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Highlights 11 

•Water level of rivers and lakes can be measured by Unmanned Aerial Vehicles. 12 

•Unmanned Aerial Vehicles ensure high accuracy and spatial resolution. 13 

•The measuring system consists of a ranging sensor and a GNSS receiver. 14 

•Among the ranging sensors, the radar has the highest accuracy and longest range. 15 

•The camera-laser sensor is preferred for narrow field of view to water surface. 16 

 17 
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The assessment of hydrologic dynamics in rivers, lakes, reservoirs and wetlands requires 19 

measurements of water level, its temporal and spatial derivatives, and the extent and dynamics of 20 

open water surfaces. Motivated by the declining number of ground-based measurement stations, 21 

research efforts have been devoted to the retrieval of these hydraulic properties from spaceborne 22 

platforms in the past few decades. However, due to coarse spatial and temporal resolutions, 23 

spaceborne missions have several limitations when assessing the water level of terrestrial surface 24 

water bodies and determining complex water dynamics. Unmanned Aerial Vehicles (UAVs) can 25 

fill the gap between spaceborne and ground-based observations, and provide high spatial 26 

resolution and dense temporal coverage data, in quick turn-around time, using flexible payload 27 

design. This study focused on categorizing and testing sensors, which comply with the weight 28 

constraint of small UAVs (around 1.5 kg), capable of measuring the range to water surface. 29 

Subtracting the measured range from the vertical position retrieved by the onboard Global 30 

Navigation Satellite System (GNSS) receiver, we can determine the water level (orthometric 31 

height). Three different ranging payloads, which consisted of a radar, a sonar and an in-house 32 

developed camera-based laser distance sensor (CLDS), have been evaluated in terms of 33 

accuracy, precision, maximum ranging distance and beam divergence. After numerous flights, 34 

the relative accuracy of the overall system was estimated. A ranging accuracy better than 0.5 % 35 

of the range and a maximum ranging distance of 60 m were achieved with the radar. The CLDS 36 

showed the lowest beam divergence, which is required to avoid contamination of the signal from 37 

interfering surroundings for narrow fields of view. With the GNSS system delivering a relative 38 

vertical accuracy better than 3-5 cm, water level can be retrieved with an overall accuracy better 39 

than 5-7 cm.  40 

 41 
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1. Introduction 43 

Extreme hydro-climatic events such as droughts, floods and heavy precipitation have increased 44 

the awareness that knowledge of spatial and temporal variation of open water surfaces is 45 

important (Alsdorf et al., 2007).  In order to achieve a better quantitative understanding of 46 

hydrologic processes and to increase sharpness and reliability of hydrologic predictions, 47 

observations of hydrological variables, such as surface water area, water level (h), its slope 48 

(∂h/∂x) and its temporal change (∂h/∂t) are required. However, ground-based measurements of 49 

terrestrial water bodies are limited to networks of measuring stations. In-situ stations provide 50 

point observations that are often spaced too far apart to capture spatial patterns. Often, in-situ 51 

observation technology fails during extreme events. Furthermore, globally, the availability of in-52 

situ hydrologic observation stations has been declining in the recent past (Lawford et al., 2013). 53 

Hence, remote sensing datasets have become increasingly popular in hydrology. Remote sensing 54 

techniques are presently unable to observe river discharge directly, however spatial and temporal 55 

variation of water level has been routinely observed using spaceborne or airborne platforms. 56 

Although most satellite altimetry missions were not designed primarily for monitoring 57 

continental waters, water levels of continental water surfaces retrieved by Seasat, 58 

TOPEX/Poseidon, Jason-1 and 2, GFO, ERS 1 and 2, ENVISAT have a measurement accuracy 59 

that is well understood and generally on the order of a few tens of centimeters (Calmant et al., 60 

2008). This accuracy can be improved for larger lakes and rivers by averaging over large water 61 

surfaces (Birkett, 1998; Birkett et al., 2002; Frappart et al., 2006). The satellite CryoSat-2 carries 62 

a Synthetic Aperture Interferometric Radar Altimeter (SIRAL) which is a new generation radar 63 

altimeter (Wingham et al., 2006) with a spatial resolution of around 300 m (Villadsen et al., 64 
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2015). When operating in SARIn mode,  a correction of the cross-track slope can be performed 65 

and waveform analysis allows separation between water and surrounding topography 66 

(Kleinherenbrink et al., 2014) resulting in an accuracy of the retrieved water level of just a few 67 

decimeters (Kleinherenbrink et al., 2015). Spaceborne LIDARs such as the Geoscience Laser 68 

Altimeter System (GLAS) have been shown to provide water level measurements with higher 69 

accuracy than radar altimeters such as TOPEX/Poseidon  (Zhang and Xie, 2010). Still, GLAS 70 

has a ground footprint that is around 65 m (Schutz et al., 2005) and retrieves observations at 71 

irregular temporal intervals. Therefore, the main limitations of conventional satellite radar and 72 

laser altimetry are low spatial resolution, local coverage (for short repeat orbit missions) and low 73 

temporal resolution (for long repeat missions such as CryoSat). In order to overcome these 74 

limitations, the forthcoming Surface Water and Ocean Topography (SWOT) satellite mission 75 

will build on the heritage of the imaging interferometric radars such as the Shuttle Radar 76 

Topography Mission (SRTM)  (Kiel et al., 2006; LeFavour and Alsdorf, 2005; Rodriguez et al., 77 

2006).  However, spaceborne sensors will always face problems of: i) large ground footprints, 78 

which result in relatively low spatial resolution; ii) fixed orbit configurations, which may be 79 

inappropriate for high-resolution coverage of local water bodies; iii) coarse temporal resolution 80 

and/or the non-regular revisit intervals. These limitations restrict their ability to measure the 81 

temporal and spatial variation of the water level with the accuracy needed for determining the 82 

hydraulics of complex rivers and flood waves. 83 

Airborne LIDAR techniques have the advantages of better tracking of terrestrial water bodies, 84 

improved spatial resolution, clear segmentation between land and water surfaces and a higher 85 

accuracy (Schumann et al., 2008). However, airborne LIDAR surveys are expensive and their 86 

success depends on surveying conditions (e.g. topography and geometry, vegetation cover, size 87 
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of the water body). For this reason, digital elevation models and digital surface models retrieved 88 

by airborne LIDAR are not universally available and are normally not retrieved during periods of 89 

hydrological interest such as flood events. 90 

UAVs (Unmanned Aerial Vehicles) and in particular micro-UAVs (payload less than 1.5-2 kg), 91 

represent the latest frontier in land and water monitoring because of low-altitude flight, low cost 92 

and flexible payload design (Anderson and Gaston, 2013).  In recent years, miniaturized 93 

components (GNSS receivers, inertial measurement units, autopilots)  have advanced (Watts et 94 

al., 2012), and UAVs have been used also for a wide range of hydrological applications such as 95 

fluvial monitoring; river bathymetry and photogrammetric DEM generation using very high 96 

resolution (VHR) imagery (Lejot et al., 2007); water velocity measurements using large-scale 97 

particle image velocimetry (LSPIV) (Detert and Weitbrecht, 2015; Tauro et al., 2016, 2015). 98 

