Supplemental Data

Discrete Small RNA-Generating Loci as Master Regulators of Transposon Activity in Drosophila

Julius Brennecke, Alexei A. Aravin, Alexander Stark, Monica Dus, Manolis Kellis, Ravi Sachidanandam, and Gregory J. Hannon

Figure S1. ClustalW Alignment of the Three Drosophila Piwi Family Proteins

The Ago3 sequence represents the largest open reading frame in the putative full length cDNA clone RE57814 that we obtained from BDGP (Genbank accession # : EF211827). The Nterminal peptides used for polyclonal antibody production are highlighted in red. PAZ and PIWI domains are boxed in grey and green, respectively. The position of the catalytic DDH residues essential for slicer mediated cleavage are indicated by arrowheads and highlighted in blue. Note, that although Piwi contains a DDK motif, Slicer activity has been demonstrated for this protein (Saito et al., 2006).

Figure S2. Polyclonal Antibodies Specific for Each Drosophila Piwi Family Member

(A) Western blotting was performed on total protein lysates from female carcasses (C), ovaries (O) and 0-2h embryos (E) using antibodies raised against the N-termini of Piwi, Ago3 and Aub, as indicated in Fig. S1. Besides their specific signal at ~85-90 kDa, the Piwi and Ago3 antibodies recognize additional bands, none of which was enriched in upon immunoprecipitation (not shown) and therefore likley represent western-crossreactive proteins. To control for equal loading, the membrane was reprobed with mouse monoclonal anti-tubulin (tub) from SIGMA. (B) Western blot analysis was performed on immunoprecipitations prepared with Piwi, Ago3 and Aub specific antibodies from ovary extract. Immunoprecipitates (IP), as well as the total extract (ex) and

supernatant from the immunoprecipitate (ft) were blotted individually with each of the three Piwi family antibodies, as indicated.

In both panels, the positions of protein size markers in kDa, electrophoresed in parallel, are indicated to the left of each panel. We conclude that all three antibodies are specific to their respective proteins and allow specific immuno-precipitation of them. To minimize the potential that some of the staining in ovaries shown in Figure 1 results from crossreactive antigens, we verified that the staining is absent in piwi and aub mutant ovaries, respectively (not shown). No mutant is presently available for Ago3, raising the formal possibility that some component of the staining pattern we observe could be contributed by a cross-reactive species.

Figure S3. Strand Asymmetry of piRNAs mapping to All LTR/LINE/IR Transposons from Drosophila melanogaster and from Related Drosophilid Species

Analysis was performed and data displayed exactly as described in Figure 5A. Included here are all additional transposons, for which we cloned less than 50 piRNAs in total.

Shown are also transposons from related Drosophilid species (all sequences extracted from

www.fruitfly.org/p_disrupt/TE.html). Heat maps were constructed for matches to the consensus sequences at different stringencies (0 mismatches, 3 mismatches and 5 mismatches). Note, that for nonmelanogaster transposons, we cloned several piRNAs that match at lower stringencies. Interestingly, in these cases, the pronounced asymmetry between Piwi/Aub and Ago3 is mostly absent.

Table S1. Top piRNA Clusters in the Drosophila melanogaster Genome

piRNA clusters are collapsed overlapping windows, which have a normalized piRNA density of at least 1 piRNA/kb and that are supported by at least 5 piRNAs mapping exclusively to the cluster. piRNA clusters were ranked according to the number of cluster-unique piRNAs (column 8). The genomic positions are according to the Release5 assembly (BDGP). X-TAS refers to Genbank entry L03284 and represents X-telomeric TAS repeats present in the OregonR strain but absent in the Celera sequence strain. (Het) refers to unassembled portions of pericentromeric heterochromatin, while (U) refers to heterochromatic contigs that have not been assigned to a chromosome. Positions of piRNA clusters on the polytene chromosome map (column 3) were determined by mapping genomic poitions to the Release 4.3 assembly and extraction of the corresponding cytological band annotation according to the FlyBase genome browser. For unassembled regions, cytological poitions (column 3) could not be determined. Clusters shaded in grey map to telomers, those in orange map to pericentromeric and centromeric heterochromatin. To determine the piRNA strand distribution, only piRNAs which map the genome uniquely were considered.

Additional Supplemental Information

1. Drosophila Strain Differences and Mapping of piRNAs to Heterochromatic **Regions**

The strain used throughout this study was OregonR, a laboratory wild-type Drosophila melanogaster strain. The genomic sequence of Drosophila was determined using the isogenized y; cn bw sp strain (Adams et al., 2000). As most piRNAs map to transposons and heterochromatic regions of the genome, strain differences potentially impact various aspects of the bioinformatics analysis presented in this study. Nevertheless, 75% of all piRNA sequences match the annotated genome 100% and an additional 14% can be aligned with up to 3 mismatches. With a calculated 454 sequencing error rate of roughly one error in 10 piRNAs (based on sequences matching known microRNAs), we conclude that the strain differences do not prevent a meaningful analysis of the data set. We also note that the Release5 assembly (http://www.fruitfly.org/sequence/release5genomic.shtml), which contains large assembled heterochromatic regions accounts for the origin of most uniquely mapping piRNAs.

