
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Feb 22, 2025

The intensity of the inflammatory response in experimental porcine bruises depends
on time, anatomical location and sampling site

Barington, Kristiane; Skovgaard, Kerstin; Henriksen, Nicole Lind; Johansen, Anne Sofie Boyum; Jensen,
Henrik Elvang

Published in:
Journal of Forensic and Legal Medicine

Link to article, DOI:
10.1016/j.jflm.2018.06.005

Publication date:
2018

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Barington, K., Skovgaard, K., Henriksen, N. L., Johansen, A. S. B., & Jensen, H. E. (2018). The intensity of the
inflammatory response in experimental porcine bruises depends on time, anatomical location and sampling site.
Journal of Forensic and Legal Medicine, 58, 130-139. https://doi.org/10.1016/j.jflm.2018.06.005

https://doi.org/10.1016/j.jflm.2018.06.005
https://orbit.dtu.dk/en/publications/32d35eed-57c8-434c-b65d-cb4214b59e96
https://doi.org/10.1016/j.jflm.2018.06.005


Accepted Manuscript

The intensity of the inflammatory response in experimental porcine bruises depends
on time, anatomical location and sampling site

Kristiane Barington, Kerstin Skovgaard, Nicole Lind Henriksen, Anne Sofie Boyum
Johansen, Henrik Elvang Jensen

PII: S1752-928X(18)30119-7

DOI: 10.1016/j.jflm.2018.06.005

Reference: YJFLM 1689

To appear in: Journal of Forensic and Legal Medicine

Received Date: 12 March 2018

Revised Date: 24 May 2018

Accepted Date: 5 June 2018

Please cite this article as: Barington K, Skovgaard K, Henriksen NL, Boyum Johansen AS, Jensen
HE, The intensity of the inflammatory response in experimental porcine bruises depends on time,
anatomical location and sampling site, Journal of Forensic and Legal Medicine (2018), doi: 10.1016/
j.jflm.2018.06.005.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.jflm.2018.06.005


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

The intensity of the inflammatory response in experimental porcine 

bruises depends on time, anatomical location and sampling site  

Kristiane Barington1, Kerstin Skovgaard2, Nicole Lind Henriksen1, Anne Sofie Boyum Johansen1, 

Henrik Elvang Jensen1 

1 Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 3, DK-1870 

Frederiksberg C, Denmark 

2 Department of Biotechnology and Biomedicine, Technical University of Denmark, Kemitorvet 

DK-2800 Kongens Lyngby, Denmark 

 

 

Corresponding author: 

Kristiane Barington 

Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 3, DK-1870 

Frederiksberg C, Denmark 

E-mail: krisb@sund.ku.dk 

 

 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Acknowledgements 

The authors wish to thank Karin Tarp at Section for Immunology and Vaccinology, National 

Veterinary Institute, Technical University of Denmark and Betina G. Andersen, Elizabeth W. 

Petersen, Frederik Andersen and Dennis Brok at Faculty of Health and Medical Sciences, 

University of Copenhagen Denmark for skilled technical and laboratory assistance.  

Declaration of interest 

None. 

Funding 

The study was funded by University of Copenhagen, Denmark. The funding source had no 

involvement in the experimental design, analysis and interpretation of the results.  

Ethical approval 

The experimental procedure was approved by the Danish Animal Inspectorate 

(2013−15−2934−00849) and were carried out in accordance with all institutional, and national 

guidelines. 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Page 1 of 32 

 

The intensity of the inflammatory response in experimental porcine 

bruises depends on time, anatomical location and sampling site  

  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Page 2 of 32 

 

Abstract 

The assessment of the age of bruises inflicted on livestock is an important component of veterinary 

forensic pathology investigations. However, the sampling site within a bruise, the anatomical 

location and the mass and speed of the object inflicting the blunt trauma might influence the 

intensity of the inflammatory reaction. In the present study, the variation of the inflammatory 

reaction within and along experimental porcine bruises was evaluated in order to determine the 

optimal sampling site. Moreover, we evaluated if a combination of histological characteristics and 

gene expression signatures was able to differentiate bruises according to anatomical location, age of 

bruises and the speed and mass of the object used to cause the impact.  

Twelve experimental slaughter pigs were anesthetized, and on each animal four blunt traumas were 

inflicted on the back using either a plastic tube or an iron bar, respectively. The pigs were 

euthanized at 2, 5 or 8 h after infliction. Following gross examination, skin and underlying muscle 

tissue were sampled from the center and both ends of bruises and evaluated histologically. 

Subcutaneous fat tissue from the center of the bruises was sampled for quantitative real-time 

polymerase chain reaction to evaluate mRNA expression of 13 selected genes. Uninjured tissue was 

sampled from the right thigh of all pigs and served as control tissue.  

The amount of tissue damage and the intensity of the inflammatory reaction in bruises depended on 

the sampling site within and along a bruise, the anatomical location and the age of the bruise. The 

optimal site for sampling, i.e. the most pronounced inflammatory reaction, was at the center of the 

bruises where the plastic tube or iron bar first struck the skin. Moreover, bruises inflicted in areas 

with a thin layer of subcutaneous fat tissue showed more damage and inflammation in the 

underlying muscle tissue compared to bruises inflicted in areas with a thicker layer of subcutaneous 

fat tissue. In addition, hemorrhage in the muscle tissue was more likely present when bruises were 
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inflicted with an iron bar compared to a plastic tube. Combining histology and mRNA expression of 

the 13 genes showed that the age of bruises could be determined with a precision of ±2.04 h. 

Moreover, the age of bruises could be determined with a precision of ±1.84 h based solely on 

mRNA expression of a selection of four genes.      

