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ABSTRACT 7 

Testing large quantities of samples in order to detect one or more test-positive sample(s) is expensive 8 

and time-consuming. It is possible to optimize this process by pooling samples. Two frameworks to 9 

produce different hierarchical and non-hierarchical pooling schemes were tested and compared to 10 

standard pooling. Their efficiency and the potential savings were determined as a function of 11 

prevalence and the number of pooled samples. 12 

The potential benefit of pooling samples is dependent upon the changes in the analytical sensitivity 13 

and specificity of the test used when diluting test-positive samples by pooling. To illustrate this, the 14 

sensitivity of antibody ELISA on pooled samples of bovine milk for Salmonella Dublin, 15 

Mycobacterium avium spp. paratuberculosis, and bovine virus diarrhea was tested. For these milk 16 

assays, the analytical sensitivity decreased rapidly with increasing pool sizes.  17 

The efficiency of pooling is usually only measured by the number of tests performed, yet real savings 18 

depend on all the costs involved in the pooling process. These may differ between laboratories 19 

depending on the available equipment and the salaries of the technicians, among other factors. 20 

Therefore, several cost parameters were introduced to describe the total cost and thereby calculate the 21 

total savings. In terms of overall savings, both tested schemes were potentially optimal depending on 22 

the prevalence, possible pool size, and the cost of retesting. For the pool sizes of interest in this study, 23 
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the three-stage hierarchical pooling scheme was often marginally more efficient in terms of the total 24 

number of tests. However, if the price of re-pooling was high, the two-stage scheme performed better 25 

in terms of total savings. In addition, for low prevalences and the possibility of pooling a large 26 

number of samples, the two-stage non-hierarchical test may be more efficient, both in terms of 27 

number of tests and overall cost. In order to apply these results in different laboratory settings, a free 28 

Shiny WebApp was developed, to compare several pooling schemes with different cost parameters. 29 

 30 

KEYWORDS 31 

Pooling; group testing; hierarchical; shifted transversal design 32 

 33 

ABBREVIATIONS 34 

DD: Double Dorfman; STD: Shifted Transversal Design  35 

 36 

INTRODUCTION 37 

The pooling of sample material is used extensively within the veterinary field to determine farm status 38 

and/or as an indicator for further investigation. The bulk tank milk of dairy cows can be tested for 39 

pathogens such as Salmonella Dublin (Nielsen et al., 2005), Streptococcus agalactiae (Andersen et 40 

al., 2003), bovine viral diarrhoea virus (Bitsch et al., 2000), and bovine herpesvirus (Nylin et al., 41 

2000). However, pooling has rarely been used to detect disease in individual animals.  42 

The minimum number of pooled tests required to detect a single test-positive sample firstly depends 43 

upon the degree to which a test-positive sample can be diluted and still be detected: how the 44 

sensitivity changes with the pool size. Secondly, it depends upon the number of test-negative samples 45 

amongst which the test-positive sample hides: the prevalence.  46 
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When determining whether pools are test positive or negative, it can be beneficial to establish 47 

alternative cut-offs for the ELISA, that are lower than the defaults recommended by the manufacturer. 48 

A lower cut-off is required because pooling dilutes test-positive samples, causing a lower signal, 49 

which then decreases the sensitivity of the test. Lowering the cut-off is also a method of increasing the 50 

potential pool size.  51 

Hierarchical pooling is done in multiple stages, but each sample is pooled only once per stage. For 52 

example, traditional pooling occurs in two stages, where samples are first pooled, and then samples 53 

from test-positive pools are tested individually. In a three-stage method, samples are initially pooled 54 

and samples from test-positive pools are then divided into a number of smaller pools. It is only 55 

following this second pooling stage that individual samples from positive second-stage pools are 56 

tested. This type of three-stage pooling is currently being used in HIV screening in several 57 

laboratories in the USA (Sherlock, 2007).  58 

Pooling of samples can also be done in non-hierarchical structures of different dimensionality. Non-59 

hierarchical means that all pools are tested simultaneously; ideally, it would be unnecessary to retest 60 

in order to locate test-positive samples. Examples of non-hierarchical pooling schemes are: pooling in 61 

two dimensions (which involves arranging samples in a matrix and pooling on the edges, so that each 62 

sample occurs in a row and column pool simultaneously), and arranging samples three dimensionally 63 

in a cube and then pooling on the edges where each sample occurs in three pools. Theoretically, this 64 

