fish intake recommendations were 27 

particularly sensitive to the vitamin D background exposure.  28 
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Introduction 29 

Dietary guidelines are developed to inform the population about healthy food consumption. They are 30 

based on evidence that is obtained for a representative selection of population and directed at the 31 

population as a whole. However, it can be argued that personalized dietary recommendations should be 32 

available because of the variation within the population. Personalized recommendations may be 33 

perceived as more relevant and have stronger motivational effects because these can account for an 34 

individual’s preferences, requirements, needs, beliefs, etc. (1).  35 

Previous diet optimization studies have explored personalized guidelines by modelling personalized 36 

intake recommendations that deviate as little as possible from observed intake levels, while fulfilling 37 

several health-related criteria on nutrient and contaminant recommendations, energy intake and/or 38 

intake weight (2–4). The arguments for minimizing the deviation from individual intake were that such 39 

recommendations will be more relevant, realistic, and achievable for consumers, and therefore a higher 40 

compliance with the recommendation could be expected.  41 

An example of a national dietary guideline is the recommendation for fish intake in Denmark, which 42 

states that the Danes should eat 350 g of fish per week, of which 200 g should be fatty fish (5). This 43 

guideline is directed at the healthy population over 3 years of age. As a step towards developing 44 

personalized guidelines, we previously modelled individual fish intake recommendations for eight 45 

species of fish for 3,016 Danes, using mathematical optimization methods and found that 74% of the 46 

study population should be advised to increase their fish consumption (2). The modelled intakes fulfilled 47 

constraints on eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), vitamin D, methyl mercury, 48 

dioxins, and dioxin-like polychlorinated biphenyls (dl-PCBs), as these nutrients and contaminants are 49 

the main contributors of beneficial and adverse health effects from fish consumption (6). 50 

Most nutrients and contaminants present in a specific food (such as fish) can be provided by 51 

background exposure as well, which can impact the critical intake levels of the food product 52 

considered. When optimizing the intake of one specific food, the background exposure to nutrients and 53 

contaminants that can be found in the food product in question needs to be considered. While previous 54 

studies (2, 7) estimated average background exposure values for the whole population, background 55 

exposures will also vary between individuals and may therefore have a different impact for different 56 

consumers. The objective of this study was to analyse the effect of including individual variation in 57 
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background exposure when modelling personalized dietary recommendations for fish. It is primarily a 58 

methodological study, in which fish consumption is used to demonstrate the potential of the method.  59 

Methods 60 

Data 61 

Observed intakes and body weights  62 

Observed individual food intake (7-day estimated records) along with self-reported body weight from 63 

the Danish national survey of diet and physical activity (DANSDA) (unpublished data, April 2011– 64 

August/September 2013) were used. Individuals aged 18-75 y (1,552 women and 1,464 men; total of 65 

3,016 individuals) defined our study population. In total, 433 foods were reported and 17 were defined 66 

as fish in this study. Raw, smoked, canned, and marinated fish were included. The fish consumed 67 

corresponded to 11 species of fish (see Table 1), denoting the elements of the optimization 68 

variable (d=11). The observed fish intake was not normally distributed, according to the Lilliefors test 69 

at significance level 5%. Species with fat content up to 5% were classified as lean fish (six species) and 70 

species with fat content higher than 5% were classified as fatty fish (five species) (6). See the observed 71 

intake amounts of lean and fatty fish in Figure 1a. Fish roe and fish liver were not included. The 72 

average daily intake was converted to average weekly intake by multiplying the average daily intake by 73 

seven. As eel is considered critically endangered, marketing and consumption of European eel is 74 

debated, and therefore it was excluded from this study. Individual body weights are required in the 75 

model since the limit values for the contaminants are body-weight dependent. There were 47 missing 76 

recorded values (for 16 men and 31 women) for body weight in DANSDA. For these individuals, the 77 

gender-specific average body weight of an individual in the study population was used: 69.7 kg for 78 

women and 84.4 kg for men.  79 

Concentrations 80 

Nutrient concentration data (EPA, DHA and vitamin D) were from the Danish food composition 81 

database (8) and contaminant concentration data (mercury and dioxins + dl-PCBs) were from two 82 

different chemical contaminant reports (9, 10). The weighted averages of the nutrient and contaminant 83 

concentrations for the 11 species were calculated with weights equal to the reported intake amounts of 84 

the categories raw, smoked, canned, and marinated. The weighted averages of the two contaminant 85 
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reports were calculated with the number of samples per report serving as weights. To get 86 

concentrations for methyl mercury, we used the same conservative approach as used by EFSA (11): 87 

100% of mercury in fish was considered as methyl mercury, and methyl mercury comprised 80% of 88 

total mercury in seafood other than fish. For three lean fish species (European flounder, garfish, and 89 

saithe), data on one or more nutrient or contaminant were missing. European flounder is in the same 90 

family as plaice and therefore the data on plaice was used when a value was missing (methyl mercury). 91 

Saithe is in the same family as cod, and data on cod was used accordingly (EPA + DHA and 92 

dioxins + dl-PCBs). Garfish is not in the same family as any of the other species included in this study. 93 