Keywords: Time factors; Bruise; Forensic pathology; Gene expression signature; Animal model; 

Porcine; qPCR.   



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Page 4 of 32 

 

Introduction 

The assessment of the age of bruises inflicted on livestock is an important component of veterinary 

forensic pathology investigations.1, 2 Porcine bruises are predominantly inflicted within a timeframe 

of approximately 8 h prior to slaughter.1 During this period, pigs are handled by several people 

during transport from the farm to the slaughterhouse.1 Age assessment of bruises is carried out by 

veterinary pathologists and may in court be used to determine in whose custody the pig was at the 

time where the bruises were inflicted. 

Several methods have been evaluated in humans and in animal models in order to obtain accurate 

age assessment of bruises.3-5 Recently, a reproducible model for inflicting experimental bruises in 

pigs was developed and validated.6 In the model, bruises with a tramline pattern, characterized by 

two parallel hemorrhages separated by apparently normal skin, were inflicted on the back of 

experimental pigs. Grossly and histologically, the lesions were comparable to forensic cases 

regarding bruises in slaughter pigs.1, 6 In the model, neutrophils and macrophages showed a time 

dependent response in skin and muscle tissue, and mRNA expression of 13 selected genes in 

subcutaneous fat tissue was able to determine the age of bruises with a precision of approximately 

±2 h.6, 7 Moreover, the histological characteristics and mRNA expression, apart from being time 

dependent, also reflected the force used to inflict the bruises.7, 8 In addition, the presence of 

hemorrhage in porcine skin and underlying muscle tissue depends on the speed and mass of the 

object causing the blunt trauma.9 These studies were carried out in pigs with a body weight of 23 - 

40 kg. However, in forensic cases of porcine bruises, the slaughter pigs have a body weight of 

approximately 100 kg. In slaughter pigs, the thicker layer of subcutaneous fat tissue may provide a 

higher degree of protection of the underlying muscle tissue compared to that of younger pigs. In 

addition, difference in age may affect the inflammatory response due to age-related alterations in 

the innate immune response.10, 11  
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Forensic cases of porcine bruises typically involve pigs with several bruises located on the back.1  

In a previous study of pigs with multiple bruises, histological evaluation of two bruises from each 

animal resulted in a similar age estimate in 48% of the pigs due to variation in the inflammatory 

response between the bruises.12 In addition, a higher degree of hemorrhage has been recorded in 

bruises inflicted near bones and in areas where the underlying muscle tissue is thin.9, 13 Apart from 

the variation in the inflammatory reaction between bruises, variation may also occur within and 

along a bruise. This has been shown in rats, where the intensity of the inflammatory response was 

related to the proximity to the site of trauma.14 

Therefore, the aim of the present study was to evaluate the amount of tissue damage and intensity of 

the inflammatory reaction within and along bruises in order to determine the optimal sampling site 

for forensic evaluation. Moreover, we evaluated if a combination of histological characteristics and 

a gene expression signature of 13 selected genes was able to differentiate bruises according to 

anatomical location, age of the bruises and the object (mass and speed) used for inflicting the 

bruises.   
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Methods 

Animals 

In total, 12 specific pathogen-free, female, Yorkshire-Landrace crossbred pigs with a mean body 

weight of 100 kg (91-115 kg) were used. All pigs were acclimatized for one week and housed 

individually before entering the experiment. They were fed a commercial pig diet twice a day and 

had free access to tap water. All animals remained healthy during the period of acclimatization. 

Experimental procedure  

The experimental procedure was approved by the Danish Animal Inspectorate 

(2013−15−2934−00849). All pigs were anesthetized using the same protocol as recently described.6 

During a period of 3 to 4 min four blunt traumas (area of impact Nos. 1, 2, 3 and 4) were inflicted 

on the back along the right M. longissimus dorsi from the area caudal to the scapula to the lumbar 

region of each pig using a plastic tube or an iron bar (Table 1, Fig. 1).  The blunt traumas were 

inflicted with a force of 6.52 N/mm2 using a mechanical device and procedure described recently.6 

The mechanical device consisted of a spring fixed in a rotatable wheel to which a plastic tube or an 

iron bar could be attached.6 Regardless of the object (plastic tube and iron bar) the wheel was turned 

180° and the same amount of kinetic energy was transferred to the area of impact.  Following 

infliction of trauma, pigs were left in anesthesia for 2, 5 and 8 h (Table 1), and thereafter euthanized 

by an overdose of pentobarbital given intravenously (Glostrup Apotek, Glostrup, Denmark).  

Speed at impact 

Measurements of the speed of the plastic tube and the iron bar were carried out at the Danish 

Technological Institute (Taastrup, Denmark). A high-speed camera (LQ-201CL, JAI) was equipped 

with a LINOS Inspec.x M lens, giving a calibrated pixel size of 0.000655 m at a 1.2 m focal 
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distance. The JAI line camera gave a time resolution of 1/30.000 s and a (1D)-spatial resolution of 

0.000665 m of the impact zone. The recorded images gave a sampled version of the tube position 

during impact (displayed as a relatively straight line at an angle = α). Based on this the impact 

speed was calculated as V = (0.000655 m x 30000 s-1) / tan(α). 

Kinetic energy 

The amount of kinetic energy transferred to the area of impact was calculated from the impact speed 

(Supplementary material 1). 

Gross pathology 

During the first hour after infliction and post-mortem, each pig was subjected to gross evaluation of 

each of the four areas of impact. Post-mortem, the pattern of bruises seen from the skin surface was 

classified as tramline (two parallel lines of hemorrhage) or fused (a single line of hemorrhage).  