principle can be extended into infinitely high dimensions. However, there is a risk that the number of 65 

test-positive samples will exceed the non-hierarchical capacity of the test, and suspected test-positive 66 

samples in test-positive pools will then need to be retested individually to confirm the suspicion. An 67 

additional option of non-hierarchical schemes is to add extra pools, or ‘layers’ – this is known as 68 

combinatorial testing or solving the ‘group-testing problem’. The advantage of using combinatorial 69 

pooling is that the probability of needing to retest samples to identify the individual test-positive 70 

sample may be significantly reduced. Reducing the number of retests can potentially save time and 71 

money.  72 
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The efficiency of pooling in terms of number of tests has been the subject of a number of publications, 73 

for example many of these pooling schemes are presented in Du & Hwang (2006), Hughes-Oliver 74 

(2006), and Cheng & Du (2008). The relevance of a particular pooling framework may not be solely 75 

determined by the number of tests required to detect a test-positive sample, but should also include the 76 

cost of pooling, testing, re-pooling, retesting, as well as the time taken for each of these steps. 77 

Therefore, the objective of this paper is to compare pooling frameworks in terms of all the costs in 78 

addition to the number of tests performed, in order to determine the possible opportunities in terms of 79 

savings and profits, and the challenges that must be overcome to achieve those benefits. 80 

 81 

MATERIALS AND METHODS 82 

ELISA 83 

The sensitivity of commercially available ELISA on pooled bovine milk samples for the detection of 84 

antibodies for Salmonella Dublin (SD) (PrioCHECK Salmonella AB bovine Dublin, Prionics, 85 

Switzerland), Mycobacterium avium spp. paratuberculosis (PTB) (ID Screen Paratuberculosis 86 

Indirect, IDVet, Grabels, France), and bovine virus diarrhea (BVD) virus (Svanovir BVDV-Ab, 87 

Svanova, Uppsala, Sweden) was evaluated using the following approach. The commercially available 88 

ELISA tests were performed according to the manufacturer’s instructions. Milk samples that were 89 

previously analyzed by ELISA and shown to be test positive or test negative were kindly supplied by 90 

Eurofins Steins Laboratory, Vejen, Demark. The milk samples were taken from Danish farms as part 91 

of the surveillance programs for SD, PTB, and BVD. The numbers of test-positive milk samples 92 

included in the study were: 9 for SD, 8 for PTB and 10 for BVD. Test-positive milk samples were 93 

pooled with known test-negative milk samples, resulting in one test-positive sample being pooled 94 

with 4, 9, 24, 49, 99, 149 and 199 test-negative samples. An equal volume from each sample was used 95 

for pooling. The optical density (OD) was measured at 450nm. Results were calculated as percent 96 

positivity (PP) using Eq. (1). 97 
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PP = 100 ∙ (ODsample – ODnegative control) ∕ (ODpositive control – ODnegative control)        (1) 98 

The specificity of the ELISA and alternative cut-offs for milk samples were estimated by testing 460 99 

known test-negative milk samples in each of the three ELISA. The alternative cut-off was calculated 100 

as the mean percent positivity relative to the positive control of the assay, plus three times the 101 

standard deviation.  102 

POOLING SCHEMES 103 

When presenting and deriving the pooling schemes, perfect sensitivity and specificity of the test are 104 

assumed. The effect of pooling on sensitivity and specificity is elaborated in the discussion section.  105 

1D: This is the traditional pooling scheme, and it has been used since 1915 (Hughes-Oliver, 2006). 106 

Each sample is pooled once with a number of other samples. If a pool is test positive, all samples 107 

belonging to this pool must be retested to identify the test-positive sample(s). In the 1D pooling 108 

scheme, retesting is always carried out when there are test-positive pools. This means that a 1D 109 

pooling scheme can be expensive if retesting carries a large cost. Dorfman (1943) derived an 110 

analytical expression for the expected mean number of tests, E(T), given the prevalence, p.   111 