For our analysis we exclusively used piRNAs matching the Release5 genome assembly 100%. Excluded from our analysis was the "Uextra" file from Release5, which includes short, un-assembled shotgun reads with low sequence quality and often unverified origin. Less than 10% of the piRNAs that matched the Release5 genome assembly uniquely had additional mappings in Uextra file, supporting the claim that these sequences can be used to unambiguously identify the genomic origins of piRNAs.

The only Genbank sequence, that was evaluated in addition to the Release5 assembly was a ~10kb entry (L03284), which corresponds to the telomeric TAS repeat of the X-chromosome (Karpen and Spradling, 1992). (Abad et al., 2004) have shown that the sequenced strain lacks X-TAS repeats while other strains such as OregonR contain them. We therefore felt justified in including this in our analysis. We find, that ~500 piRNAs match uniquely to this entry and that up to 2.6% of all piRNAs potentially derive from this site.

Large portions of the Release5 assembly comprise uninterrupted contigs. However, in heterochromatic regions, particularly in the file termed "arm U", which contains exclusively heterochromatic sequences of unknown chromosomal origin, contigs are often only a few kb long and are interrupted by stretches of 100Ns. These denote the boundaries of definitively assembled sequences. For the identification of piRNA clusters, we did not bridge windows with high piRNA content, if they did not unambiguously arise from the same contig.

2. Supplemental Experimental Procedures

2.1 Drosophila Fly Strains Used in This Study

Oregon R was used as a wild type strain; the *piwi*[1] allele is described in (Cox et al., 1998); aub[HN] cn[1] bw[1]/CyO and aub[QC42] cn[1] bw[1]/CyO, l(2)DTS513[1]) are described in (Wilson et al., 1996); stocks carrying P-element insertions into the flamenco region were generated by the BDGP Gene Disruption Project and obtained from Bloomington Stock Center; KG refers to y[1] P{y[+mDint2] w[BR.E.BR]=SUPorP}KG00476/FM4 (stock 0016453) BG refers to w[1118] P{w[+mGT]=GT1}BG02658 (stock 0013912).

2.2 Quantification of Individual piRNAs, piRNA Cluster Transcripts and gypsy RNA

cDNA libraries were prepared from 24-29 nt small RNA fractions isolated from 50 µg of total ovarian RNA by purification from 15% denaturing poly acrylamide gels. Libraries from wild-type flies (OreR), flamenco heterozygotes (KG/+) and two flamenco allelic combinations (BG/KG and KG/KG) were prepared in parallel. Two synthetic RNA oligonucleotides (24 and 28 nt) of known sequence were added to each sample. cDNA libraries were prepared by sequential ligation of 5' and 3' linker followed by reverse transcription as described in (Pfeffer et al., 2005). cDNA pools were amplified with primers that match linker sequences for 20 cycles and resulting pools of PCR products were used for quantitative PCR on individual piRNAs. Individual piRNAs were amplified with specific primers that match the piRNA sequence in the sense or antisense orientation and a universal primer matching the 5' or 3' linker. Each piRNA was quantified using two different primer pairs (5' linker primer/piRNA antisense and 3'linker primer/ piRNA sense) and reactions with each primer set were repeated in duplicate. Therefore, the values obtained represent the average from four reactions that use two different primer pairs. Synthetic oligonucleotides spiked into the samples before cDNA library preparation were quantified and used for normalization of results. For each piRNA we calculated its abundance in ovaries of flamenco heterozygotes and two allelic combinations relative to abundance in wild-type ovaries.

Quantitative RTPCR on piRNA cluster precursor transcripts and gypsy RNA was done according to standard procedures using total ovarian RNA from genotypes indicated in Fig 4.

Primer Sequences

Primer name Sequence

Spiked RNA oligonucleotides

Primers used for qPCR of gypsy transcript

References

- Abad, J. P., De Pablos, B., Osoegawa, K., De Jong, P. J., Martin-Gallardo, A., and Villasante, A. (2004). Genomic analysis of Drosophila melanogaster telomeres: full-length copies of HeT-A and TART elements at telomeres. Mol Biol Evol 21, 1613-1619.
- Adams, M. D., Celniker, S. E., Holt, R. A., Evans, C. A., Gocayne, J. D., Amanatides, P. G., Scherer, S. E., Li, P. W., Hoskins, R. A., Galle, R. F., et al. (2000). The genome sequence of Drosophila melanogaster. Science 287, 2185-2195.
- Cox, D. N., Chao, A., Baker, J., Chang, L., Qiao, D., and Lin, H. (1998). A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell selfrenewal. Genes Dev 12, 3715-3727.
- Karpen, G., and Spradling, A. (1992). Analysis of subtelomeric heterochromatin in the Drosophila minichromosome Dp1187 by single P element insertional mutagenesis. Genetics 132, 737-753.
- Pfeffer, S., Sewer, A., Lagos-Quintana, M., Sheridan, R., Sander, C., Grasser, F. A., van Dyk, L. F., Ho, C. K., Shuman, S., Chien, M., et al. (2005). Identification of microRNAs of the herpesvirus family. Nat Methods 2, 269-276.
- Wilson, J. E., Connell, J. E., and Macdonald, P. M. (1996). aubergine enhances oskar translation in the Drosophila ovary. Development 122, 1631-1639.