Moreover, the dimensions and distances between bruises were recorded and the affected skin areas 

were cut out in toto including the underlying part of M. longissimus dorsi. Each bruise was cross-

sectioned in slices of 0.5 to 1 cm, and the presence of hemorrhage in the subcutaneous fat tissue and 

muscle tissue was recorded. Finally, all pigs were subjected to a total necropsy.15 

Histology    

From each of the areas of impact (Nos. 1-4), 5 slices of skin and muscle tissue were sampled from 

the center (B, n=3), the dorsal end (A, n=1) and the ventral end (C, n=1) of the bruises (Fig. 2). In 

addition, uninjured skin and muscle tissue were sampled from the right thigh of each pig and served 

as control tissue. For histology, the samples were treated as described previously before tissue 

sections were cut and stained with hematoxylin and eosin.6, 16 All sections were blinded and 

evaluated by a single observer. However, 53 out of 240 tissue sections were randomly selected and 
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evaluated by a second observer. Cohen’s kappa or Cohens weighted kappa were calculated on each 

of the histological variables (see Table 15 in Ref [17]. 

  Neutrophils and macrophages were scored on a semiquantitative scale: (0) Absence of neutrophils 

or macrophages, respectively (1) 1-10 neutrophils or macrophages, respectively (2) 11-30 

neutrophils or macrophages, respectively (3) >30 neutrophils or macrophages, respectively. The 

scoring was carried out in the dermis, subcutaneous fat and muscle tissue in a high power field (400 

fold magnification) in the area with the highest density of macrophages and neutrophils. In the 

dermis and muscle tissue, hemorrhage was registered as present or absent. In the subcutis, the 

density of hemorrhage was registered as the percentile area of extravasated erythrocytes in a low 

power field (100 fold magnification) and scored either as (0) absent, (1) minor: <12.5%, (2) 

moderate: 12.5-25%, (3) severe >25%. In the muscle tissue, the percentile area of necrosis was 

evaluated in the area with the highest density of necrotic muscle fibers and scored according to the 

following scale in a low power field (100 fold magnification): (0) No necrosis: absence of necrotic 

muscle fibers, (1) minor necrosis: <12.5%, (2) moderate necrosis: 12.5-50%, (3) severe necrosis: 

>50%.6   

In addition, the thickness of the subcutaneous tissue was measured with a caliper at the center of the 

tissue sections. 

 qPCR 

From the center (B) of all areas of impact (Nos. 1-4), subcutaneous fat tissue (0.5 cm x 0.5 cm x 0.5 

cm) was sampled and preserved in 4.5 mL of RNAlater, that was cooled at 5°C for 24 h and then 

stored at -20 °C until extraction. In addition, uninjured subcutaneous fat tissue was sampled from 

the thighs of the pigs and treated similarly. Extraction, quantitation and quality assessment of RNA 

were carried out as recently described.7 RNA integrity numbers were between 6.7 and 9.2 (average: 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Page 9 of 32 

 

8.3). RNA was stored at -80 °C until converted into cDNA. From each sample, duplicate cDNA 

syntheses were made.7 Primers were synthesized at Sigma Aldrich. Pre-amplification and 

quantitative real time polymerase chain reaction (qPCR) was performed to evaluate mRNA 

expression of the 13 genes of interest and the 6 reference genes listed in Table 2. In a recent study 

of experimental bruises in pigs, a time dependent expression pattern was observed for the 13 genes 

of interest.7 qPCR of the preamplified cDNA was performed in a 192.24 Dynamic Array (Fluidigm, 

San Francisco, CA, USA) combining 192 preamplified samples with 24 primer sets in 4608 

individual and simultaneous qPCR reactions. Thorough descriptions of preamplification and qPCR 

have recently been described.7 

Data analysis and statistics 

Gross data 

Logistic regression for repeated measures (Generalized estimating equations for binary data with 

logit link function) were applied to evaluate if bruises inflicted  with either a plastic tube or an iron 

bar differed with regards to pattern (tramline or fused) and presence of gross hemorrhage in the 

underlying muscle tissue (SAS Enterprise Guide 7.1). Mean and standard deviations (SD) were 

calculated on the dimensions and distances between bruises measured on the surface of the skin. 

The thickness of the subcutaneous tissue in the four areas of impact was compared by a two way 

ANOVA (SAS Enterprise Guide 7.1).  

Histology data 

To evaluate the variation between the ends (sampling site A and C) and the center (sampling site B) 

of the bruises, the histological data were autoscaled by multiplication with the inverse standard 

before principal component analysis (PCA) in LatentiX 2.13 (Frederiksberg, Denmark). The result 

of the PCA was presented in two plots describing scores and loadings, respectively. PCA scores 
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were used to determine any grouping of the data according to sampling sites (A, B and C). PCA 

loadings were used to determine how histological variables influenced the PCA scores. Information 

on how to interpret PCA scores and loadings is presented elsewhere.18 Additional descriptive 

statistics are presented in Ref [17]. Moreover, differences (odds ratios) in single histological 

variables between the objects (plastic tube or iron bar), sampling site, anatomical location and 

bruise age are presented in Ref [17]. 

mRNA expression data 

Pre-processing data: To compensate for variation between dynamic chips three highly stable 

samples were used as interplate calibrators. Then, the data were corrected for PCR efficiency for 

each primer. GeNorm and GeNormFinder were used to identify the most stable reference genes 

(B2M, HPRT1, PPIA) and the geometric mean of these was used to normalize all data for each 

cDNA replicate in GenEx5 (MultiD Analyses AB Sweden).19, 20 The technical repeats of cDNA 

were compared and excluded if the deviation was more than 1.5 Cq for more than 15% of the 

samples. The average of the technical repeats of cDNA was calculated and the Cq values were 

transformed to a linear scale (relative quantities) and log2 transformed.7  

For each pig, the average gene expression (relative quantities) within the bruises was calculated.  