For garfish, the average value of the lean species was used when a value was missing (methyl 94 

mercury). The concentrations used in this study are presented in Table 2. 95 

Limit values 96 

The recommended daily intake for EPA + DHA (12) and vitamin D (13), and the tolerable weekly intake 97 

per body weight for methyl mercury (11) and dioxins + dl-PCBs (14) were used as limit values (Table 3). 98 

These recommendations are for total intake and exposure, and therefore background intake and 99 

exposure had to be subtracted from them in the model. Daily values were converted to weekly values 100 

by multiplying daily recommendations by seven, and per-body-weight values were converted to 101 

individual values by multiplication with individual body weight. For vitamin D, there is an upper level 102 

of 100 µg/d (15), but it was neglected because the contaminant constraints were limiting the fish intake 103 

amount long before this value could be reached. 104 

Model overview 105 

The quadratic programming model (2) is expressed as: 106 

       minimize   
𝐱𝐱

‖𝐱𝐱 − 𝐱𝐱𝐨𝐨𝐨𝐨𝐨𝐨‖2     (a)        

subject to      𝐁𝐁𝐱𝐱 ≥ 𝐨𝐨       (b) 

                         𝐑𝐑𝐱𝐱 ≤ 𝐫𝐫        (c) 

                            𝐱𝐱 ≥ 𝟎𝟎       (d) 

where the vector 𝐱𝐱 (d×1) is the optimization variable representing weekly intake amounts of d different 107 

fish species, and the vector 𝐱𝐱𝐨𝐨𝐨𝐨𝐨𝐨 (d×1) is a constant vector describing the corresponding observed intake 108 
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amounts of an individual. The optimization variable denotes 11 species of fish reported in the intake 109 

data (d =11). The objective function (a) of the model is the 𝐿𝐿2-norm of 𝐱𝐱 − 𝐱𝐱𝐨𝐨𝐨𝐨𝐨𝐨: 110 

‖𝐱𝐱 − 𝐱𝐱𝐨𝐨𝐨𝐨𝐨𝐨‖2 =  ��x1 − xobs,1�
2 +  �x2 − xobs,2�

2 + ⋯+ �xn − xobs,d�
2 

The objective function is minimized, hence the sum of the square of the deviations between the 111 

individual observed intake 𝐱𝐱𝐨𝐨𝐨𝐨𝐨𝐨 (from individual intake data) and the optimized (by the model) intake 𝐱𝐱 112 

is minimized. Personal objective functions are thereby defined by the personal intake amounts 113 

xobs,1,  xobs,2, … xobs,d. The objective function can be rewritten to a quadratic function, since 𝐱𝐱 is real-114 

valued: 115 

(x1 − xobs,1)2 + (x2 − xobs,2)2 + ⋯+ (xn − xobs,d)2 

The model constraints ensure that the optimized intake meets weekly lower limits on the nutrients 116 

EPA + DHA and vitamin D (b) without violating weekly upper limits on the contaminants methyl 117 

mercury and dioxins + dl-PCBs (c), and the constraints make sure that no negative intake occurs (d). 118 

The vector 𝐨𝐨 (m×1) describes the weekly lower limits for the nutrient intake amounts due to fish intake 119 

(m=2), and 𝐫𝐫 ( k×1) describes the weekly upper limits for the contaminant intake amounts (k=2). The 120 

matrix 𝐁𝐁 (m×d) describes the mean nutrient concentrations for the different fish species, and 𝐑𝐑 (k×d) 121 

describes the mean contaminant concentrations. The model allows an individual’s non-reported fish 122 

species in her/his output intake. As it may be unlikely that people start choosing fish species they did 123 

not eat before, the model can be modified to only allow reported species by employing equality 124 

constraints in (d) for the non-reported species of the individual. Different background exposure 125 

scenarios correspond to different limit values (vector 𝐨𝐨 and 𝐫𝐫) in the constraints. All vectors 𝐱𝐱 that 126 

satisfy the constraints make up the feasible region of the problem. If there is no combination of fish 127 

species that can meet the constraints, no feasible solution is obtained and the model cannot generate a 128 

recommendation. 129 

Background exposure 130 

Other foods 131 

The background intake of nutrients and exposure to contaminants due to foods other than fish were 132 

potentially supplied by the 416 of the 433 reported foods in the intake data that were not fish (Danish 133 
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national survey of diet and physical (DANSDA 2011–13, unpublished data). The food intake is not 134 

normally distributed, according to the Lilliefors test (α = 5%). Individually reported whole diets, 135 

excluding fish intake, were multiplied with concentrations of the nutrients and contaminants of the 136 

different foods. Hence, the total intake of the different nutrients and contaminants was obtained for 137 

each individual in the study population (Table 4). EPA + DHA could be supplied by 27 of the reported 138 

foods; mainly seafood (shrimp, mussels, fish roe, fish liver, etc.), and a smaller fraction by chicken and 139 

a few additional animal products. The background intake of EPA + DHA was 14% and 12% of the total 140 

average intake for women and men, respectively. For vitamin D, the relative importance of sources 141 

other than fish was higher and the respective numbers were 61% and 63%. Background intake of 142 

vitamin D was potentially supplied by 116 of the reported foods, and the major sources were animal 143 

products including dairy products. For methyl mercury, 11 seafoods were the source of background 144 