𝐸1𝐷(𝑇) =
𝑁

𝑛
+ 𝑝′

𝑁

𝑛
𝑛 

Where N samples are mixed in pools of size n, the N/n pools are tested, and the samples from the 112 

p’N/n test-positive pools are tested individually (where p’ = 1-(1-p)
n
 is the probability of a test-113 

positive pool). This expression can be used to find the optimal pool size and hence the minimum 114 

number of tests required for a given prevalence. However, this paper includes all combinations of 115 

pool sizes and prevalences, as the optimum pool size may change according to the different costs 116 

associated with the pooling and testing process. 117 

STD: The Shifted Transversal Design was introduced by Thierry-Mieg (2006). This framework was 118 

originally intended as a non-hierarchical scheme, meaning that test-positive samples could be found 119 

using only one stage without retesting. However, ensuring one-stage functionality requires additional 120 
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pools. In this paper, the STD is tested in both a one- and two-stage mode, because the optimal mode 121 

depends on the cost of retesting. The STD includes traditional 1D testing, methods similar to the two- 122 

and three-dimensional methods mentioned in the introduction, as well as higher dimensions. 123 

Furthermore, it is a combinatorial pooling scheme, i.e. additional pools are created with a minimal co-124 

occurrence of samples in each pool. Minimizing co-occurrence means that the STD can detect 125 

multiple test-positive samples with a reduced probability of retesting. In the STD, the number of 126 

different pooling combinations with a similar pool size increases with pool size. For a pool size of 36, 127 

there are 166 different pooling schemes of different dimensions and combinatorial complexity. The 128 

optimal pooling scheme can be determined from these by applying the costs associated with the 129 

pooling scheme steps, and comparing these costs to the individual testing. For the complete 130 

mathematical description of the STD, see Thierry-Mieg (2006). In the original paper, the STD was 131 

used in a strictly non-hierarchical (one-stage) mode by imposing the theoretical minimum number of 132 

layers given by Corollary 3 in Thierry-Mieg (2006). In this paper, the restriction is lifted and we test 133 

the STD for all number of layers from one to the maximum possible, as defined by the model. 134 

When working in one-stage mode, no retest is necessary for the STD, and the efficiency is easily 135 

calculated. However, an increasing number of test-positive samples necessitate the use of the two-136 

stage mode, and the multiple possible combinations of test-positive sample locations within the 137 

pooling structures give rise to a very complicated probabilistic structure determining the number of 138 

retests required. Therefore, the pooling schemes were simulated to determine the average number of 139 

retests. The simulation method was as follows: all possible pooling schemes with a pool size ≤36 were 140 

tested in combination with prevalences from 0.1% to 90%. For each combination of pool size and 141 

prevalence, the number of individual positive samples was drawn from a binomial distribution. This 142 

was repeated 100 times for the STD. The number of times to retest and the average number to be 143 

retested were saved for each combination of pool size and prevalence. 144 

DD: This is a three-stage hierarchical pooling scheme with variable pool size. This framework will be 145 

referred to here as the ‘Double Dorfman’ (DD), as the analytical expression is based on derivations by 146 
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Dorfman (1943). In the first stage, N samples are mixed in pools of size n1, the N/n1 pools are tested, 147 

and the samples from the p’N/n1 test-positive pools are mixed again in pools of size n2, where 148 

p’ = 1-(1-p)
n1

 is the probability of a test-positive pool, and p is the prevalence of test positives in the 149 

N samples. Lastly, samples from the test-positive pools in the second stage are individually tested. 150 

The expected mean number of tests, EDD(T), is expressed as: 151 

𝐸𝐷𝐷(𝑇) =
𝑁

𝑛1
+ 𝑝′

𝑁

𝑛1
(
𝑛1
𝑛2

+ 𝑛2
𝑛1
𝑛2

(1 − (1 −
𝑝

𝑝′
)
𝑛2
)) 

Reducing this expression and dividing by N gives the fraction of tests required, C: 152 

𝐶 =
1

𝑛1
+ 𝑝′ (

1

𝑛2
+ (1 − (1 −

𝑝

𝑝′
)
𝑛2
)) 

This expression only takes into account the number of tests. However, there may be further costs 153 

associated with the additional stage of testing. Therefore, the number of pools, re-pools, and retests 154 

were calculated for every combination of first and second pool size from 2 to 36, in combination with 155 

prevalences from 0.1% to 90%. For an initial pool size of 36, there were 35 different stage-two pool 156 

sizes. The optimal pooling scheme can be selected from these by applying the costs and comparing 157 

them to the individual testing strategy. 158 

Comparison of pooling schemes: When comparing pooling schemes to individual sample testing, the 159 

simple comparison is to count the total number of tests required to detect the test-positive samples. 160 