These values were used to calculate the average expression for each bruise age (2, 5 and 8 h) and 

finally, the relative expression of genes in bruises aged 2, 5 and 8 h was calculated relatively to the 

average expression in the control tissue.  

Combination of data from histology and mRNA expression 

Regardless of the sampling site (ends (A and C) or center (B)) of the bruise the maximum scores for 

each of the histological parameters were registered for each of the bruises. Then gene expression 

data (log2 transformed values) and histology data were combined and autoscaled by multiplication 
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with the inverse standard error before PCA and partial least squares regression (PLS) were done in 

LatentiX 2.13 (Frederiksberg, Denmark). First, a PCA including all bruises and control tissues was 

made and plots of scores and loading were evaluated. Then, control tissues were excluded and a 

new PCA was calculated to describe if histology and gene expression data could differentiate 

bruises according to the anatomical location (area of impact Nos. 1 to 4) and the age (2h, 5h and 

8h). The results from these PCAs were presented in two plots describing scores and loadings. PCA 

scores were used to determine any grouping of the data according to anatomical location and age. 

PCA loadings were used to determine how the histological variables and gene expression variables 

influenced the PCA scores.18 

On the same data, PLS with full cross validation was carried out in order to obtain a model to 

predict the age of bruises based on histology and mRNA expression data. In addition, a PCA and a 

PLS with full cross validation was carried out on the mRNA expression data of the four most 

important genes for determining bruise age, i.e. the four genes with the highest negative or positive 

regression coefficients (SELE, SELP, IL6, NFKB1). The result from the PCA was presented as a 

score plot in order to visualize grouping according to age.  

 

Results 

Speed at impact and kinetic energy 

The speeds at impact of the objects (plastic tube and iron bar) are presented in Table 1. The kinetic 

energy transferred to the area of impact was 26 J for both objects. 

 

Gross pathology 
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In total, 48 bruises were inflicted on the 12 pigs using a plastic tube or an iron bar. During the first 3 

minutes, all bruises developed in a similar pattern regardless of the object. Within the first 20-30 sec 

two symmetrical, convex red lines (connected in both ends) became visible on the skin surface. 

After 2-3 min the distance between the red lines decreased before they almost fused. From 15 to 60 

min after infliction, the skin either appeared normal or a vague redness was visible in the areas. The 

appearance of the lesions did not change during the rest of the experimental period (2 to 8 h) (Fig. 

1).  

Gross evaluations carried out post mortem are presented in Table 3. If visible on the skin surface, 

the pattern of bruises could be characterized as tramlines or as fused. Tramline bruises were 

characterized by two parallel lines of redness separated by apparently normal skin. Fused bruises 

were characterized by a single line of redness. On cross sections, two areas of hemorrhage separated 

by apparently normal fat tissue were present in the subcutaneous tissue in the center of 46 out of the 

48 bruises (Fig. 1, Table 3). 

 

Histology 

Variation within and along the bruises:  

In total, 240 tissue sections from the 48 bruises were evaluated. To some extent the inflammatory 

response differed according to the sampling sites (A, B and C). The differentiation was seen along 

principal component nos. 1 and 2 (Fig. 3). Based on the loadings (Fig. 4) and odds ratios (see Table 

6 in Ref [17], samples from the center (B) of the bruises were generally characterized by higher 

scores in all histological parameters compared to samples from the ventral end of the bruise (C). A 

large variation was seen in the samples from the dorsal end (A) (Fig. 3). The raw data were 

presented in Supplementary material 2. 
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Combination of data from histology and mRNA expression 

Data consisted of bruises inflicted with a plastic tube (n=24) or an iron bar (n=23) and control tissue 

from the thighs of the pigs (n=11). A single bruise (8 h, iron bar, area of impact No. 1) and a control 

sample were excluded due to missing mRNA-expression data (Supplementary material 3). 

Mass and speed 

Bruises clearly differed from the control tissue. However, no grouping according to the object, i.e. 

plastic tube or iron bar, was found in the PCA plot. However, when looking at single histological 

variables hemorrhage together with high neutrophil score in the muscle tissue were more likely to 

be present if bruises were inflicted using an iron bar compared to a plastic tube (see Table 7 in Ref 

[17]). Moreover, a high neutrophil score in the dermis was more likely if bruises were inflicted 

using a plastic tube compared to an iron bar (see Table 7 in Ref [17]). 

Anatomical location of the bruise 

Bruises tended to group according to the anatomical location (area of impact Nos. 1 and 2 vs. 3 and 

4) along principal component no. 2 (Fig. 5). Based on the loadings, bruises inflicted in area of 

impact Nos. 3 and 4 had higher scores in the histological parameters in the subcutaneous fat tissue 

and muscle tissue compared to bruises inflicted in area Nos. 1 and 2 (Fig 6). Especially, muscle 

parameters (neutrophils and macrophages, hemorrhage and necrosis) were high in bruises in area 

Nos. 3 and 4 (Fig 6) (see Table 13 in Ref [17]). Gene expression data contributed less to the 

grouping of bruises at the four anatomical locations.   

