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Neural Networks, Error-Correcting Codes, 
and Polynomials over the Binary n-Cube 

Abstract --Several ways of relating the concept of error-correcting 
codes to the concept of neural networks are presented. Performing maxi- 
mum likelihood decoding in a linear block error-correcting code is shown 
to be equivalent to finding a global maximum of the energy function of a 
certain neural network. Given a linear block code, a neural network can be 
constructed in such a way that every local maximum of the energy function 
corresponds to a codeword and every codeword corresponds to a local 
maximum. The connection between maximization of polynomials over the 
n-cube and error-correcting codes is also investigated; the results suggest 
that decoding techniques can be a useful tool for solving pmblems of 
maximization of polynomials over the n-cube. The results are generalized 
to both nonbinary and nonlinear codes. 

I. INTRODUCTION 

UR MAIN GOAL is to explore the connections 0 between the three concepts appearing in the title. A 
neural network is a computational model type that has 
recently been attracting much interest because it seems to 
have properties that are similar to those of both biological 
and physical systems. The usual computation performed in 
a neural network is the maximization of the so-called 
energy function. The state space of a neural network can 
be described by the topography defined by the energy 
function associated with the network. 

The main problem in the field of error-correcting codes 
is to design good codes: codes that can correct many errors 
and whose encoding and decoding procedures are compu- 
tationally efficient. An error-correcting code can be de- 
scribed by a topography, with the peaks of the topography 
being the codewords. The decoding of a corrupted word (a 
point in the topography that is not a peak) is then equiva- 
lent to looking for the closest peak in the topography. 

The analogy between the two subjects just described was 
the initial motivation for this work. It turns out that both 
neural networks and error-correcting codes can be de- 
scribed by polynomials over the n-cube. Thus the connec- 
tion between the two concepts can be established. The 
representation of error-correcting codes using polynomials 
over the n-cube also provides a new perspective to the 
subject that enables us to derive some new proofs to 
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already known results. The problem of the maximization 
of polynomials over the n-cube is known in operations 
research and computer science. The connection with 
error-correcting codes suggests a new tool for solving these 
problems, namely, decoding techniques. The other direc- 
tion, that is, maximum likelihood decoding using known 
techniques of maximization of polynomials, is not ad- 
dressed in this paper but is an interesting subject for future 
research. 

The paper is organized as follows. In Section I1 we 
present some background on neural networks. We review 
the basic definitions of the Hopfield model. We discuss 
stable states and the different modes of operation of the 
network. We conclude the section by proving that finding 
a global maximum of the energy function of the network is 
equivalent to finding a minimum cut in a certain graph. 
The generalization to energy functions of a higher degree is 
also reviewed. 

In Section I11 we establish a connection between the 
Hopfield model and graph theoretic codes. We prove that 
maximum likelihood decoding in a graph theoretic code is 
equivalent to finding the minimum cut in a certain graph. 
By the description in the previous section, this implies that 
maximum likelihood decoding in a graph theoretic code is 
equivalent to finding a maximum of the energy in a neural 
network. 

In Section IV we extend the results of Section I11 to 
general linear block codes. The key idea is to represent the 
binary symbols (0,l)  by the symbols (1, - 1 )  with the 
operation being multiplication instead of exclusive OR. A 
general energy function, not necessarily quadratic, is de- 
fined based on the generator matrix of a given linear block 
code. We show that finding the global maximum of this 
energy function is equivalent to maximum likelihood de- 
coding in the code. A generalization of the results to 
nonbinary codes is presented in Appendix I while a gener- 
alization of the results to nonlinear codes is presented in 
Appendix 11. 

In Section V we study the energy function associated 
with the parity check matrix of a code. When this matrix is 
written in systematic form, we show that each codeword 
corresponds to a local maximum of the polynomial associ- 
ated with the parity check matrix and that each local 
maximum corresponds to a codeword. We interpret the 
results of this section as dual to the ones in Section IV for 
defining the maximum likelihood problem. 
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In Section VI we consider the problem of solving uncon- 
strained nonlinear 0-1 programs. This is basically the 
problem of maximizing a polynomial on n variables, with 
each variable being either zero or one. It is known that this 
problem is NP-hard. The known solvable cases use the 
concept of the conflict graph. We found that the family of 
polynomials associated with Hamming codes results in a 
conflict graph which is not bipartite in general (i.e., for 
which an efficient algorithm is not known). For the family 
of polynomials associated with Hamming codes, efficient 
recognition and maximization techniques that are based on 
decoding techniques are presented. 

A note regarding the notation is in order. Since G 
denotes a graph in graph theory and a generator matrix in 
coding theory, we put carets on all letters that :re us_ed:o 
denote graphs. Thus, a graph is denoted by G = (V,  E ) ,  
while a generator matrix of a code is denoted by G. 

11. BACKGROUND ON NEURAL NETWORKS 

The neural network model is a discrete-time system that 
can be represented by a weighted undirected graph. There 
is a weight attached to each edge of the graph and a 
threshold value attached to each node (neuron) of the 
graph. The order of the network is the number of nodes in 
the corresponding graph. Let N be a neural network of 
order n ;  then N is uniquely defined by ( W, T )  where 

W is an n X n symmetric zero-diagonal matrix where 
W is equal to the weight attached to edge ( i ,  j ) ,  
T is a vector of dimension n where T, denotes the 
threshold attached to node i .  