Moreover, UAVs have attracted great interest for monitoring of environmental disasters and 99 

floods  (Luo et al., 2015). UAVs are low-cost platforms that have unique capabilities to access 100 

hostile or inaccessible environments that need to be urgently monitored. Moreover, they ensure 101 

tracking of water surfaces better than satellite technology. However, for LIDAR and SAR 102 

systems, the tradeoff between performance, cost and size/weight is still a challenge to be solved 103 

before their application in UAV remote sensing (Colomina and Molina, 2014). 104 

In this paper, we demonstrate the possibility to acquire measurements of water level by a ranging 105 

system that includes a ranging sensor (radar, CLDS or sonar) and a GNSS receiver. The ranging 106 

technology described in this paper provides water level measurements with higher accuracy than 107 

spaceborne or airborne altimetry. Moreover, it ensures a spatial resolution ideal for measuring 108 

the two dimensional spatial variability of small rivers and their interaction with floodplains (Lee 109 

et al., 2011). Lastly, the newly developed CLDS can acquire ranges to water surfaces when only 110 
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narrow fields of view are available. The CLDS is specifically developed for applications in 111 

vegetated environments or inside sinkholes in karst environments.  112 

2. Materials and Methods 113 

2.1.  General concept 114 

To acquire accurate water level (height above mean sea level) of open water surfaces, the UAV 115 

must be equipped with: i) accurate lightweight sensors for measuring the range to water surface 116 

ii) a high accuracy dual frequency GNSS receiver and antenna. Installation of an in-situ dual 117 

frequency GNSS master station is needed for differential corrections. The general concept is 118 

illustrated in Fig. 1. 119 

 120 

 121 

Fig. 1.  122 

 123 

The ellipsoidal height of the water surface is measured by subtracting the range measured by a 124 

ranging sensor from the vertical position retrieved by the onboard GNSS receiver. Afterwards 125 

the orthometric height can be retrieved from the ellipsoidal height if the geoid height is known 126 

(Featherstone, 2001). For the purpose of this work, a hexacopter has been assembled from 127 

TAROT-RC components and has been equipped with DJI Naza-M2 flight controller. The 128 

hexacopter is able to fly at least 12 minutes carrying a payload of at most 2 kg.  The choice of the 129 

ranging sensors was constrained by: i) maximum weight of the payload,  ii) a reasonable price 130 

necessary for flexible operations, iii) sensor interfaces that allow time synchronization with the 131 

GNSS receiver through a microprocessor. The selected ranging sensors included two off-the-132 
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shelf sensors (a radar, a sonar) and the in-house developed CLDS. The total cost of the platform 133 

is ca. 7000 euros. This cost includes the drone, the onboard GNSS system, the inertial 134 

measurement unit (IMU), the three tested sensors and the microprocessor unit. 135 

Fig. 2 shows the arrangement of the drone payload. 136 

 137 

Fig. 2 138 

 139 

 140 

 141 

 142 

 143 

2.1.1. Radar ranger 144 

 The radar is the ARS 30X model developed by Continental as anti-collision system for the 145 

automotive industry (market price: 3200 EUR). It weighs around 350 g and consists of a 77 GHz 146 

radar sensor with a mechanical scanning antenna. It measures the range to targets using FMCW 147 

(Frequency Modulated Continuous Wave) with a sampling frequency of 15 measurements per 148 

second. It provides up to 32 targets in near range and up to 64 targets in far range with a 149 

resolution of 0.10 m. Each individual target angle is provided with a resolution of 0.1˚.  150 

2.1.2. Sonar ranger 151 

The sonar is the MB7386 model from MaxBotix (market price: 150 EUR). It weighs around 50g 152 

and consists of a 42 kHz ultrasonic sensor (6 Hz reading rate) with internal temperature 153 
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compensation, noise tolerance and clutter rejection. Its maximum ranging capability is up to 10 154 

m.  155 

2.1.3. Camera-based laser distance sensor (CLDS) 156 

This ranging sensor is a laser camera-based solution recently developed at Technical University 157 

of Denmark (Reyna Gutierrez, 2013). It weighs around 350 g. It was inspired by the measuring 158 

procedure proposed by Danko (2004). The range distance to the target is estimated by measuring 159 

the angle at which laser light enters the camera. The original methodology is expanded in this 160 

work to include corrections for tilting and rotation angles of the aircraft. An efficient automatic 161 

algorithm for identifying the laser dots on the water surface was developed. Our prototype 162 

consists of two laser pointers (100 mW laser diodes) and a complementary metal–oxide–163 

semiconductor (CMOS) camera. The camera resolution is 20.2 megapixels. The camera is 164 

triggered by the on-board single board computer (SBC) with an image rate of 1 frame every 2.5 165 

seconds. The total manufacturing cost of this CLDS system is around 800 EUR. The current 166 

design of the distance-meter includes a digital camera mounted at the center between the two 167 

laser pointers. Fig. 3 shows the geometrical configuration of the camera. Range to water surface 168 

is measured by illuminating the water surface with the laser pointers and taking a picture of the 169 

illuminated water surface. When light emitted by laser pointers hits the water surface, bright dots 170 

are formed at the interface between water and air. Due to scattering processes (in particular 171 

Rayleigh and Mie scattering), some portion of the radiation is reflected in the direction of the 172 

camera and an estimation of the range to water surface is possible.  173 

 174 

Fig. 3.  175 
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The angle α is a design parameter.  The CLDS was built with α =90̊ to simplify the measuring 176 

concept and the derivation of the formulas.  The CLDS shown in Fig. 3 is exactly symmetrical. 177 

Indeed, only one laser would be sufficient to acquire the range to the surface; nevertheless, two 178 

laser pointers improve error assessment and system accuracy.  179 

The value of the measured range Hm can be computed by measuring the angle θ′ at which light 180 

enters the camera, i.e. from equation (1). 181 

                                                                        
𝐻𝑚 =

𝐴

tan 𝜃′
 

(1) 

 
 182 

 Alternatively, the measured range Hm can be obtained through equation (2) 183 

 
𝐻𝑚 =

𝐴 ∙ 𝑓

𝐼𝑚𝐷
 

(2) 

 

 

Where ImD (Image distance) is the distance between the center of the image and the recorded 184 

light source. A calibration procedure is needed to convert from the number of pixels from the 185 

center of the image (PFC) to ImD as shown in equation (3)  186 

 
𝐼𝑚𝐷 = 𝑃𝐹𝐶 ∙ 𝑑𝑝𝑝1 + 𝑑0 (3) 

 

 Where dpp1 and d0 are the coefficients of the first-order polynomial producing the best least-187 

squares fit to the data. Equations (2) and (3) can be applied only when the focal length (f) of the 188 

camera is exactly and the focus is constantly set to infinity. Otherwise, the calibration procedure 189 

needs to estimate the angle θ′ directly from the number of pixels (PFC) as shown in equation (4). 190 