Age of bruises 
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Grouping of bruises aged 2, 5 and 8 h was seen along the first principal component (Fig. 8). This 

was mainly explained by the gene expression variables while the histology variables contributed 

less (Fig 9) (See Table 14 in Ref [17].  PLS including all bruises (plastic tube, iron bar, all ages and 

areas of impact) and variables was able to predict the age of bruises with a root mean square error 

of 1.02 h, meaning that in 95% of bruises, the model was able to predict the age with a precision of 

±2.04 h. The model had a standard error of precision of 1.03, a bias of -0.05 and a correlation 

coefficient of 0.82. In the second PLS-component the explained variance in Y and X was 83% and 

42%, respectively. Regression coefficients for all variables in the second PLS-component are 

presented in Table 4.  The mRNA expression of SELP, NFKB1, IL6 and SELE all had regression 

coefficients below -0.15 meaning that the mRNA expression was upregulated at first and then 

declined during the following 8 h after infliction. Based on these four genes, a more distinct 

grouping of bruises according to age was seen (Fig. 10). A PLS including the four genes was able to 

predict the age of bruises with a root mean square error of 0.92 h, meaning that in 95% of bruises, 

the model was able to predict the age with a precision of ±1.84 h. The model had a standard error of 

precision of 0.93, a bias of 0.002 and a correlation coefficient of 0.86. In the first PLS-component 

the explained variance in Y and X was 87% and 83%, respectively. 

In Table 5, the mean gene expression in the bruises, relative to the mean expression in the control 

tissue scaled to one is presented. 

Thickness of the subcutaneous fat tissue 

The thickness of the subcutaneous fat tissue was normally distributed and differed significantly 

between the four areas of impact (P<0.0001), (Fig. 11).  
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Discussion 

The amount of tissue damage and the intensity of the inflammatory reaction in bruises depended on 

the sampling site within a single bruise, the anatomical location and the age of the bruise. 

Combining histology and mRNA expression of 13 selected genes, the age of bruises could be 

determined with a precision of ±2.04 h. Moreover, the gene expression of SELE, SELP, IL6 and 

NFKB1 was even able to determine the age of bruises with a precision of ±1.84 h. 

Grossly, bruises inflicted with a plastic tube and an iron bar differed with respect to the pattern of 

bruises on the skin surface and the presence of hemorrhage in the muscle tissue. However, these 

differences were not statistically significant. Histologically, the odds for muscle hemorrhage in 

bruises inflicted by an iron bar were 5 times the odds for muscle hemorrhage in bruises inflicted 

with a plastic tube. In addition, the odds for high neutrophil infiltration in the dermis were 5 times 

the odds for high neutrophil infiltration in the muscle tissue (see Table 7 in Ref [17]). The gene 

expression profile was not able to differentiate between bruises inflicted with a plastic tube and an 

iron bar. The light weight plastic tube reached a impact speed of more than twice of the heavier iron 

bar (Table 1). However the energy transferred from the spring in the mechanical device to the area 

of impact was the same regardless of the object (plastic tube or iron bar). In another porcine bruise 

model, objects with high speed (104 m/second) and low weight (3.15 g) caused hemorrhage in the 

upper skin layers, while heavier (2.5 kg) objects with low speed (4m/second) caused deep 

hemorrhage in the muscle tissue even though the kinetic energy per area was comparable.9  

At gross inspection, hemorrhage in the muscle tissue was recognized in 21% and 46% of bruises 

inflicted with a plastic tube and an iron bar, respectively. In comparison, hemorrhage was grossly 

visible in 57.5% of bruises in pigs weighing 30 kg.6 These differences between small and large pigs 

could be due to differences in the volume and maturation of supporting tissue that overlies the 
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vessels, amount of fibrous tissue and differences in the density of vessels, all of which changes 

during growth.21  

Histologically, the intensity of the inflammatory reaction and the amount of hemorrhage and 

necrosis were often most pronounced in samples from the center of the bruises, less pronounced in 

samples from the ventral end, and variable at the dorsal end. As the shape of the area of impact was 

convex, the plastic tube or iron bar struck at the central part of the bruise at first and, therefore, 

transferred most of the energy into this part resulting in more tissue damage compared to the two 

ends of the bruises. Similarly, injection of blood into rodent skin showed that the intensity of the 

inflammatory response was directly related to the proximity to the site of trauma, and it was found 

that areas containing blood that had diffused from the site of trauma, showed a low grade of 

inflammatory reaction.14 Generally, bruises inflicted in area Nos. 3 and 4 showed a higher degree of 

hemorrhage, necrosis, and infiltration of neutrophils and macrophages in the muscle tissue 

compared to bruises in area Nos. 1 and 2. This difference could be  explained by the presence of a 

thinner layer of subcutaneous tissue at area Nos. 3 and 4, which means that a higher amount of 

energy probably was transferred to the underlying muscle tissue causing more damage. In other 

porcine and avian models, tissue damage has also been found to depend on the anatomical location 

of the bruises, and more tissue damage has been observed in bruises inflicted near bones and in 

areas with a thin layer of muscle tissue.9, 13 However, the difference between bruises in area Nos. 1 

and 2 versus areas Nos. 3 and 4 may also partly be due to the difference in time (minutes), during 

which these were inflicted. In comparison, in rabbits and chickens, infliction of multiple bruises 

have been shown to affect how fast the lesions heal.22, 23 Possibly, the vasodilation, hyperemia and 

release of inflammatory mediators after infliction of the first bruise could intensify the 

inflammation and tissue damage in the subsequent bruises.    
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Mathematical age prediction models based on experimental data could potentially be used in a 

forensic setting.7 Combining data on bruises of unknown age and data from the experimental 

bruises, the age of the unknown bruises could be determined by applying a partial least squares 

regression analysis. Based on histology and gene expression, the age of bruises could be predicted 

with a precision of ±2.04 h.  This is in complete accordance to a previous study in pigs weighing 

approximately 30 kg.7 Several of the genes (IL6, NFKB1, SELE, PTGS2, CCL2, ICAM1, FOS, 