exposure. These seafoods contributed to 9% and 6% of the total average dietary exposure for women 145 

and men, respectively. For dioxins + dl-PCBs, 64% and 65% of the total average dietary exposure was 146 

due to background exposure for women and men, respectively. The background exposure to 147 

dioxins + dl-PBCs was potentially supplied by 153 foods and the major sources were animal products 148 

including dairy products, as for vitamin D.  149 

Supplements 150 

Data on individual vitamin D intake from vitamin D supplements and multi-minerals from DANSDA 151 

were used (Table 4). In the study population, 62% of the women and 49% of the men had recorded 152 

intake of supplements containing vitamin D. No data on EPA + DHA supplement intake were available 153 

and therefore only vitamin D supplement intake was included in this study.  154 

Sun and airborne contaminants 155 

Vitamin D can be provided by UVB radiation from the sun that gets synthesized in the skin. In 156 

Denmark (latitude 55°N to 58°N), there is a significant seasonal variation in how much UVB radiation 157 

that reaches the surface of the earth; the highest level is in summer, and the lowest in winter (16, 17). We 158 

calculated (see Appendix) three different scenarios for sun exposure to cover the seasonal variation; 159 

Winter, Mid-season, and Summer. Food consumption is the major source of dioxins, contributing to 160 

more than 90% of the total human exposure (18). We calculated (see Appendix) two different scenarios 161 

for airborne dioxin exposure; baseline (default) and low dioxin (LD). For methyl mercury, fish and 162 

seafood consumption is considered the major source of exposure (11, 19), and the average exposure due 163 
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to air is < 0.04 µg/d (19). Since our assumptions for methyl mercury concentration in food were 164 

conservative, we assumed food as the only source.  165 

Software 166 

The models were implemented using Matlab (R2015b, version 8.6). The package CVX, for specifying 167 

and solving convex programs (20), was used for the optimization.  168 

Background exposure scenarios 169 

To analyse the impact of background exposure, 24 background exposure scenarios were created. First, 170 

six scenarios for the sun and airborne contaminant exposure were defined, combining the Winter, Mid-171 

season, and Summer sun exposure scenario with the baseline and LD airborne dioxin scenarios (see 172 

Table 5a). These six scenarios were run with individual intake of foods other than fish and individual 173 

supplement intake, individual intake of foods other than fish without supplements (by assigning all 174 

individuals zero supplement intake), gender-specific average values for intake of foods other than fish 175 

and gender-specific average supplement intake, and gender-specific average values for intake of foods 176 

other than fish without supplements. Hence, in total, 24 background exposure scenarios were created 177 

and each scenario was given a short name (Table 5b). The Mid-season scenario with individual intake 178 

of foods other than fish and individual supplement intake (Mid-season Ind) is the baseline background 179 

exposure scenario of our study. 180 

Results 181 

Mid-season and individual values 182 

Out of the 3,016 individuals in the study population, there were 24 individuals not obtaining a feasible 183 

solution, i.e., no personalized recommendation could be generated with the Mid-season sun exposure 184 

scenario with and without supplement intake (Mid-season Ind and Mid-Season Ind No Sup) (see 185 

Table 6). Out of these, 22 had a background exposure to dioxins + dl-PCBs that was higher than the 186 

threshold (14 pg TEQ/kg BW/wk). The other two had a background exposure to dioxins + dl-PCBs just 187 

below the threshold, but there was a conflict with the nutrient constraints, so that no fish intake could 188 

fulfil all constraints. The observed intake and the modelled recommendations with the Mid-season Ind 189 

scenario, which is our baseline scenario, are grouped into lean and fatty fish, for the purpose of 190 
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visualization (see Figure 1). The average modelled fish intake recommendations (also grouped into 191 

lean and fatty fish) with the 24 different background exposure scenarios can be seen in 192 

Supplemental Table 1. The suggested changes in fish intake (delta intake), modelled 193 

recommendations minus observed intakes, can be visualized with empirical cumulative distribution 194 

functions. For these functions, the value on the y-axis at any specified value of the delta fish intake is 195 

the fraction of individuals in the study population that should be suggested to make a change less than 196 

or equal to the specified value. Figure 2 shows this for the Mid-season Ind scenario (2 a, c, and d) and 197 

for the Mid-season Ind No Sup scenario (d). Our results suggest that 43% of the 2,992 individuals with 198 

feasible solutions (99% of the study population) should be advised to maintain their current fish 199 

consumption pattern, that 55% should be recommended to increase their total fish intake up to 200 

184 g/wk (24% with more than 100 g/wk), and that only 2.0% should be recommended to decrease 201 

their fish intake (see Figure 2 a). With the Mid-season sun exposure scenario, the difference in the 202 

results generated with and without supplements is small, and so is the difference with individual and 203 

average data (see Supplemental Table 1). Different species dominate the recommended intakes, which 204 

depends on whether the EPA + DHA or the vitamin D constraint is the critical lower constraint. For 205 

example, saithe dominate the lean fish species and trout dominate the fatty fish species when the 206 

vitamin D constraint is critical, whereas garfish and herring dominate when the EPA + DHA constraint 207 

is critical (see Figures 2 c and d). When the model was modified to only allow reported fish intake in 208 

the modelled recommendations, 536 individuals had no feasible solutions and different species 209 

dominated the modelled intakes: tuna, plaice and cod dominate the lean fish species, and mackerel and 210 

salmon dominate the fatty fish species (see Figure 3).   211 

Winter and individual values 212 

The recommended intake modelled with the Winter sun exposure scenario with and without 213 

supplement intake (Winter Ind and Winter Ind No Sup) shows the impact of vitamin D supplements 214 