 
𝜃′ = P𝐹𝐶 ∙ 𝑟𝑝𝑝1 + 𝑟0 (4) 
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Where rpp1 and r0 are the coefficients of the first-order polynomial producing the best least-191 

squares fit to the data. The calibration procedure, which has to be performed to estimate the rpp1 192 

and r0 coefficients, is presented in the appendix. The calibration procedure allows estimation of 193 

the angle θ′ by measuring PFC, without having to consider the linear or nonlinear intrinsic 194 

camera parameters, such as focal length and lens distortion.   195 

Onboard the UAV, tilting and rotation cause a displacement of the light sources from their 196 

equilibrium position. The changes in the geometrical relationships generate an error in the 197 

estimation of the true range distance (hereafter defined as Ht) between the sensor of the camera 198 

and the water surface. Tilting is the angle between the plane on which the camera and laser are 199 

located, i.e. the axis of the CLDS, and the horizontal plane (angle β as shown in Fig. 4). Rotation 200 

occurs between the vertical line and the optical axis of the camera (angle δ as shown in Fig. 5).  201 

      

 

Fig. 4  

 

 

 

Fig. 5 

 

 

If tilting pushes the light source below the axis of the distance meter, formula (5) can be used to 202 

obtain the true range (Ht) between the camera and the water surface: 203 
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 Ht = [ (𝐻𝑚 + 𝐴 ∙ tan 𝛽) cos 𝛽 ] ∙ cos 𝛿 
(5) 

 

 

Conversely, if the tilting pushes the light source above the axis of the CLDS, formula (6) can be 204 

used:  205 

 Ht = [ (𝐻𝑚 − 𝐴 ∙ tan 𝛽) cos 𝛽 ] ∙ cos 𝛿 
(6) 

 

 

If pitch and roll angles are retrieved on board the UAV, the measured range can be corrected 206 

according to equation (5) and (6) (Reyna Gutierrez, 2013). If the angles are not retrieved on 207 

board, the resulting error on the range can be estimated as shown in Fig. 6. Numerous tests have 208 

been conducted in order to determine the best configuration of the CLDS in terms of: i) arm 209 

length A, ii) wavelengths of the two laser pointers, iii) optimal camera configuration parameters 210 

such as optical zoom and resolution.  211 

The arm length choice affects the measuring range function, as shown in Fig. 7.                                      212 

 

Fig. 6                                                                                                                

 

 

Fig. 7                                                                                                                

 

 

Fig. 7 shows that the resolution of the measurements depends on the derivative of the range 213 

function. Hence, a longer arm will result in higher resolution, especially for longer ranges. 214 

Indeed, in Fig. 7, the smoothest curve is for an arm length of 0.6 m. However, the payload size of 215 

small UAVs is limited and thus a 30 cm arm was chosen for our tests. The wavelengths of the 216 

two laser pointers were chosen as 450 nm and 531 nm, because reflectivity of water is relatively 217 
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high at these wavelengths as a consequence of the optical proprieties of water as described in 218 

Hale and Querry (1973).    219 

When the laser light hits the water surface, a bright dot is formed at the point of contact. 220 

However, additional bright spots might be visible due to reflection from the riverbed and due to 221 

additional scattering processes caused by water waves. To identify the two dots formed by laser 222 

reflection, an automatic identification algorithm was developed consisting of the following 223 

computational steps: i) the RGB image is converted to Hue, Saturation and Value (HSV) image. 224 

Quasi-circular shapes in the image are found through circular Hough transform  (Yuen et al., 225 

1990). In case there are multiple circles in the image, the two circles (one generated by the left 226 

laser and one by the right laser) with the highest mean Value (V) are considered to be the contact 227 

spots. Thereafter, ii) the brightest pixel (pixel with the highest Value) is identified inside each of 228 

the two circles (laser dots). The brightest pixel typically lies in the center of the laser dot in case 229 

of normal light incidence. Lastly, iii) the distance (PFC) between the center of the image and the 230 

two identified brightest pixels is computed. Post-processing of the images is performed after the 231 

flight and takes around 30 seconds per image.  232 

2.1.4. GNSS system 233 

The differential GNSS system consists of two NovAtel receivers: one used as master station 234 

(flexpack6) and one as rover (OEM628 board). A NovAtel GPS-703-GGG pinwheel triple 235 

frequency and GLONASS antenna is used as base station and an antcom (3G0XX16A4-XT-1-4-236 

Cert) dual frequency GPS and GLONASS flight antenna is used as rover station on the UAV. 237 

Raw pseudoranges and carrier phase measurements are stored at 5 Hz. The position solution is 238 

post-processed using Leica Geomatic Office v 8.1 in kinematic mode. In post-processed mode, a 239 

Kalman filter can be applied both in forward and backward direction for best position 240 
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performance. The length of the GPS baseline affects the vertical and horizontal accuracy of the 241 

drone position. Position error is expected to increase by 1-3 ppm (1-3 mm additional error per 242 

km of baseline).   243 

 244 

2.1.5.   Payload controller 245 

Data acquired by the different sensors are saved on the SBC (BeagleBone Black) and a time 246 

synchronization of the different sensors can be performed. Synchronization between the position 247 

retrieved by the GNSS system and the range retrieved by the sensors is essential for accurate 248 

water level observations, as described in Appendix B. 249 

 250 

2.2. Testing of the sensors 251 

To test the accuracy of the system, both static (ground-based) and dynamic (airborne) tests were 252 

performed. First, several tests were conducted from bridges of different heights over free-flowing 253 

rivers in order to test accuracy, precision and maximum ranging capability. Beam divergence 254 

was tested by acquiring measurements inside a water well of small diameter. After the ground-255 

based tests, numerous flight tests were conducted over a lake. Because the water level in the lake 256 

can be assumed to be uniform in space, these flights allowed determination of the accuracy of the 257 

full system, which consists of the GNSS receiver and the ranging sensors. Appendix B reports 258 

the experimental settings of both static and airborne tests. 259 

 260 
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2.2.1. Ground-based evaluation 261 

Accuracy of the ranging sensors was estimated using as reference a water level dip meter, which 262 

has an accuracy better than 0.3% of the range. When tested in static mode, sensors acquired 263 

measurements for 30 seconds. Subsequently the average range (�̅�) was computed as the weighted 264 

arithmetic mean as shown in equation (7) after outlier removal (5σ). 265 

 
�̅� =

∑ 𝑓𝑖𝑥𝑖
𝑁
𝑖=1

∑ 𝑓𝑖
𝑁
𝑖=1

 
 

(7) 

 

 

 266 

 In equation (7) xi is an observation and fi the frequency of that value. N is the total number of 267 

measurements which depends on the reading range of the individual sensor. 268 

 Precision is estimated as standard deviation (𝜎) of the measuring stack, and is computed using 269 

equation (8): 270 

 

𝜎 = √
∑ 𝑓𝑖 ∙ (𝑥𝑖 − �̅�)2𝑁

𝑖=1

∑ 𝑓𝑖 − 1𝑁
𝑖=1

 

 

(8) 

 

 

 271 

Maximum ranging capability is the maximum range from which the sensor can retrieve a 272 

measurement with a reasonable accuracy (i.e. 5% of the range).  273 

Beam divergence is defined as the measure (in angular units) of the increment in beam 274 

diameter  with distance from the optical aperture or antenna from which the sonic or 275 

electromagnetic beam emerges. A larger beam divergence leads to a larger ground footprint of 276 

the signal, which results in contamination of the signal if the surface is inhomogeneous. For the 277 