TNFAIP3 and SELP) were upregulated in bruises being 2 h old and then decreased with increasing 

age of the bruise. The same pattern of gene regulation was present in bruises in pigs weighing 30 kg 

although at higher fold change differences.7 This difference between small and large pigs could be 

due to differences in thickness of the subcutaneous fat tissue or age-related alterations of the 

inflammatory gene expression response to blunt trauma.10  

The mRNA expression profile of four genes centrally involved in inflammation, (the cell adhesion 

molecules SELE and SELP, the proinflammatory cytokine IL6 and the transcription factor NFKB1) 

were able to predict the age of bruises with a precision of ± 1.84 h. The model had a lower standard 

error of precision, a smaller bias and a higher correlation coefficient and higher explained variance 

in X and Y compared to the PLS based on a combination of histology and gene expression data. 

This imply that the estimation of the age of bruises is more precise if based on a gene expression 

profile alone than by the combination of gene expression and histology. Part of the difference in the 

precision is caused by “noise” from the histological and gene expression variables less important for 

estimating the age, i.e. variables with regression coefficients close to zero (Table 5). However, the 

grouping of bruises by age was mostly explained by the mRNA expression variables and less by the 

histological variables. In experimental bruises in pigs weighing 30 kg, neutrophils in the 

subcutaneous tissue and macrophages in the muscle tissue showed a time dependent increase.6 

Studies of bruises in humans have also demonstrated variability in timing and sequence of 
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inflammatory changes when evaluated histologically.4, 24 The lack of a clear time dependency in the 

histological parameters in the present study might be explained by a high degree of animal to 

animal variation.  It could be speculated that mRNA expression is less affected by the variation 

between pigs. Moreover, studies have shown that mRNA expression does not necessarily correlate 

with the amount of protein synthetized due to post-transcriptional mechanisms involved in turning 

the mRNA into protein.25  

  

 

 

Conclusions 

The intensity of the inflammatory reaction in bruises depended on the sampling site within the 

bruise, the anatomical location and the age of the bruise. The most pronounced inflammatory 

reaction together with hemorrhage and muscle fiber necrosis were found in samples from the center 

of the bruises, i.e. at the site where the plastic tube or iron bar first struck the skin. Therefore, this is 

the optimal site for sampling. Moreover, bruises inflicted in areas with a thin layer of subcutaneous 

fat tissue revealed more damage and inflammation in the underlying muscle tissue compared to 

bruises inflicted in areas with a thicker layer of subcutaneous fat tissue. In addition, hemorrhage in 

the muscle tissue was more likely present when bruises were inflicted with an iron bar compared to 

a plastic tube. Combining histology and mRNA expression of 13 genes showed that the age of 

bruises could be determined with a precision of ± 2.04 h. Moreover, the age of bruises could be 

determined with a precision of ±1.84 h based on mRNA expression of a selection of four genes 

only.  
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Figure legends 

Figure 1: Bruises on pig skin inflicted with an iron bar. Bruises were located on the back in area of 

impact Nos. 1 to 4. Inset: Cross section of a bruise. Hemorrhage is seen in the subcutaneous fat 

tissue and the underlying muscle tissue.   

 

Figure 2: Sampling of bruises for histology. From each bruise, 5 slices of skin and underlying 

muscle tissue were sampled from the center (B, n=3) and the dorsal (A, n=1) and ventral ends (C, 

n=1) of the bruises. 

 

Figure 3: Principal component analysis (PCA) scores based on histological data from sampling site 

A (blue), B (red) and C (green) in all bruises. Each square represents a tissue sample consisting of 

skin and muscle tissue. The percentages placed in brackets denote the variation in the data 

explained in principal component 1(PC#1) and principal component 2 (PC#2). A tendency for 

grouping of samples according to sampling site is seen. Samples from the ventral end (C) are 

mainly located in the lower left quadrant and samples from the center (B) are located in the two 

upper quadrants and in the lower right quadrant. Samples from the dorsal end (A) are scattered in all 

four quadrants.    

 

Figure 4: Loadings from the principal component analysis (Fig. 3) based on histological data from 

sampling site A, B and C from all bruises . The percentages placed in brackets denote the variation 

in the data explained in principal component 1(PC#1) and principal component 2 (PC#2). The 

histological variables are located in the upper and lower right quadrant, i.e., samples from the center 

(B) are generally characterized by higher scores in the histological parameters compared to samples 

from the ventral end (C).  
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Fig 5: Principal component analysis (PCA) scores based on histological and gene expression data 

from all bruises. Bruises tend to group according to the anatomical location: Area of impact No. 1 

(yellow), area of impact No. 2 (green), area of impact N. 3 (blue), and area of impact No. 4 (red). 

The percentages placed in brackets denote the variation in the data explained in principal 

component 1(PC#1) and principal component 2 (PC#2). 

 

Figure 6: Loadings from principal component analysis (Fig. 5) based on histological and gene 

expression data from all bruises. The percentages placed in brackets denote the variation in the data 

explained in principal component 1(PC#1) and principal component 2 (PC#2). Neutrophils, 

macrophages, hemorrhage and necrosis in the muscle tissue were more pronounced in bruises 

inflicted in area Nos. 3 and 4 compared to area Nos. 1 and 2. Neutrophils in the dermis and the 

mRNA expression of CCL2, SELP, FOS, SELE, IL6, PTGS2 and NFKB1 did not contribute to the 

grouping according to anatomical location as their loadings were close to zero on PC#2.  The 

remaining variables contributed to variable extend to the grouping according to anatomical location.  