(see Figure 4). When the supplement intake is excluded, 960 women and 715 men should be 215 

recommended to increase their fish intake a lot more than with the scenario including the observed 216 

supplement intake. With the Winter scenario, one additional woman had no feasible solution as 217 

compared with the Mid-season scenario. Her reported body weight was low (41 kg) and a conflict 218 

between the vitamin D constraint and the dioxins + dl-PCBs constraint (which is body-weight 219 

dependent) occurred with this scenario that has no sun exposure contributing to vitamin D intake. With 220 

the Winter scenario, the same fish species as for the Mid-season scenario dominate, depending on the 221 
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critical lower constraint. However, a larger fraction of the study population has the vitamin D 222 

constraint as the critical lower constraint (see Figure 5). When the Winter Ind scenario is analysed 223 

under the condition that only reported fish intake is allowed in the modelled recommendations, 791 224 

individuals had no feasible solutions and tuna dominate the lean fish species, and herring and salmon 225 

dominate the fatty fish species (see Figure 6). 226 

Winter and average values 227 

The Winter scenarios with average values for intake of other foods and supplements show how average 228 

values can give misleading results (see Figure 7). The modelled recommendations differ greatly 229 

compared with when individual values are used (Winter Av and Winter Av No Sup) (Figure 4). With 230 

average values, all individuals had a feasible solution due to the fact that the 25 individuals with high 231 

background exposure to dioxins + dl-PCBs get a lower value that is compatible with the other 232 

constraints, and the individuals not consuming supplements (592 women and 749 men) get a great 233 

addition to their background intake of vitamin D when the average values for supplements are used.  234 

Summer and average values 235 

The vitamin D intake due to sun exposure in the Summer scenario (15 µg/d) is higher than the 236 

recommended vitamin D intake (10 µg/d). Hence, the vitamin D constraint is already fulfilled, and the 237 

EPA + DHA constraint is the lower critical constraint for all individuals. The Summer scenario is hard 238 

to distinguish from the Mid-season scenario in a figure, and hence not shown. 239 

Low dioxin 240 

With the low dioxin airborne exposure scenarios (LD), two more individuals (one woman and one 241 

man) had feasible solutions compared with when the baseline value for dioxins + dl-PCBS is used. The 242 

majority of the study population should be recommended the same intake with the low dioxin exposure 243 

as with the baseline value, since the number of individuals with high reported fish intake are fewer than 244 

those with lower reported intake (see Figure 1). 245 

Non-fish consumers 246 

In the study population, 12% of the individuals reported no fish intake. With the Winter sun exposure 247 

scenario with individual values (Winter Ind and Winter Ind No Sup), the modelled intake 248 

recommendations located on an imaginary line (see Figure 4) correspond to recommendations for 249 
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individuals with no fish intake. The ratio between lean and fatty fish is 1 to 2.3 for these 250 

recommendations, and the line is orthogonal to the individual critical lower vitamin D constraints. With 251 

the Summer sun exposure scenario (Sun Ind and Sun Ind No Sup), the EPA + DHA constraint is the 252 

critical lower constraint for all individuals, and with this scenario, the ratio between lean and fatty fish 253 

species is 1 to 3.3 for non-fish consumers. 254 

Discussion  255 

To our knowledge, this is the first intake optimization study exploring the effect of individual 256 

background exposure to nutrients and contaminants due to the consumption of other foods and 257 

supplements, as well as sun and airborne contaminant exposure. We showed that individual differences 258 

in background exposure can be included in the analysis and that these differences provide additional 259 

insights and affect the personalized recommendations. The majority of the 3,016 Danes in our study 260 

population had reported a fish intake that was lower than her/his individual model constraints allowed, 261 

and hence the lower nutrient constraints (EPA + DHA and vitamin D) were critical for the largest part 262 

of the study population. The modelled recommendations were specifically sensitive to the vitamin D 263 

background exposure. Comparing the Mid-season scenario (the baseline scenario) with the Winter 264 

scenario, that differ with 7.25 µg/d vitamin D background intake, the individuals not taking vitamin D 265 

supplements should be recommended a much higher fish intake in winter. A few individuals with high 266 

background intake of dioxins + dl-PCBs were affected by a lower dioxin airborne exposure than the 267 

baseline value, but the largest part of the study population was not. The exposure to EPA + DHA and 268 

methyl mercury is mainly due to fish consumption, and therefore the background exposure to these 269 

compounds had little effect. However, as mentioned, EPA + DHA supplements may have been taken, 270 

which we unfortunately had no data on. Such input would have been very important for the individuals 271 

and scenarios where the EPA + DHA constraint dominated, since a higher background intake will 272 

lower the constraint resulting in lower fish intake recommendations. 273 

According to our criteria on fish intake (the model constraints on EPA + DHA, vitamin D, methyl 274 