However, there are costs associated with the pooling itself and/or the storage and preparation involved 161 

in retesting the individual samples identified as possible test positives by the pooling schemes. In 162 

order to account for the price of complex pooling schemes, the costs examined were: the cost of 163 

testing a single sample (which was set to index one); the price of retrieving a batch of samples that 164 

were in a test-positive pool (the retrieval cost); an alternative measure of the re-pooling cost, where 165 

the cost is per retested sample, and the hourly cost of the robot used to pool the samples. To complete 166 

the total cost, it was also necessary to specify the time taken to pool and test the samples. When this is 167 
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included, it is also possible to calculate the profit gains per time unit, since a scheme that reduces the 168 

number of tests may be slower or faster in time, affecting the overall profitability. Examples of 169 

savings and profit calculations have been included in the supplementary material. 170 

For simplicity, it was assumed that the test used in the simulations had 100% sensitivity and 171 

specificity (Se/Sp). The impact of non-perfect tests is elaborated in the discussion.  172 

All calculations and simulations were performed using R: A Language and Environment for Statistical 173 

Computing ver. 3.1.1 (R development Core Team, 2014) in RStudio ver. 0.99.447 (RStudio Team, 174 

2015). 175 

 176 

RESULTS 177 

 Table 1 summarizes the results of testing negative milk samples in the three ELISA. Results 178 

of pooling the nine SD test-positive milk samples with test-negative milk samples are presented in 179 

Fig. 1. Similar results were obtained when testing milk samples using assays for antibodies to PTB 180 

and BVD virus. Results show a large decrease in the percent positivity (PP) when test-positive 181 

samples are pooled with an increased number of test-negative samples. Pool sizes of more than 25 182 

samples containing one test-positive sample showed results at the level of the test-negative samples. A 183 

maximum pool size of five would give test-positive results with the alternative cut-off of 21 PP, as 184 

shown in Fig. 1. Pool sizes greater than five could result in false test-negative measurements for milk. 185 

  186 
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Table 1. Results from a test of the test-negative milk samples in ELISA. 187 

 

ELISA 

for antibodies to * 

Negative 

samples 

tested 

Mean 

Percent 

Positivity 

Standard 

deviation 

Manufacturer’s 

cut-off 

 

Alternative 

cut-off  

Specificity 

using 

alternative 

cut-off 

Salmonella Dublin 

 

Mycobacterium 

avium spp. 

paratuberculosis 

 

Bovine Diarrhea 

Virus 

460 

 

 

460 

 

 

460 

6.65 

 

 

2.00 

 

 

3.50 

4.62 

 

 

2.18 

 

 

0.93 

35 

 

 

15 

 

 

12 

21 

 

 

9 

 

 

7 

0.99 

 

 

0.995 

 

 

0.99 

*ELISA used are presented in materials and methods. 188 
 189 

 190 

Fig. 1: Salmonella Dublin ELISA: Percent positivity in pooled milk samples. Nine antibody test-191 

positive samples and one antibody test-negative sample were pooled with known test-negative milk 192 

samples. Results from testing the milk samples undiluted (dark gray), diluted 1:5 (light gray), 1:10 193 

(gray) and 1:25 (black) are presented as mean values of three tests performed on separate days. 194 

Standard errors are indicated. 195 
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  196 

The results of the simulations show that the DD is more efficient when considering only the number 197 

of tests required (Figure 2). However, when introducing a retrieval cost, the STD becomes more cost-198 

efficient than DD (Figure 3). Both the STD and DD show potentially large savings for pool sizes 199 

greater than four, providing the prevalence is low enough. 200 

 201 

  202 
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 203 

 204 

Fig. 2: Contour plots of the fraction of tests saved compared to individual testing as a function of pool 205 

size and prevalence. The thick line indicates where the pooling scheme requires the same number of 206 

tests as individual testing, and above this line pooling is not cost effective. The dashed gray line 207 

indicates the optimal pool size for a given prevalence, (i.e., the pool size that gives the maximum 208 

percentage of saved tests). This plot is equivalent to a savings plot where all costs (except the cost of 209 

testing) are set to zero. 210 
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 211 

 212 

Fig. 3: Contour plots of the fraction of savings compared to the price of individual testing as a 213 

function of pool size and prevalence, where each batch retrieval for retesting caries the cost of 10 214 

individual tests. The thick line indicates where the pooling scheme has the same cost as individual 215 

testing, and above this line pooling is not cost effective. The dashed gray line indicates the optimal 216 

pool size for a given prevalence (i.e., the pool size that gives the maximum percentage of saved costs). 217 