 

Fig 7: Porcine muscle tissue underlying a bruise inflicted with a plastic tube (5 h old, sampled from 

the center, area of impact No. 4). Neutrophils and macrophages have infiltrated the necrotic muscle 

fibers and hemorrhage is present in the interstitial space. Bar 100µm.  

Fig 8: Principal component analysis (PCA) scores based on histological and gene expression data 

from all bruises. The percentages placed in brackets denote the variation in the data explained in 

principal component 1 (PC#1) and principal component 2 (PC#2). Bruises tended to group 

according to age: 2 h (blue), 5 h (green), 8 h (red), along PC#1.  
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Figure 9: Loadings from principal component analysis (Fig. 8) based on histological and gene 

expression data from all bruises. The percentages placed in brackets denote the variation in the data 

explained in principal component 1(PC#1) and principal component 2 (PC#2). For interpretation of 

loadings the score plot in Figure 7 was used. Especially gene expression variables contributed to the 

grouping according to bruise age. Genes were upregulated in bruises being 2 h old and then 

decreased with increasing age of the bruise. The histological variables contributed less to the 

grouping according to age as their loadings were close to zero along PC#1.  

Fig 10: Principal component analysis (PCA) scores based on the gene expression of IL6, NFKB1, 

SELE and SELP in all bruises. Bruises grouped according to age: 2 h (blue), 5 h (green), 8 h (red). 

The percentages placed in brackets denote the variation in the data explained in principal 

component 1(PC#1) and principal component 2 (PC#2). 

Fig. 11: The mean thickness and standard deviation of the subcutaneous fat tissue (mm) at each of 

the four areas of impact. The mean thickness of the subcutaneous tissue decreased from area of 

impact Nos. 1 to 4. 
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Supplementary material 

 

 

 

 

Supplementary material 1: Calculation  of the kinetic energy transferred to the area of 

impact.Supplementary material 2: Histology data from evaluation of a total of 240 tissue sections 

(A, B and C samples).  

Supplementary material 3: Histology data (maximum values) and mRNA expression data (log2 

transformed values) for bruises and control tissue.  
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Table 1: Summary of the number of pigs, the age of bruises and the object used to inflict bruises 

including the mass and the speed of the objects at impact. Four bruises were inflicted on each pig 

using either a plastic tube or an iron bar, and four pigs were euthanized at each time point (2, 5 and 

8 h). The plastic tube was attached to an adapter (0.146 kg) that was inserted into the mechanical 

device.6 The iron bar was attached directly to the mechanical device.    

     

     

     

     

     

     

     

 

No. of pigs Bruise age (h)  Object  Mass (kg) Speed (m/s) 

6 2, 5 or 8  Plastic tube 0.047 47.4 

6 2, 5 or 8 Iron bar 0.400 19.7 
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Table 2:  
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Table 2: Gene symbol, gene name and sequences of forward (F) and reverse (R) primers. 

Gene 

symbol 

Gene name Sequence (5’ to 3’) 

APOA1 Apolipoprotein A-I F:GTTCTGGGACAACCTGGAAA 

R: GCTGCACCTTCTTCTTCACC 

CCL2 Chemokine (C-C Motif) Ligand 2 F:CTTCTGCACCCAGGTCCTT 

R: CGCTGCATCGAGATCTTCTT 

CFD 

 

Complement Factor D F:CCTCGGAGCAGCTGTATGT 

R: ATGCCATGTAGGGTCTCTCG 

FOS FBJ Murine Osteosarcoma Viral 

Oncogene Homolog 

F:CTCCAAGCGGAGACAGACC 

R: CTTCTCCTTCAGCAGGTTGG 

ICAM1 Intercellular Adhesion Molecule 1 F:AAGCTTCTCCTGCTCTGCTG 

R: GGGGTCCATACAGGACACTG 

IFNA1 Interferon Alpha 1 F:ATCGTCAGGGCAGAAGTCAT 

R: CAGGTGTCTGTCACTCCTTC 

IL6 Interleukin 6 F: TGGGTTCAATCAGGAGACCT 

R: CAGCCTCGACATTTCCCTTA 

NFKB1 Nuclear Factor Of Kappa Light Poly-

peptide Gene Enhancer In B-Cells 1 

F:CTCGCACAAGGAGACATGAA 

R: GGGTAGCCCAGTTTTTGTCA 

PLAT Plasminogen Activator, Tissue F:TGCTTCCAGGAGAGGTTCC 

R: CTCTCCAGGGACCAGCCTAT 

PTGS2 Prostaglandin-Endo-peroxide 

Synthase 2 

F:GAACTTACAGGAGAGAAGGAAATGG 

R: TTTCTACCAGAAGGGCAGGA 
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SELE 

 

Selectin E F:GGATGCTGCCTACTTGTGAAG 

R: CAGGAGCCAGAGGAGAAATG 

SELP Selectin P F:CCTAGCAGGGCCATTGAC 

R: CCCACCCATCACTAAACCTG 

TNFAIP3 Tumor Necrosis Factor, Alpha-

Induced Protein 3 

F:CCCAGCTTTCTCTCATGGAC 

R: TTGGTTCTTCTGCCGTCTCT 

ACTB  

  