mercury and dioxins + dl-PCBs), following the recommendation for fish intake in the official Danish 275 

dietary guideline (350 g fish/wk of which 200 g should be fatty fish) is, as expected, healthy and not 276 

harmful. However, the official guideline demands larger changes in consumption than necessary, which 277 

may lead to a lack of compliance. This is concluded using our baseline scenario for background 278 

exposure (Mid-season Ind). This was also concluded in our previous study on individual fish intake 279 
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recommendations (2). In the present study, we show that fewer individuals need to be recommended to 280 

increase their fish intake when individual background exposures are used: 55% of the study population 281 

compared with 74% as concluded in our previous study using the same average background exposures 282 

for all individuals.  283 

When only reported fish species are allowed in the modelled recommendation, larger intake amounts of 284 

fish should be suggested compared with when all species are allowed. Since the reported intake was a 285 

7-day estimated record, and other species of fish may well have been consumed by an individual during 286 

another week, we concluded that the results from the model only allowing reported species in this study 287 

are less relevant. However, if the observed intake data were, for example, individual yearly average 288 

values, the modified model only allowing individual reported fish species may be appropriate for 289 

generating the personalized recommendations, since the intake data would reflect which species an 290 

individual consumes. If data on which fish species an individual could consider consuming and which 291 

species she/he do not wish to consume was available, the results could be further personalized by only 292 

allowing the species she/he wants in the personalized recommendation.  293 

A future application of our model could be to create software that individuals could use and generate 294 

personalized recommendations themselves. The user would be asked by the software to insert how 295 

much she/he currently consumes of some food items, and to select which additional food items she/he 296 

would consider for consumption. By application of our model, the software could then generate a 297 

personalized recommendation that accounts for the individual’s inserted preferences. If the individual 298 

would set too few foods she/he is willing to consume to obtain a feasible solution, the software would 299 

have to ask the individual to select additional foods. 300 

In our previous study (2), all individuals obtained a feasible solution, i.e., a personalized 301 

recommendation could be made. With the inclusion of individual background exposures, 24 individuals 302 

(0.8% of the study population) had unfeasible solutions due to a too high background exposure to 303 

dioxins + dl-PCBs with the Mid-season scenario. It is important to stress that there are other ways to 304 

modify diets to fulfil the requirements on the EPA, DHA, and vitamin D without exceeding the limit 305 

value for methyl mercury and dioxin + dl-PCBs than to only modify fish intake. As mentioned, vitamin 306 

D and dioxin + dl-PCBs, for example, can be provided by several animal products including diary. So, 307 

the 24 individuals without feasible solutions should typically be suggested to eat less of these foods. In 308 

this paper, fish was the only food in focus, foods other than fish were defined as background exposure, 309 

and substitution with other foods was not considered, but the optimization approach can be extended to 310 
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include foods other than fish in the optimization variable; even whole diets can be optimized (3, 4, 21). By 311 

expanding the optimization to several foods and ultimately whole diets, the substitution issue is 312 

resolved. This may require inclusion of several additional constraints on nutrients and contaminants on 313 

top of those mentioned in this fish intake optimization study.  314 

When using average values for the background exposures in this study, all individuals had feasible 315 

solutions with all scenarios. This suggests that individuals at risk of exceeding the upper levels for the 316 

contaminants may not be detected when average background exposures are used. Some individuals 317 

would be recommended a fish intake that would result in too high of an exposure to contaminants 318 

(dioxins + dl-PCBs in this case) when using average background exposures. In general, when the 319 

variation in background exposure from a food compound is large, average values may be misleading. 320 

This is also the case when a nutrient (or contaminant) constraint is critical and hard to reach for several 321 

individuals due to relatively low (or high) background exposure to the compound. This was shown for 322 

the vitamin D background exposure by comparing individual background exposure from foods and 323 

supplements with average values. With the Winter scenario and average values, the model resulted in 324 

much lower recommended intakes than appropriate, especially for individuals not taking supplements. 325 

In previous fish intake optimization studies, it has been concluded that when a substantial amount of 326 

vitamin D is required to come from fish, there is a conflict between vitamin D and contaminants (2, 7). In 327 

these studies, all individuals were assigned the same average background exposures. In the present 328 

study, we concluded that there is a conflict only for 25 individuals when sun exposure and supplements 329 

are excluded, which is the extreme case, and 24 individuals when including sun exposure and 330 

supplements. Hence, this study shows that the conflict between vitamin D and contaminants is not as 331 

critical as concluded before. When a high level of vitamin D is required to come from fish, the 332 

recommended fish intake should be high, but still within the feasible region for the majority of the 333 

study population. It is however clear that vitamin D exposure from the sun greatly affects the modelled 334 

intake. From this, it could be argued that all individuals in Denmark should eat supplements to reach 335 

the vitamin D recommendation, whereby only the EPA + DHA constraint would be relevant for the fish 336 

consumption. This would result in lower and hence more achievable fish intake recommendations. 337 

Obviously, if we would have been able to include the intake of fish oil supplements as well, fish intake 338 

recommendations based on EPA + DHA requirements would have reduced even more.  339 