For all pooling schemes, there is an optimal pool size for a given prevalence (dashed gray lines in 218 

Figures 2 and 3). It is also apparent that pooling is not efficient when the prevalence is higher than 219 

30% (Figures 2 and 3).  220 
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For the small pool sizes used in this study, the DD performs best in terms of the number of tests 221 

required. The parameter space explored here covers both high prevalence and limited pool size, which 222 

includes complicated situations with multiple test-positive samples in each pool. At the other end of 223 

the parameter set, an approximate solution can be derived for the situation where the STD is better (in 224 

terms of fewer samples tested) than DD, when the pool size, n, is larger than ((d-1)/(2p))
2/3

 (where p is 225 

the prevalence, and d is the dimension of the pooling scheme). This is valid when pn
d/(d-1)

 << 1 and 226 

n ≥ 2
d/(d-1)

, for any integer value of d ≥2. Fewer samples are tested and the retrieval cost in the STD is 227 

lower, so therefore the total cost will also be lower, regardless of the specific cost parameters chosen. 228 

The mathematical derivation is available in the supplementary material. 229 

 230 

DISCUSSION 231 

The profitability of implementing pooling in a laboratory is dependent upon many laboratory-specific 232 

costs. In this paper, the relative cost of testing and retesting was shown to be the most important factor 233 

when determining the most profitable pooling scheme. The DD required fewer tests than the STD 234 

within the tested parameter space. However, if the costs associated with retrieval at batch level are 235 

even marginally larger than the cost of a single test, the STD scheme results in larger savings. In 236 

addition, the STD can be shown to be superior to the DD for low prevalence and large pool sizes. 237 

Both the DD and the STD are always superior to or equally efficient as the traditional 1D pooling in 238 

terms of number of tests.  239 

The specific costs of testing or re-pooling/retesting may differ between laboratories. In this paper, a 240 

rather general cost structure was assumed, where the cost of testing includes the cost of a single test, 241 

the cost of a robot/technician to perform the pooling, and the time taken for both of these processes. 242 

The cost of retesting includes the cost of retrieving samples from a test-positive pool to be re-243 

pooled/retested. The time taken to retrieve samples was not included, as it was assumed that the 244 

number of samples was large enough that samples for re-pooling/retesting could be retrieved 245 
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simultaneously with the testing of other samples. Therefore, the retrieval of samples is never a 246 

bottleneck, while the pooling and testing of samples was dependent upon the capacity of the facility. 247 

Although changing the parameters within the testing or retesting group changed the overall savings 248 

slightly (not shown), the only large effect was when changing the two groups relative to each other, as 249 

seen in Figures 2 and 3. It was assumed that testing samples took longer than pooling. Given that 250 

different laboratories may have different cost structures, all results from simulations were collected in 251 

a WebApp that allows for the input of cost parameters. This WebApp is available online 252 

(https://dtuvetepi.shinyapps.io/SMARTPOOL/) and the source code is available as supplementary 253 

material.  254 

The best practice for implementing these pooling schemes may be highly dependent upon the 255 

equipment available in a specific laboratory. The DD scheme can be achieved by conventional 256 

pipetting (e.g. ‘by hand’), but both the DD and the STD are more easily performed by a robot. The 257 

robot should not arrange samples in the physical structures, but rather receive a list of pools to which 258 

each sample is assigned. In this way, each individual sample is only visited once, and is directly 259 

distributed to the relevant number of pools determined by the pooling scheme. However, the best 260 

practice and the cheapest pooling method may depend on the specific laboratory. 261 

From the ELISA dilution trials, it was evident that pooling impacts the Se/Sp, which were not 262 

specifically addressed in the simulations. Instead, the results of the simulations in this paper were 263 

reported as a function of the pool size, which may allow a user to choose a pool size with a desired 264 