Actin, Beta F: CTACGTCGCCCTGGACTTC 

R: GCAGCTCGTAGCTCTTCTCC 

B2M Beta-2-Microglobulin F: TGAAGCACGTGACTCTCGAT 

R: CTCTGTGATGCCGGTTAGTG 

HPRT1  Hypoxanthine phosphoribosyl-

transferase I 

F: ACACTGGCAAAACAATGCAA 

R: TGCAACCTTGACCATCTTTG 

PPIA Peptidylprolyl isomerase A 

(cyclophilin A) 

F: CAAGACTGAGTGGTTGGATGG 

R: TGTCCACAGTCAGCAATGGT 

RPL13A  Ribosomal protein L13a F: ATTGTGGCCAAGCAGGTACT 

R: AATTGCCAGAAATGTTGATGC 

TBP  TATA box binding protein F: ACGTTCGGTTTAGGTTGCAG 

R: CAGGAACGCTCTGGAGTTCT 

 

  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Page 30 of 32 

 

Table 3: Post-mortem, gross evaluation of the areas of impact seen on the skin surface and on cross 

section. No significant difference were seen in bruise pattern (p=0.19) or presence of hemorrhage in 

the muscle tissue (p=0.12) between bruises inflicted with a plastic tube and an iron bar. 

Gross pathology Plastic tube Iron bar 

Skin surface   

Number of visible bruises  24 of 24 (100 %) 22 of 24 (92%) 

Mean length ±SD of bruises 8 ± 2.5 cm 7 ± 1.3 cm 

Mean distance ± SD between bruises  7 ± 1.3 cm 7 ± 0.8 cm 

Number of bruises with tram line pattern  

Mean width ± SD of each of the hemorrhages  

Mean distance ± SD between the hemorrhages  

20 of 24 (83%)  

0.3 ± 0.3 cm 

0.2 ± 0.1 cm 

11 of 22 (50%) 

0.2 ± 0.1 cm 

0.2 ± 0.1 cm 

Number of bruises with fused pattern  

Mean width ± SD of hemorrhage   

4 of 24 (8%) 

1 ± 0.3 cm 

11 of 22 (50%) 

0.8 ± 0.1 cm 

Cross section   

Areas of impact with hemorrhage in subcutis 24 of 24 (100%) 24 of 24 (100%) 

Areas of impact with hemorrhage in muscle tissue 5 of 24 (21%) 11 of 24 (46%) 

 

 

Table 4: Regression coefficients for a PLS-model for prediction of bruise age based on histology 

and gene expression data. 

Variable Regression coefficients 

Selectin P -0.19 

Nuclear Factor Of Kappa Light Poly-peptide Gene Enhancer In B-Cells 1 -0.18 
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Interleukin 6 -0.18 

Selectin E -0.16 

Tumor Necrosis Factor, Alpha-Induced Protein 3 0.14 

Intercellular Adhesion Molecule 1 -0.11 

Chemokine (C-C Motif) Ligand 2 -0.11 

Prostaglandin-Endo-peroxide Synthase 2 -0.08 

Macrophages in the muscle tissue 0.08 

Hemorrhage in the dermis 0.07 

Neutrophils in the subcutaneous tissue -0.07 

FBJ Murine Osteosarcoma Viral Oncogene Homolog -0.06 

Neutrophils in the muscle tissue 0.06 

Plasminogen Activator, Tissue -0.05 

Hemorrhage in the muscle tissue 0.04 

Hemorrhage in the subcutaneous tissue -0.04 

Necrotic muscle fibers 0.02 

Complement Factor D 0.02 

Macrophages in the subcutaneous tissue -0.01 

Apolipoprotein A-I 0.004 

Interferon Alpha 1 0.003 

Neutrophils in the dermis -0.0005 
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Table 5: The mean expression of 13 genes in the subcutaneous tissue of bruises aged 2, 5 and 8 h 

relative to the mean expression in uninjured subcutaneous fat tissue sampled from the thighs scaled 

to one. RE, relative expression; SEM, standard error of the mean.  

 Control (n=12) 2 h (n = 4) 5 h (n = 4) 8 h (n = 4) 

Gene RE SEM RE SEM RE SEM RE SEM 

APOA1 1.00 0.13 0.61 0.07 0.51 0.10 0.37 0.03 

IL6 1.00 0.46 6.12 0.69 1.78 0.44 0.61 0.08 

IFNA1 1.00 0.13 0.43 0.08 0.34 0.06 0.24 0.04 

NFKB1 1.00 0.07 1.90 0.10 0.93 0.10 0.71 0.05 

SELE 1.00 0.23 4.18 1.01 0.72 0.28 0.21 0.11 

PTGS2 1.00 0.08 4.78 0.27 2.77 0.43 1.67 0.17 

CFD 1.00 0.08 0.51 0.04 0.39 0.03 0.32 0.03 

CCL2 1.00 0.18 7.59 0.89 6.66 1.56 2.81 0.54 

ICAM1 1.00 0.16 3.72 0.70 0.85 0.17 0.60 0.07 

FOS 1.00 0.39 3.73 0.49 1.85 0.48 1.08 0.18 

PLAT 1.00 0.09 0.71 0.01 0.38 0.06 0.36 0.06 

TNFAIP3 1.00 0.16 1.05 0.22 0.76 0.12 0.79 0.14 

SELP 1.00 0.12 3.68 0.71 1.10 0.12 0.53 0.19 
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Highlights 

• The inflammatory response was most pronounced in the center of the bruises.  

• The intensity of inflammation in muscle depended on the thickness of the subcutis. 

• Histology and mRNA expression data determined bruise age with a precision of ±2h.  

• No difference was seen between bruises inflicted by a plastic tube and an iron bar. 

• Experimental bruises were inflicted in 100kg slaughter pigs. 

 

 