CLDS this parameter is negligible, since its ground footprint directly depends on the arm length 278 

A and the laser beam divergence is very low. Moreover, the CLDS provides images of each 279 

individual acquisition and the user can perform a-posteriori supervision to control if the 280 

https://en.wikipedia.org/wiki/Beam_diameter
https://en.wikipedia.org/wiki/Beam_diameter
https://en.wikipedia.org/wiki/Aperture
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measured target is indeed the water surface. For the radar and the sonar, beam divergence is a 281 

critical parameter to ensure that water is measured without interference from the surroundings. 282 

This parameter has to be considered in order to monitor water bodies (e.g. large sinkholes, rivers 283 

surrounded by dense vegetation), which only expose a narrow stretch of water to aerial view. 284 

Indeed, because of loss of GNSS signal, flights under vegetation canopy or inside small cavities 285 

(e.g. karst sinkholes) cannot be performed without losing position accuracy. Beam divergence 286 

was estimated by acquiring measurements over water wells of small diameter, while water was 287 

gradually being pumped out, as described in Appendix B. 288 

2.2.2. Airborne evaluation 289 

Numerous flights were conducted above a 0.02 km
2
 lake located near Holte, Denmark 290 

(55.821720°N,  12.509067°E). Water level in the lake is practically uniform. Whilst the sonar 291 

and the CLDS identify only one target in the field of view, the radar can identify multiple targets 292 

and reports the target angle for each of those. This requires an accurate identification of the 293 

target, which is representative of the water surface. Indeed, sometimes multiple targets are 294 

retrieved at nadir angle, for instance when vegetation is overhanging the water body. In that case, 295 

postprocessing requires switching between different targets to obtain a result that is continuous 296 

in time. Moreover, a low-pass digital filter was applied on the 15Hz raw radar data. A weighted 297 

moving average (WMA) with a temporal window of 0.33 s (five observations) was applied to 298 

smoothen the signal as shown in equation (9). 299 

 𝑊𝑀𝐴𝑡 = 𝑤1𝐴𝑡−2 + 𝑤2𝐴𝑡−1+𝑤3𝐴𝑡 + 𝑤4𝐴𝑡+1 + 𝑤5𝐴𝑡+2 (9) 

 

 
 300 
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Weights (w1, w2…w5) are normally set to a high value for the measurement taken at the actual 301 

time (At) and to lower values for the previous and subsequent measurements. 302 

.The overall accuracy of the system consisting of the GNSS receiver and the ranging sensor 303 

(𝜎𝑡𝑜𝑡) is assumed to be that of two independent normally distributed variables: the ranging sensor 304 

accuracy and the GNSS accuracy (10).  305 

 
𝜎𝑡𝑜𝑡 = √𝜎𝑠

2 + 𝜎𝑅𝑇𝐾
2  

 

(10) 
  

 
     306 

where 𝜎𝑠 is the accuracy of the ranging sensor and 𝜎𝑅𝑇𝐾 is the accuracy of the GNSS receiver. 307 

3. Results 308 

The first section of the results describes the technical performance of the ranging sensors when 309 

tested from a static position on the ground. Results are based on numerous tests conducted from 310 

bridges of different heights to compare the technical performance of the different sensors. The 311 

second section describes the results of the flight tests that are intended to evaluate the accuracy 312 

of the integrated system, i.e. GNSS receiver and sensors operating on board the UAV. 313 

3.1. Ground-based performance results 314 

Sensors demonstrated different performance in terms of accuracy and standard deviation of the 315 

measuring stack when tested from bridges of different heights. Appendix B lists the experimental 316 

settings for the static tests. Fig. 8 shows that the sonar usually tends to overestimate the range to 317 

water surface, which is probably caused by a slight penetration of the ultrasonic wave (42 kHz) 318 

below the water surface. Conversely, the radar usually tends to underestimate the range. The 319 
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authors guess that this is due to the post-processing of the raw data by the proprietary radar 320 

firmware.  321 

 322 

 323 

Fig. 8 324 

 325 

 326 

Table 1 summarizes the sensors’ technical performance in terms of accuracy, standard deviation 327 

of the measurement stack, maximum ranging distance and beam divergence. 328 

 329 

Table 1 330 

 331 

Table 1 confirms that the sonar is the best sensor in terms of accuracy and standard deviation of 332 

the measurement stack. The CLDS has the lowest beam divergence. However, the radar is the 333 

sensor that combines the longest ranging capability, with accuracy and standard deviation that 334 

are only slightly worse than for the sonar. In Fig.9, two regression lines confirm the systematic 335 

error of radar and sonar. Plotted as function of the range, the regression line of the radar absolute 336 

error has a slope of -0.0090, while the slope of the sonar is 0.0083. After removal of this 337 

systematic error, the radar shows an accuracy of 0.5 % of the range, whilst the accuracy of the 338 

sonar is around 0.3%.  339 

 340 

 341 
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Fig.9 342 

 343 

 344 

Finally, the accuracy of the retrieved vertical position has to be assessed. The accuracy of the 345 

GNSS height depends mainly on: i) the integer ambiguity solution that has to be fixed to obtain 346 

reliable observations, ii) the satellite geometry that affects the dilution of precision (DOP), iii) 347 

multipath interference, especially because of signal reflection from the water surface.  348 

 349 

3.2. Airborne performance results 350 

In this section, we report the observations of two flights and we show a table summarizing the 351 

entire dataset of flights over the lake. The range measured by each of the sensors and the altitude 352 

retrieved by the GNSS are shown in Fig.10. The figure contains the entire dataset of observations 353 

retrieved by the radar and sonar. Only not-a-number (NaN) values are removed. The sonar 354 

outputs NaN when the range exceeds the maximum range capability (10 m). For the CLDS, we 355 

only reported the measurements retrieved from images in which the laser dots are clearly 356 

identifiable on the water surface.   357 

 358 

Fig.10 359 

 360 

Fig.10 shows an extremely high correlation (Pearson coefficient of 0.9991), between the GNSS 361 

and the radar measurements, which indicates the consistency of our ranging technology. The 362 

laser dots are generally distinguishable on the water surface only when the range to water surface 363 

is less than 12-13 m . Similarly, the sonar provided accurate measurements only when the UAV 364 
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was hovering at low altitudes (less than 10 m from the water surface). Indeed, the radar and 365 

sonar curves only overlap during these flight maneuvers. 366 

In Fig. 11 we display the water level measured by the different sensors. Outliers (>2) were 367 

removed.  368 

 369 

Fig. 11 370 

 371 

Mode value, mean and standard deviation of water level retrieved by each of the sensors are 372 

reported in Table 2  under the column with flight date “04/04”. The dispersion in water level 373 

measurements retrieved by the system consisting of the radar and the GNSS receiver may be due 374 

to multipath errors on the GNSS receiver. The cut-off angle for the elevation of the satellites, 375 

which defines the angle below which GPS satellites are excluded, turned out to be a sensitive 376 

parameter.  The selected values for each flight are reported in Appendix B. 377 

The water level values retrieved by the sonar had low accuracy, especially during high-speed 378 

maneuvers. Since the range to water surface was greater than the maximum range capability of 379 

the sonar for a significant portion of flight duration, the sonar retrieved many NaN values and 380 

noisy observations. However, the mode value retrieved by the sonar is 24.14 m, which is close to 381 

the mean value retrieved by the radar.  382 

The CLDS exhibits only few observations due to limited range capability and low frame rate. 383 