This approach can be used to estimate personalized intake recommendations for other foods and/or 340 

other populations. When considering using average values for background exposure, we suggest 341 
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starting by performing a rough scenario analysis with different average values to investigate the 342 

sensitivity of the results on the background exposure, and to obtain an indication of how many 343 

individuals can be at risk of exceeding the tolerable intake levels for the contaminants. After this, a 344 

conscious decision on whether or not to include individual background exposure data can be made. 345 

This applies to all background exposures, but especially to supplements because the nutrient 346 

concentration(s) in supplements are usually high (and often cover the recommended intake(s) alone), 347 

and individuals either take or not take supplements. If individual supplement intake data are used, the 348 

modelled recommendations may be grouped into two clusters of individuals, with and without reported 349 

supplement intake, which is important to stress when communicating the modelled recommendations. 350 

Lastly, this method builds upon the assumption that personalized dietary recommendations deviating as 351 

little as possible from current consumption have a higher compliance than national guidelines, which 352 

has not been confirmed. How individuals respond to personalized recommendations is an area that 353 

requires additional research. 354 
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Table 1. Observed fish intake. Reported fish intake data from DANSDA. Study population: 3,016 individuals aged 18-75 y. 

 Women,  n = 1,552 Men, n = 1,464 

nr  Mean,  

g/wk 

SD,  

g/wk 

Median,  

g/wk 

IQR, 

g/wk 

  nr Mean,  

g/wk 

SD,  

g/wk 

Median,  

g/wk 

IQR,  

g/wk 

Total fish intake 1,397 188 186 144 228 1,272 235 252 165 311 

Lean fish (≤ 5% fat) 1,108 80 107 36 120 1,039 102 150 45 159 

Cod (raw) 591 25 56 0.0 22 545 30 69 0.0 26 

European plaice (raw) 408 25 66 0.0 9.7 387 34 101 0.0 9.7 

Tuna (canned) 753 21 49 0.0 15 698 25 64 0.0 19 

European flounder (raw) 233 7.6 24 0.0 0.0 242 11 30 0.0 0.0 

Garfish (raw) 13 0.93 11 0.0 0.0 7 1.4 27 0.0 0.0 

Saithe (raw) 20 0.41 7.2 0.0 0.0 19 0.45 5.3 0.0 0.0 

Fatty fish (> 5% fat) 1,231 108 138 58 161 1,089 134 191 50 197 
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DANSDA, Danish national survey of diet and physical activity; nr, number of individuals with reported intake, wk, week; IQR, interquartile 
range; smo, smoked; mar, marinated  
  

Salmon (raw, smo) 924 41 68 8.6 54 728 42 77 0.0 45 

Herring (mar, raw, smo) 860 31 63 1.4 38 783 49 103 0.72 54 

Mackerel (can, smo, raw) 947 23 40 9.2 33 832 31 57 9.2 37 

Trout (raw) 355 11 24 0.0 0.0 270 11 29 0.0 0.0 

Greenland halibut (raw, smo) 487 1.4 5.7 0.0 1.5 374 1.8 12 0.0 0.63 
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Table 2. Nutrient and contaminant concentrations for fish (8–10). 

 EPA + DHA, 

mg/g 

Vitamin D, 

µg/g 

Methyl mercury, 

µg/g 

Dioxins + dl-PCBs, 

pg TEQ/g 

Lean fish (≤ 5% fat)  

Cod (raw) 2.2 0.010 0.045 0.13 

European plaice (raw) 6.0 0.011 0.035 0.31 

Tuna (canned) 2.0 0.027 0.151 0.05 

European flounder (raw) 4.2 0.0080 0.035† 0.65 

Garfish (raw) 7.8 0.052 0.056‡ 0.81 

Saithe (raw) 2.2§ 0.079 0.014 0.13§ 

Fatty fish (> 5% fat)  

Salmon (raw, smo) 16 0.079 0.011 0.81 

Herring (mar, raw, smo) 18 0.095 0.037 1.2 

Mackerel (can, smo, raw) 26 0.044 0.28 1.0 

Trout, rainbow (raw) 14 0.16 0.023 0.38 

Greenland halibut (smo, raw) 8.0 0.048 0.057 0.56 
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EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; dl-PCBs, dioxin-like polychlorinated biphenyls; TEQ, toxic equivalency; smo, 
smoked; mar, marinated   

† Plaice data 

‡ Average value of lean fish species data 

§ Cod data 



24 
 

 
Table 3. Recommendations for nutrients and contaminants. 

 Value Reference 

Recommended daily intake  

EPA + DHA, mg/d  250 (12) 

Vitamin D, µg/d 10 (13) 

Tolerable weekly intake  

Methyl mercury, µg/kg BW/wk 1.3 (11) 

Dioxins + dl-PCBs, pg TEQ/kg BW/wk 14 (14) 

 

EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; d, day; BW, body weight; wk, week; dl-PCBs, dioxin-like polychlorinated 

biphenyls 
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Table 4. Nutrient and contaminant exposure. Reported whole diet data and supplement intake data from DANSDA multiplied with 

concentration data for nutrients and contaminants (8–10). Study population: 3,016 individuals aged 18-75 y. 