Se/Sp based on their own dilution trials using a desired ELISA. To use the results in such a way, it 265 

must be assumed that Se/Sp is sample-specific (i.e. there is perfect repeatability): a sample that tests 266 

negative in a pooled test will test negative in all pooled tests of the same pool size, and the same for 267 

positive tests. The Se/Sp for a given disease using a specific test kit can be determined by dilution 268 

trials, as presented in this paper. Here, pooling of negatives was also used to determine an alternative 269 

cut-off in order to maximize the possible pool size. When choosing a pool size for a multi-stage 270 

pooling scheme, it can be beneficial to choose an alternative lower cut-off in the ELISA test to 271 
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increase sensitivity and/or pool size. The apparent loss of specificity seen when lowering the cut-off 272 

can be negated by performing the retest of individual samples using the manufacturer’s cut-off. This 273 

is because false test positives will then be retested subject to the manufacturer’s kit specificity. As a 274 

further means of increasing sensitivity, it may also be possible to adjust the procedure of the ELISA if 275 

there are pre-dilution steps before the OD measurements, as suggested by Brinkhof et al. (2007). 276 

The dilution experiments presented in this paper are examples – a larger sample size of test-positive 277 

samples is required to give a better prediction of the change in sensitivity when pooling. Specifically, 278 

weak test-positive samples must be included in the test series in order to accurately estimate the 279 

changes in sensitivity due to pooling. Specifically, tests should be carried out to ensure that the 280 

randomness of the test does not increase around the cut-off, as reported i.e. for PCR tests with low 281 

integrity (Fleige & Pfaffl, 2006). Furthermore, it should be assessed whether samples could give rise 282 

to added unspecific reactivity when pooled.  283 

Hierarchical testing was also investigated using a halving method (results not shown). This method 284 

pools samples in an initial pool, and if this initial pool tests positive, then the samples are re-pooled 285 

into two pools and tested. For each test-positive pool, the samples are divided into two new pools and 286 

tested. This is done repeatedly to the individual sample level. This method showed similar 287 

performance to the DD in terms of the number of tests, but since there are more stages (providing the 288 

initial pool size is greater than four), then this method was not superior to the DD in terms of costs.  289 

Black et al. (2015) presented an optimized framework to test samples with heterogeneous prevalences 290 

at the individual level. This could be utilized within the veterinary field if risk factors were known 291 

about the individual cows. An example could be the age-dependent sensitivity of testing for 292 

Mycobacterium avium ssp. paratuberculosis (Nielsen et al., 2013). This does, however, require the 293 

extensive sorting of the samples, or the possibility of simultaneous pooling to several pools. Another 294 

use of prior knowledge may be at herd level, so that the expected prevalence in the herd (which could 295 

be determined from a previous round of testing) would determine the pooling scheme, given the 296 

results from this paper. If there is no prior knowledge of the prevalence, it could also be possible to 297 
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use the first-stage testing to estimate the prevalence at herd level, and use this estimate to determine 298 

the pool size of the second stage. 299 

This paper expands on work presented at the annual meeting of SVEPM 2016 (Græsbøll et al., 2016), 300 

explicitly comparing 1D and higher dimensional pooling to the STD, which showed that the STD was 301 

always superior. Future work on this subject could investigate a combination of the two types of 302 

testing, including testing where prevalence is estimated after stage two to determine the pool size in 303 

stage three. It is also possible that dividing into test positive and test negative removes information 304 

from the test, and it may be advantageous and/or easier to make algorithms to identify test-positive 305 

samples based on the distribution of the continuous outcomes in a pooling scenario.  306 

The code used in this paper has been integrated into a Shiny WebApp, which allows the user to 307 

specify the cost parameters and different prevalence ranges to investigate the impact on savings and 308 

profit across parameter space to emulate different laboratory settings. The WebApp is freely available 309 

at: https://dtuvetepi.shinyapps.io/SMARTPOOL/. The R code for the Shiny WebApp has also been 310 

included as supplementary material, so that it may be run on a local machine. 311 

 312 

CONCLUSION 313 

Large savings can be achieved with pooling. There is a potential to reduce the test requirements by up 314 

to 80%, even with pool sizes as small as 5, if the prevalence is low. However, there are certain 315 

restrictions that apply before those savings can be accomplished. Firstly, the expected prevalence of 316 

individual samples must be lower than 30%, otherwise pooling is not efficient. Secondly, initial tests 317 

must be performed on the specific test kit intended for use, and ideally in combination with a defined 318 

alternative cut-off to maximize Se/Sp, in order to determine how large a pool size can be used. 319 

Thirdly, samples should not display an increase in any unspecific reactivity in the test when pooled, 320 

otherwise results may be invalid. The optimal pooling framework depends on the costs associated 321 
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with pooling; in particular, the cost of identifying samples for retesting or re-pooling influences the 322 

optimal pooling scheme.  323 
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