Moreover, natural light conditions complicate the recognition of the laser dots on the water 384 

surface.  385 

In order to estimate the absolute accuracy of the sensors, results were compared to in-situ 386 

measurements of water level. For the in-situ measurement, an additional accurate RTK (Real 387 
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Time Kinematic) GNSS rover station was used, which was connected to a Danish GPS network. 388 

The position was averaged over a period of one minute which resulted in 24.10 m above the 389 

DVR90 geoid model (with an estimated accuracy of the GNSS rover station of around 5-6 cm). 390 

For this flight, the accuracy of the radar is thus better than 5 cm, the mode value of the sonar is 391 

around 4 cm from the ground truth, while the mean value retrieved by the CLDS is within two 392 

decimeters. 393 

The second flight reported in Fig. 12 evaluated performance for higher drone altitude (up to 60 394 

m) above the water surface.  395 

 396 

Fig. 12 397 

 As shown in Fig. 12, the radar and the GNSS show very high correlation for the entire flight. 398 

The flight confirmed the limited ranging capability of the sonar (specified as 10 m, but already 399 

very noisy beyond 9 m). The CLDS retrieved ranges up to 13 m, however standard deviations 400 

increased significantly with range.  In Fig. 13 we compare the water level retrieved by the three 401 

different sensors for this flight.  402 

 403 

Fig. 13 404 

 405 

Statistics of the flight are shown in Table 2  under the column “27/05”. In-situ water level was 406 

24.01 m.  Fig. 13 shows that the sonar measurements were unsuccessful. The CLDS, despite very 407 

high standard deviations, shows a mean value that is very close to the ground truth. The radar 408 

shows higher dispersion for long ranges. Moreover, systematic error is still observable, in fact 409 
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when the drone is at higher altitude, the retrieved water level increases by a few cm. System 410 

performance was confirmed in a number of other flights, as shown in Table 2 . Experimental 411 

settings, such as flight speed, illumination conditions, sensor settings for each flight, are 412 

explained in appendix B. 413 

 414 

 415 

Table 2  416 

 417 

Table 2  clearly indicates that the radar is the most reliable sensor, with the lowest standard 418 

deviation and good agreement with in-situ measurements. However, during some of the flights, 419 

the measured water level exhibits significant standard deviation also for the radar. This 420 

dispersion of the water level observations is caused not only by ranging errors but also by the 421 

GNSS. Indeed, during some flights, the geometrical configuration of GNSS satellites may have 422 

been suboptimal for accurate positioning. In addition to this, multipath of the GNSS signal may 423 

occur and degrade the accuracy of water level observations to ca. 7 cm. 424 

The sonar provides very noisy measurements and exhibits a skewed distribution with a fat tail 425 

around 10 m, which is the maximum range of the sensor. While the mean value of water level 426 

does not provide an accurate estimate, the mode values measured by the sonar are very similar to 427 

the corresponding values measured by the radar.  428 

For the CLDS, the mode value is not relevant because the number of observations is low. The 429 

CLDS standard deviation is quite large and in order to obtain accurate results the drone has to 430 

hover for several seconds. 431 
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4. Discussion 432 

The ranging technology showed great potential in terms of accuracy, maximum range and beam 433 

divergence. In particular, the radar demonstrated the best performance in terms of accuracy and 434 

maximum range.  The ranging sensor has to be integrated with carrier phase differential GNSS to 435 

retrieve water level. The accuracy of the integrated system consisting of GNSS receiver and 436 

radar is estimated to be better than 5-7 cm. This accuracy can be compared with the accuracy 437 

achievable with: i) airborne LIDARs, ii) spaceborne laser altimetry, iii) spaceborne radar 438 

altimetry and iv) ground-based stations as shown in Table 3.  439 

 440 

 441 

 442 

Table 3  443 

 444 

 445 

Few studies report the accuracy of LIDAR system in measuring water surface, but it has been 446 

estimated to vary from few cm up to two tens of cm (Hopkinson et al., 2011). For airborne 447 

LIDAR systems, the inaccuracy of the onboard positioning systems has to be included. Similarly 448 

spaceborne laser altimetry from ICESat, which is the satellite altimeter with the smallest 449 

footprint (50–90 m) and the highest along-track resolution (40 Hz, 170 m), provides water 450 

surface elevation measurements for rivers with an accuracy at decimeter level. However the 451 

accuracy degrades in case of cloud cover (Phan et al., 2012).  Additionally, simultaneous return 452 

from land and water are inevitable for small rivers and the identification of water surfaces 453 

remains problematic.   The accuracy of radar altimetry sensors such as the systems on board 454 
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Jason-2 (Asadzadeh Jarihani et al., 2013), Envisat (Frappart et al., 2006) and Cryosat-2 (Song et 455 

al., 2015) is in the order of some tens of dm. Moreover, satellite radar altimetry generally has a 456 

spatial resolution lower than satellite laser altimetry and requires that rivers are hundreds of 457 

meters wide to avoid signal contamination by interfering land and vegetation (Maillard et al., 458 

2015). With UAV-borne monitoring, water surface and interfering surroundings can be clearly 459 

separated due to the smaller ground footprint, and the possibility to retrieve individual radar 460 

target angles. However, for very narrow fields of view, the CLDS is the only sensor that can 461 

provide reliable water level measurements. Image analysis as part of the post-processing 462 

workflow ensures that measurement are accepted only if the monitored target is the water 463 

surface. This is the case for rivers surrounded by dense riparian vegetation or for small targets 464 

such as karst sinkholes, e.g. on the Yucatán Peninsula (Gondwe et al., 2010). Our CLDS solution 465 

overcomes the limitations of traditional red wavelength time-of-flight (TOF) laser distance 466 

meters, which are not suitable for ranging to water surfaces, because the reflectivity of water is 467 

very low for red visible wavelengths.   468 

Only ground-based hydrometric stations ensure an accuracy higher than the one achieved with 469 

UAV-based monitoring, but coverage and reliability of in-situ monitoring networks have been 470 

degrading in many regions of the world. Moreover, despite providing high accuracy and 471 

temporal resolution, in-situ stations acquire only local measurements and tend to fail during 472 

extreme events. Therefore, UAV-based water level monitoring is beneficial for the monitoring of 473 

a wide range of hydrological systems, including small-scale rivers, ephemeral lakes, sinkholes, 474 

meltwater lakes, etc… UAV-based water level observations can resolve the spatial 475 

multidimensional variability of rivers. Indeed, UAVs can monitor water level along and across 476 

the river course, in order to obtain water slope and assess interaction between rivers and adjacent 477 
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floodplains. Improved sharpness and reliability of estimates of surface water-groundwater 478 

interaction using UAV-based monitoring of  river water levels have already been reported 479 

(Bandini et al., 2016).  Furthermore, UAVs can sense water level in unconventional remote 480 

sensing targets such as sinkholes or cenotes. This could potentially improve mapping of phreatic 481 

surfaces, for instance for the Yucatan peninsula (Bauer-Gottwein et al., 2011).  Additionally, 482 