 Women, n = 1,552 Men, n = 1,464 

Mean SD Median IQR Mean SD Median IQR 

Exposure from all foods  

EPA + DHA, mg/wk 2.8 3.2 1.8 3.5 3.4 4.1 1.9 4.3 

Vitamin D, µg/wk 28 20 23 19 35 24 29 23 

Methyl mercury, µg/wk 11 13 8.2 13 15 18 8.9 17 

Dioxins + dl-PCBs, pg TEQ/wk 326 306 265 220 428 303 346 275 

Exposure from foods other than fish  

EPA + DHA, mg/wk  0.38 0.92 0.23 0.34 0.41 0.84 0.25 0.41 

Vitamin D, µg/wk 17 14 15 9.0 22 16 19 12 

Methyl mercury, µg/wk 0.96 2.1 0.095 1.0 0.90 2.1 0.054 0.78 

Dioxins + dl-PCBs, pg TEQ/wk 210 251 178 98 277 198 246 135 

Exposure from supplements  
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Vitamin D, µg/wk 65 96 33 93 39 66 0.0 70 

 
DANSDA, Danish national survey of diet and physical activity; SD, standard deviation; IQR, interquartile range; EPA, eicosapentaenoic 
acid; DHA, docosahexaenoic acid; wk, week; dl-PCBs, dioxin-like polychlorinated biphenyls; TEQ, toxic equivalency 
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Table 5a. Background exposure scenarios. 

 Winter Mid-season  Summer Winter LD Mid-season LD Summer LD 

Sun: Vitamin D, µg/d  0 7.25 14.5 0 7.25 14.5 

Airborne: Dioxins + dl-PCB, pg 

TEQ/wk 

42 42 42 20 20 20 

LD, low dioxin; d, day; dl-PCBs, dioxin-like polychlorinated biphenyls; TEQ, toxic equivalency; wk, week 
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Table 5b. Background exposure scenarios. 

 Winter Mid-Season  Summer Winter LD Mid-season LD Summer LD 

Individual intake other foods 

Individual intake supplements 

Winter Ind 

 

Mid-season Ind† 

 

Summer Ind Winter LD 

Ind 

Mid-Season LD Ind Summer LD Ind 

Individual intake other foods 

No supplements 

Winter Ind 

No Sup 

Mid-season Ind 

No Sup 

Summer Ind 

No Sup 

Winter LD 

Ind 

No Sup 

Mid-Season LD Ind 

No Sup 

Summer LD Ind 

No Sup 

Average intake other foods 

Average intake supplements 

Winter Av 

 

Mid-season Av 

 

Summer Av Winter LD Av Mid-Season LD Av Summer LD Av 

Average intake other foods 

No supplements 

Winter Av 

No Sup 

Mid-season Av 

No Sup 

Summer Av 

No Sup 

Winter LD Av 

No Sup 

Mid-Season LD Av 

No Sup 

Summer LD Av 

No Sup 

LD, low dioxin 

† Baseline scenario 
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Table 6. Number of individuals out of 3,016 with no feasible solution for the different background exposure scenarios. 

 

Women/men 

Winter Mid-season  Summer Winter LD Mid-season LD Summer LD 

Individual intake other foods 

Individual intake supplements 

15/10 

384/407† 

14/10 

251/285† 

14/10 13/9 13/9 13/9 

Individual intake other foods 

No supplements 

 

15/10 

 

14/10 

 

14/10 

 

14/9 

 

13/9 

 

13/9 

Average intake other foods 

Average intake supplements 

 

0/0 

 

0/0 

 

0/0 

 

0/0 

 

0/0 

 

0/0 

Average intake other foods 

No supplements 

 

0/0 

 

0/0 

 

0/0 

 

0/0 

 

0/0 

 

0/0 

 

LD, low dioxin 

† Only individual reported species allowed in modelled recommendations
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Figure legends 420 

Figure 1. Observed intake of lean and fatty fish for 3,016 individuals (1,552 women and 1,464 men) 421 

(a) and modelled recommended fish intake for 2,992 of the individuals with the Mid-season Ind 422 

scenario (the baseline scenario) (b). 423 

Figure 2. Empirical cumulative distribution functions for delta fish intake (modelled recommendation 424 

minus observed intake) for 2,992 individuals with the Mid-season Ind scenario (a, c, d), the Mid-425 

season Ind No Sup scenario (b), the Mid-season Ind scenario, lean fish species (c), and the Mid-season 426 

Ind scenario, fatty fish species (d).  427 

Figure 3. Empirical cumulative distribution functions for delta fish intake (modelled recommendation 428 

minus observed intake) for 2,480 individuals with the Mid-season Ind scenario, lean fish species (a), 429 

and the Mid-season Ind scenario, fatty fish species (b) when only individual reported fish species are 430 

allowed in the modelled intake. 431 

Figure 4. Modelled recommended fish intake for 2,991 individuals with the Winter Ind scenario (a), 432 

and the Winter Ind No Sup scenario (b). 433 

Figure 5. Empirical cumulative distribution functions for delta fish intake (modelled recommendation 434 

minus observed intake) for 2,991 individuals with the Winter Ind scenario (a), the Winter Ind No Sup 435 

scenario (b), the Winter Ind scenario, lean fish species (c), and the Winter Ind scenario, fatty fish 436 

species (d). 437 

Figure 6. Empirical cumulative distribution functions for delta fish intake (modelled recommendation 438 

minus observed intake) for 2,225 individuals with the Winter Ind scenario, lean fish species (a), and the 439 