UAVs can potentially be used during extreme events when in-situ monitoring stations often fail 483 

and satellite observations do not ensure the required spatial and temporal resolution. Thus, UAVs 484 

have the potential to improve flood risk assessment. However, the ±7cm accuracy of our 485 

technology may still be insufficient for rivers flowing through low-lying terrain. Nonetheless, the 486 

accuracy is better than other spaceborne and airborne technologies and UAVs have a great 487 

potential in improving flood mapping because they allow optimal timing of the observations and 488 

high spatial resolution. UAV-based observations of water level in the flooded areas allow 489 

determination of stage-damage curves (Cammerer et al., 2013) which are essential for the design 490 

of insurance policies. 491 

5. Conclusions 492 

UAV-based remote sensing of river and lake water level (orthometric height) has the potential to 493 

fill the gap between in-situ measurements and spaceborne remote sensing. It ensures: i) high 494 

accuracy, ii) optimal spatial resolution, iii) flexible timing of the sampling, and iv) precise 495 

tracking of lakes and rivers. Different water surface ranging sensors were tested: a radar, a sonar, 496 

and a CLDS.  497 

Static (on ground) and dynamic (airborne) tests demonstrated the following results: 498 
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 The radar showed the best accuracy and longest maximum range. Despite having a 499 

resolution of only 10 cm, averaging the 15 Hz primary data, an accuracy of 0.5% of the 500 

range can be achieved after correction of a negative bias of 0.9% of the range. 501 

 The sonar provided unreliable results for high ranges or high speeds.  Our results show 502 

that the sonar generally overestimates the range to water surface. However, when the 503 

UAV flies at a stable and low height, the accuracy is down to a few centimeters. 504 

 The CLDS is less accurate than the radar. However, it has the lowest beam divergence 505 

and is useful when only a narrow field of view to the water surface is available for 506 

sensing. 507 

Water level can be measured on board UAVs by subtracting the range to water surface from 508 

the vertical position retrieved by the GNSS receiver. Dynamic (airborne) tests have been 509 

performed on the positioning technology and the GNSS receiver had a vertical accuracy 510 

around 4-6 cm (2) and had an expected horizontal accuracy around 2 cm (2). However, 511 

multipath of the GNSS signal causes problems above water and the choice of the cut-off 512 

satellite elevation angle has a considerable influence on the position accuracy.  513 

The integrated system GNSS receiver and radar is able to measure water level with an overall 514 

accuracy better than 5-7 cm when the UAV flies at a speed of few km/h.  515 

Future research should include different types of sonar sensors, trading off signal penetration 516 

below the water surface (more penetration at lower frequencies) and interference of the propeller 517 

noise (more interference at higher frequencies). Moreover, research efforts are ongoing to 518 

develop new radars with higher measurement resolution, exploiting other region of the 519 

microwave spectrum commonly used in radar altimetry such as Ku and Ka bands.   520 

 521 
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 522 

 523 

The master thesis from Reyna Gutierrez, J. A. (2013) ‘’Monitoring and modeling of regional 524 

groundwater flow on the Yucatán Peninsula’’ can be obtained from the authors upon request. 525 
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 642 

 643 

 Appendix A. Calibration of the CLDS 644 

The CLDS needs to be calibrated in order to provide a ranging measurement. Calibration has 645 

been performed acquiring multiple range measurements (from 0 to 12 m) using a black vertical 646 

wall as calibration target. Since the focal length of the camera is not exactly known, equation (4) 647 

must be used and the calibration is used to retrieve the coefficients rpp1 and r0 for converting from 648 

pixel units to angular units. The relationships between θ′ and the distance from the laser dots to 649 

the center of the image (PFC) are shown in Fig. A.1 for each of the laser pointers. Alternatively, 650 

Fig. A.2 depicts the relationship between the range to the target and PFC.  651 
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Fig. A.1 

 

 

 

Fig. A.2  

 

 652 

Fig. A.1 and Fig. A.2 show that the laser pointers’ curves are not coincident as a consequence of 653 

the slight asymmetry of the layout (imaging sensor of the camera not placed exactly in the 654 

middle of the two laser pointers). As confirmed by Fig. A.1, the relationship between PFC and 655 

the measured angle is approximately linear for each of the two laser pointers. Calibration has 656 

shown an r (Pearson linear correlation coefficient of determination) of 0.99978 and an RMSE 657 

(Root Mean Square Error) of 7.16 cm for the blue laser (left laser); an r of 0.99937 and an RMSE 658 

of 8.29 cm for the green laser (right laser). Calibration error is displayed in Fig. A.3. 659 

Fig. A.3  660 

 661 

Fig. A.4 662 

 663 

Fig. A.3 demonstrates that the advantage of using two laser pointers is improved error 664 

assessment. Considering the average of the measurements of the two laser pointers, calibration 665 
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RMSE is reduced to 5.61 cm. When range to water surface has to be retrieved, the precise 666 

computation of PFC is more problematic than during the simple calibration procedure. Indeed, 667 

while laser dots can be normally identified as in Fig. A.4 (a), laser dots on the water surface 668 

might have contours that are less defined as in Fig. A.4 (b). Sometimes even multiple laser dots 669 

are visible, as shown in Fig. A.4 (c). This is caused by: i) atmospheric scattering processes, ii) 670 

scattering processes due to water waviness iii) vibrations of the UAV. The laser light reflected 671 

from the bottom is occasionally visible in the image, especially in case of shallow or very clear 672 

water, as shown in Fig. A.4 (d). Experiments showed that the uncertainty in the PFC increases 673 

with the range to water surface. This is displayed in Fig. A.5 with the curve PFC-σPFC. Fig. A.5 674 

clearly shows that the green laser exhibits larger uncertainty than the blue laser since green 675 

wavelengths are scattered to a greater extent than blue wavelengths. The expected uncertainty in 676 

the range can be estimated using the derivative of the range function as shown in equation (A.1). 677 

 
𝜎(𝑟𝑎𝑛𝑔𝑒) =

𝜕𝑟𝑎𝑛𝑔𝑒

𝜕(𝑃𝐹𝐶)
𝜎(𝑃𝐹𝐶) 

 

(A.1) 
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Fig. A.5 

 

 

Fig. A.6 

 

Fig. A.6 shows that the uncertainty of the range estimate increases with the range to water 678 

surface. This is a consequence of: i) the derivative of the curve in Fig. A.2 that increases in 679 

absolute value for longer ranges (small inaccuracy in PFC determines high imprecision in the 680 

range observation). The derivative is lower in absolute terms for the blue laser, because of the 681 

prototype layout. ii) Increasing uncertainty of the PFC with increasing range (i.e. decreasing 682 

PFC).  683 

 684 

 685 

 Appendix B.  Experimental settings 686 

 687 

 688 
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In Table B.1 we report the location, the date and time of the day, the environmental conditions 689 

and the water flow speed for each of the static tests. The mean value and the standard deviation 690 

of the measurements are shown in Figure 8.  691 

Here Table B.1 692 

Illumination conditions are reported in the table because they affect visibility of the laser dots on 693 

the water surface. This factor has been critical only in case of sun glint conditions during which 694 

laser dots are hardly identifiable. On the other hand, wind stress and current can affect water 695 

surface roughness and change the intensity of the backscattered radar signal.  696 

Estimates of beam divergence for the different sensors were obtained from tests above a 697 

cylindrical water well of diameter (D) equal to 0.7 m. The sensors were placed exactly in the 698 

middle of the water well as shown in Fig. B.1. The initial range between the sensors and the 699 

water surface was 0.5 m. Subsequently, the well was pumped to gradually increase the range to 700 

the water surface. Beam divergence (φ) was then computed according to equation B.1. 701 

 
𝜑 = 2 ∗ tan−1

𝐷

2 ∙ 𝑟𝑐
 

 

(B.1) 

 

 

In equation B.1, rc is the critical range i.e. the range at which the sensor first produced erroneous 702 

results because of interference with the well walls. Fig. B.1 provides an illustration of the 703 

experimental setup. 704 

 705 

Fig. B.1 706 

 707 
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While the CLDS was able to retrieve the range to water surface for all water levels (beam width 708 

is constant and equal to the arm length), the beam divergences of the radar and the sonar were 709 

estimated using this method. For the radar, interferences started to occur at a range of 1.3 m, and 710 

for the sonar at 1 m. Equation B.1, then gives beam divergence of the radar as ca. 30° and beam 711 

divergence for the sonar as ca. 40°.  712 

Table B.2 shows the flight records for the tests conducted over the lake to estimate the airborne 713 

accuracy of the system. 714 

 715 

Table B.2 716 

 717 

 718 

As Table B.2 shows, the GNSS satellite cut-off angle settings are different between the flights. 719 

The cut-off angle showed an influence on the position accuracy, and thus on the water level 720 

measurements, up to 1-2 cm. Larger cut-off angles reduce the number of satellites in the field of 721 

view of the GNSS antenna, while smaller cut-off angles might increase multi-path effects (e.g. 722 

GNSS signal reflected by the water surface).  723 

Average and vertical speed was varied between the different flights to test the synchronization 724 

between the GNSS system and the different sensors. Indeed, since water level is constant in the 725 

lake, when the drone rapidly changes its altitude, equivalent variations should be recorded by the 726 

ranging sensors and the GNSS system. Synchronization between the radar, sonar and the GNSS 727 

was obtained at the 30 ms level, while synchronization with the CLDS was obtained at the 0.2 s 728 
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level. The synchronization between the GNSS system and  the CLDS is slightly worse because, 729 

even though the SBC registers the time at which the camera is triggered, the actual time that the 730 

CMOS camera needs to take a picture is unknown.  731 

 732 

_____________________________________________________________________________ 733 

 734 

Figures 735 

 736 

 737 

 738 

Fig. 1. Illustration of measurement principle for retrieving water level. The system includes: i) the UAV, ii) the 739 
sensors to measure the range from the UAV to the water surface,  iii) a GNSS receiver on board the UAV providing 740 
accurate vertical and horizontal position. Centimeter-level position accuracy is obtained through the installation of 741 

an in-situ GNSS master station providing corrections for a kinematic post-processed solution. 742 
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 743 

 744 

Fig. 2. Picture of the drone payload. It includes the three tested sensors (CLDS, radar and sonar), the GNSS system 745 
(antenna and receiver), the IMU, the Single Board Computer (SBC) and the power convertion units (DC/DC 746 

converters). 747 

 748 

 749 

 750 

 751 

 752 

Fig. 3. Geometric configuration of the CLDS solution. A is the distance between the center of the camera and each 753 
of the laser pointers. α is the angle between each of the lasers and the focal plane of the camera.  Hm is the distance 754 
between the camera and the water surface. ImD is the distance between the center of the image focal plane and each 755 
of the recorded laser light dots. f is the focal length of the camera. θ′ is the reflection angle. θ is its angle between the 756 

axis of the CLDS and the reflected ray. γ is the angle between incident and reflected ray. If α is 90° (as in the 757 
figure), γ is equal to θ′. 758 

 759 
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 760 

 761 

Fig. 4. Tilting angle: β is the angle between the horizontal line and the plane where the lasers and the camera are 762 
located. 763 

 764 

 765 

 766 

 767 

 768 

Fig. 5. Rotation angle: δ is the angle between the vertical line and optical axis of the camera. 769 

 770 
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 771 

 772 

 773 

Fig. 6. Error as a function of displacement angles. Absolute error is shown for different tilting (β) and rotation (δ) 774 
angles at 10 m range. 775 

 776 

 777 

 778 

 779 

 780 

Fig. 7. Range distance as a function of the θ′ angle. The range function depends on the different length values of A, 781 
which is the distance between the laser source and the camera. 782 

 783 

 784 
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 785 

 786 

Fig. 8. Absolute error as a function of the range measured by each of the ranging sensors. Absolute error is 787 
computed using the water level dip meter as reference. The marker is the average error (bias) of all measurements 788 

taken for a specific range, while the bar shows the standard deviation.  789 

 790 

 791 

 792 

Fig. 9. Sonar and radar errors as a function of the range. Dots represent the measurements acquired by the radar and 793 
the sonar. The regression line shows that the absolute error is a function of the range.   794 

 795 

 796 

 797 

 798 
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 799 

 800 

Fig. 10. Observations retrieved during the flight on April 4, 2016. The plot shows the range measured by the radar 801 
(blue), sonar (red), CLDS (green) in meter (m) to the water surface, and the drone altitude retrieved by the GNSS  802 

(black) in meter above mean sea level (mamsl). 803 

 804 

 805 

 806 

Fig. 11. Water level (mamsl) observations retrieved during the flight on April 4, 2016. Each of plots shows the water 807 
level observations measured by subtracting the range retrieved by each of the sensors (radar, sonar, CLDS) from the 808 

GNSS altitude. In each plot, the black line is the mean of the water level observations and the magenta line is the 809 
mode of those observations. 810 

 811 
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 812 

Fig. 12. Observations retrieved during the flight on May 27, 2016. The plot shows the range measured by the radar 813 
(blue), sonar (red), CLDS (green) in meter (m) to the water surface, and the drone altitude retrieved by the GNSS 814 

(black) in meter above mean sea level (mamsl). 815 

 816 

 817 

  818 

Fig. 13. Water level (mamsl) observations retrieved during the flight on May 27, 2016.   Each of plots shows the 819 
water level observations measured by subtracting the range retrieved by each of the sensors (radar, sonar, CLDS) 820 
from the GNSS-derived altitude. In each plot, the black line is the mean of the water level observations and the 821 

magenta line is the mode of those observations. 822 

 823 

 824 

 825 
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 826 

 827 

Fig. A.1. Relationship between the measuring angle θ′ and PFC. 828 

 829 

 830 

 831 

 832 

Fig. A.2. Relationship between the range to the target and PFC. 833 

 834 

 835 

 836 

 837 
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 838 

Fig. A.3. Calibration error for left laser (blue column), right laser (green column) and for the average (red column) 839 
between the two laser pointers. 840 

 841 

 842 

 843 
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 844 

Fig. A.4. Airborne image of water surface taken by the CLDS. (a) the two laser dots are clearly identifiable (b) 845 
larger laser dots with contours that are less identifiable (c) multiple green laser dots caused by multiple reflection 846 
and scattering processes (d) laser light is reflected by the bottom (larger dots) and by the surface (smaller dots) 847 