Winter Ind scenario, fatty fish species (b) when only individual reported fish species are allowed in the 440 

modelled intake. 441 

Figure 7. Modelled recommended fish intake for 3,016 individuals with the Winter Av scenario (a) 442 

and the Winter Av No Sup scenario (b).  443 
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Appendix 444 

Sun exposure 445 

To estimate a value for vitamin D intake due to sun exposure, we assumed a linear relationship between 446 

vitamin D status and intake. For Danish adults (n = 2,625) not taking vitamin D supplements, the 447 

median serum 25-hydroxyvitamin D [25(OH)D] concentrations (from blood samples) were in a study 448 

on vitamin D status in Denmark measured to 68.4 nmol/L and 40.0 nmol/L in the autumn and spring, 449 

respectively (17). We used data from an Irish study to define the linear relation between this vitamin D 450 

status and intake. In the Irish study (22), conditional distributions of serum 25(OH)D concentration (in 451 

late winter) at specific values of vitamin D intake (from foods and supplements) were modelled for 452 

healthy adults (n=215) living in Ireland and Northern Ireland (latitudes 51°N and 55°N) and the mean 453 

log-transformed 25(OH)D concentration was defined as a linear function of vitamin D intake. The 454 

slope of the relation between total vitamin D intake and 25(OH)D concentration was 1.96 in the study 455 

population, and for the lowest vitamin D intake (0.01 µg) the 50th percentile 25(OH)D concentration 456 

was 34.5 nmol/L. For this study, we used this slope value of 1.96 and the value 34.5 nmol/L as vertical 457 

intercept to define our linear equation: 458 

𝑐𝑐 = 1.96 × 𝑖𝑖 + 34.5 

where 𝑖𝑖 = vitamin D intake (µg/d) and 𝑐𝑐 = mean 25(OH)D concentration (nmol/L). This assumption 459 

was considered appropriate for our study. The median intake 17.3 µg/d and 2.81 µg/d in the autumn 460 

and spring, respectively, were obtained by converting the median concentrations (17) with the linear 461 

equation. We assumed that the difference between the autumn and spring intake, 14.5 µg/d, is only due 462 

to sun exposure and not a change in food intake, and it was interpreted as the exposure to vitamin D 463 

due to UVB radiation in summer. We defined a summer scenario with this value and we also defined a 464 

winter scenario with an intake of 0 µg vitamin D/d due to sun exposure. A mid-season scenario with 465 

the average of the summer and the winter value, 7.25 µg/d, defined the baseline value. Daily values 466 

were multiplied with 7 days to obtain weekly values. 467 

Airborne dioxin 468 

To estimate a value of the exposure to airborne dioxin, we defined the relations: 469 

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑚𝑚𝑚𝑚𝑇𝑇𝑚𝑚 𝑚𝑚𝑒𝑒𝑒𝑒𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚 = 𝑀𝑀𝑚𝑚𝑇𝑇𝑚𝑚 𝑇𝑇𝑖𝑖𝑒𝑒𝑎𝑎𝑇𝑇𝑒𝑒𝑚𝑚𝑚𝑚 𝑚𝑚𝑒𝑒𝑒𝑒𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚 + 𝑀𝑀𝑚𝑚𝑇𝑇𝑚𝑚 𝑚𝑚𝑒𝑒𝑒𝑒𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚 𝑓𝑓𝑒𝑒𝑇𝑇𝑚𝑚 𝑓𝑓𝑇𝑇𝑇𝑇𝑓𝑓 
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𝑀𝑀𝑚𝑚𝑇𝑇𝑚𝑚 𝑚𝑚𝑒𝑒𝑒𝑒𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚 𝑓𝑓𝑒𝑒𝑇𝑇𝑚𝑚 𝑓𝑓𝑇𝑇𝑇𝑇𝑓𝑓 = 𝑒𝑒% ×  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑚𝑚𝑚𝑚𝑇𝑇𝑚𝑚 𝑚𝑚𝑒𝑒𝑒𝑒𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚 

From these relations, we derived a formula for calculating the mean airborne exposure to dioxin 470 

𝑀𝑀𝑚𝑚𝑇𝑇𝑚𝑚 𝑇𝑇𝑖𝑖𝑒𝑒𝑎𝑎𝑇𝑇𝑒𝑒𝑚𝑚 𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑇𝑇𝑒𝑒𝑒𝑒𝑚𝑚 = 𝑀𝑀𝑚𝑚𝑇𝑇𝑚𝑚 𝑚𝑚𝑒𝑒𝑒𝑒𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚 𝑓𝑓𝑒𝑒𝑇𝑇𝑚𝑚 𝑓𝑓𝑇𝑇𝑇𝑇𝑓𝑓 ×  �
100
𝑒𝑒

−  1�  

where 𝑒𝑒 = % of total exposure from food, 0 < 𝑒𝑒 ≤ 100. We calculated the mean airborne exposure for 471 

the study population, using the population mean (376 pg TEQ/wk). As the baseline value, a 472 

conservative assumption, x = 90%, was used. An alternative low dioxin (LD) value corresponded to 473 

x = 95%. 474 
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