 848 
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 849 

 850 
Fig. A.5. Uncertainty (σPFC) in computing the number of pixels as a function of PFC, for green and blue laser. 851 

 852 
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 853 

 854 

 855 
Fig. A.6. Absolute uncertainty in range measurement (│σrange│) as a function of the range to the target, for green 856 

and blue laser. 857 

 858 

 859 

 860 

 861 

 862 
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 863 

 864 

Fig. B.1. Schematic representation of the test conducted over the water well to retrieve beam divergence (φ) for each 865 
of the sensors. D is the diameter of the water well, rc is the critical range. 866 

 867 

Tables 868 

 869 

 870 

Table 1. Technical performance of the sensors and of the GNSS receiver when tested in static mode. 871 

  mean absolute 

error (percentage 

of the range) 

standard 

deviation of the 

stack 

Maximum ranging 

distance 

Beam divergence 

Radar  -1.09% 

  

0.064 m 

  

60 m near field 

200 m far field 

~30˚ 

Sonar  0.98% 0.007 m  10 m >40˚ 

CLDS 1.5%  2.3 % of the range 13 m  negligible  

     

GNSS receiver negligible Vertical ------ ------ 
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coordinates : 4-6 

cm at 2 sigma  

 872 

 873 

 874 

Table 2.  Summary of the test flights over the lake. Each flight is named with the date (corresponding year is 2016). Ground truth 875 

was measured with a RTK GNSS rover station connected to the network of reference stations. Statistics concern the water level 876 

observations measured by subtracting the GNSS flight altitude from the range to water surface measured by each of the sensors. 877 

Statistics are computed after removal of the observations that lie beyond 2σ.  878 

 879 

 880 

 881 

 882 

 883 

 884 

 885 

 886 

 887 

 

Flight statistics 

Flight date (dd/mm/2016) 

17/03 

 

04/04 13/04 05/13 27/05 

Ground truth (mamsl) missing 24.10±0.0

6 

24.13±0.0

6 

24.04±0.0

6 

24.01±0.0

6 

Mean value (mamsl) of water 

level retrieved by 

 

radar 24.10 24.11 24.20 24.11 24.02 

sonar 23.50 23.93 20.01 27.05 38.45 

CLDS missing 24.29 24.81 24.82 23.93 

Mode value (mamsl) of water 

level retrieved by 

radar 24.18 24.13 24.10 24.12 24.00 

sonar 24.40 24.14 24.08 24.65 27.50 

CLDS missing 21.27 24.56 24.41 20.66 

Standard Deviation (m) in water 

level retrieved by 

radar 0.07 0.05 0.08 0.09 0.05 

sonar 0.80 2.31 1.3 0.36 14.42 

CLDS missing 1.08 0.95 1.68 2.05 
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 888 

 889 

 890 

Table 3. Accuracy and ground footprint of different techniques for observing water level 891 

Location Technique Footprint Accuracy Reference 

Airborne  LIDARs 20 cm-1 m 4-22 cm  (Hopkinson et al., 

2011) 

Spaceborne  laser altimetry (e.g. 

ICESat) 

50–90 m 10 cm  (Phan et al., 2012) 

Spaceborne  radar altimetry (e.g. 

ERS2, Envisat, 

Topex/Poseidon) 

400 m-2 km 30-60 cm (Frappart et al., 2006) 

Ground-based  

 

radar/sonar/pressure 

transducers 

negligible 1 mm-10 cm 

 

Widely known 

metrology 

UAV-borne  radar altimetry negligible 5-7 cm Methodology described 

in this paper 

 892 

Table B.1. Locations, settings and environmental conditions during static (on ground) tests. Coordinates are in WGS84.  Country 893 
is either Denmark (DK) or Italy (IT). Range (m) is the value measured by the water level dip meter. Water speed has qualitatively 894 
been classified into no speed (still water), low (less than 0.4 m/s), medium (between 0.4 and 1 m/s), and high speed (more than 1 895 
m/s). Wind speed has been qualitatively classified into no wind, low (wind less than 2 m/s), medium (between 2 m/s and 8 m/s), 896 
and high wind speed (more than 8 m/s). Illumination has been qualitatively classified into artificial lightening, low (less than 20 897 
000 lux), medium (between 20 000 and 50 000 lux), and high illumination (more than 50 000 lux) 898 

Latitude Longitude River Cou

ntry  

Range 

to water 

Date 

(dd/ 

mm/ 

2015) 

Time of 

the day 

(hh:mm) 

Flow 

speed 

Wind Illumination 

55.783431 12.515610 Laboratory DK 0.63 2/11 11:20 no no artificial 

55.775211 12.470266 Mølleåen  DK 1.60 20/11 13:30 low medium low 

55.775211 12.470266 Mølleåen  DK 2.38 20/11 11:41 low medium low 

55.775211 12.470266 Mølleåen  DK 2.58 20/11 11:52 low medium low 

55.775211 12.470266 Mølleåen  DK 2.65 10/10 11:20 low high low 

55.775211 12.470266 Mølleåen  DK 2.98 1/10 14:10 low medium low 

55.775211 12.470266 Mølleåen  DK 3.10 10/10 11:25 low high low 

55.775211 12.470266 Mølleåen  DK 3.49 10/10 11:49 low high low 

44.909645 10.991254 Sabbioncello 

 

IT 3.92 22/12 16:00 low low low 

55.775211 12.470266 Mølleåen  DK 4.20 10/10 14:10 low high medium 

55.775211 12.470266 Mølleåen  DK 4.35 1/10 14:33 low medium low 

45.038994 10.965141 Canale 

Bonifica 

IT 5.32 22/12 13:00 low low medium 
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Parmigiana, 

 

45.029723 10.959166 Canale della 

Bonifica 

Reggiana 

Montovana 

 

IT 7.10 22/12 14:05 low low low 

45.029726 10.960432 Canale della 

Bonifica 

Parmigiana  

IT 7.33 22/12 9:30 low low low 

44.650573 10.794755 Secchia IT 9.79 29/10 12:00 medium medium medium 

44.821261 10.994579 Secchia IT 11.16 29/10 12:50 medium medium high 

44.67578 10.860146 Secchia IT 12.20 29/10 13:50 medium medium medium 

45.008365 10.977453 Secchia IT 12.72 29/10 20:30 medium medium low 

44.727259 11.045292 Panaro IT 12.97 29/10 8:30 medium low low 

 899 

Table B.2. Summary of the test flights over the lake.  900 

 901 

 902 

 903 

 

Flight statistics 

Flight date (dd/mm/2016) 

17/03 04/04 13/04 05/13 27/05 

Take-off time (hh:mm) 15:00 12:20 13:20 13:00 12:00 

Flight time over water (s) 500 270 200 250 260 

Minimum-Maximum flight height (meter 

above water surface) 

3-28 4-18.5 5-60 8-48 9-58 

Average horizontal speed (m/s) 2 3 4 1 2 

Average vertical speed (m/s) 0.1 1.1 1 0.3 0.3 

Maximum vertical speed (m/s) 1 2 3 1.5 1 

GPS cut-off angle (degree) 10 13 14 15 15 