Every node (neuron) can be in one of two possible 
states, either 1 or -1. The state of node i at time t is 
denoted by y( t ) .  The state of the neural network at time t 
is the vector V( t ) .  The next state of a node is computed by 

where 

The next state of the network, i.e., V(t  + l), is computed 
from the current state by performing the evaluation (1) at 
a subset of the nodes of the network, to be denoted by S .  
The modes of operation are determined by the method by 
which the set S is selected in each time interval. 

If the computation is performed at a single node in any 
time interval, i.e., IS1 = 1, then we will say that the network 
is operating in a serial mode, and if IS1 = n ,  then we will 
say that the network is operating in a fully parallel mode. 
All the other cases, i.e., 1 < IS1 < n ,  will be called parallel 
modes of operation. The set S can be chosen at random or 
according to some deterministic rule. A state V ( t )  is called 
stable if and only if V ( t )  = sgn(WV(t)- T ) ,  i.e., there is 
no change in the state of the network no matter what the 
mode of operation is. 

Example: Consider the network in Fig. 1 with Wl,2 = - 1 
and T the 0 vector. It can be verified that the stable states 
of this simple network are (- 1, I) and (1, - 1). 

Fig. 1. Neural network with two nodes 

One of the most important properties of the model is its 
convergence property, as summarized by the following 
proposition. 

Proposition 1 [5], [8], [14]: Let N = ( W, T )  be a neural 
network, with W a symmetric matrix; then the network N 
always converges to a stable state while operating in a 
serial mode and to a cycle of length at most two whle 
operating in a fully parallel mode. 

The main idea in the proof of the convergence property 
is to define a so-called energy function and to show that 
this energy function is nondecreasing when the state of the 
network changes as a result of computation. The energy 
function used in the proof of Proposition 1 is 

E ( t ) = V‘( t ) wv( t ) - 2V*( t ) T.  ( 2 )  
A neural network when operating in a serial mode will 
always get to a stable state that corresponds to a local 
maximum of the energy function. This suggests the use of 
the network as a device for performing a local search 
algorithm for finding a maximal value of the energy func- 
tion [4], [5], [15]. Clearly, every optimization problem that 
can be defined in a form of a quadratic function over 
{ - 1,1}” as in (2) can be mapped to a neural network 
which will perform a search for its optimum. One of the 
optimization problems that is not only representable by a 
quadratic function but is actually equivalent to it is the 
problem of finding the minimum cut in a graph [5], [19]. 
To clarify the above statement, let us start by defining the 
term “cut” in a graeh. 

Definition: Let G: (v, I?) be a weighted an! undi; 
rected graph, where V denotesnthe set of nodes of G and E 
denotes the set of edges of G. Let W be the symmetri: 
matrix that corresponds to the weights of the edges of G .  
For example, for the network in Fig. 1 we have 

w=(-y -A). 
Let be a subset of f, and let 8-, = 9-  f1.^The set of 
edges ea5h of which is incidentcat a node in V, and at a 
node in V - ,  is called a cut in G .  

Definition: The weight of a cut is the sum of its edge 
weights. A minimum cut (MC) of a graph is a cut with 
minimum weight. 

The equivalence between the MC problem and the prob- 
lem of maximizing the energy function of a neural network 
is summarized by the following theorem (generalizations of 
this equivalence can be found in [4], [5]). We include the 
proof to exhibit a principle that will be useful later. 

-7 
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Dk = 

Proposition 2 [5], [19]: Let N = (W, T) be a neural 
network with all thresholds being zero; i.e., T SO. The 
problem of finding a state V for which the energy E is 
maximum is equivalent to finding a minimum cut in the 
graph corresponding to N .  

Proof: Since T = 0, the energy function is 

0 0 1 1 1 0 0 0  

1 0 0 0 0 1 0 1  
0 1 0 1 0 1 1 0 .  (7) 

n n  

\ o  0 0 0 1 0  1 1 ,  

(3) 

Let W++ denote the sum of weights of edges in N with 
both endpoints equal to 1, and let W-- and Wf-  denote 
the corresponding sums of the other two cases. It follows 
that 

E = 2( W" + W-- - W+- ) (4) 

E = 2 ( W f + +  W--+ Wi-)-4W+-. ( 5 )  

which also can be written as 

Since the first term in the above equation is constant (it is 
the sum of the weights of the edges), it follows that the 
maximization of E is equivalent to the minimization cf 
W+-. Clearly, W+- is the weight of the cut in N with V, 
being the nodes of N with a state equal to 1. Q.E.D. 

Hence a neural network operating in a serial mode is 
equivalent to performing a local search algorithm for find- 
ing a minimum cut in the network. Changing the state of a 
node in the network is equivalent to moving it from one 
side of the cut to the other in the local search algorithm. 

The foregoing definition of the model results in an 
energy function that is quadratic. The definition of the 
model can be generalized to energy functions of a higher 
degree [l]. In the general case, every neuron computes an 
algebraic threshold function that is equivalent to checking 
which state (either 1 or - 1) will result in a higher value of 
the energy function. 

Example: Consider the energy function 

E = w1.2,3V1V2V3 + w1,2V1V2 + w2,3V2V3 + wlVl 

For example, the generalization of (1) for node 1 is 

Vl(t +I> = s g n ( m ) )  

where 

Hl(t)  = w1,2,3V2V3 + w1,2V2 + wl. 

We will start by investigating the connections between 
quadratic energy function and error-correcting codes and 
then continue by looking at general energy functions. 

Let 6 = (f, i ) -be  an undirected graph. A subset of the 
set of edges of G-can be represented by a characteristic 
vector of length IEl, with edge e ,  corresponding to th,e ith 
entry of the characteristic vector. That is, every S G E can 
be represented by a vector denoted by 1, such that 

if ei E S 
otherwise 

1 

4 

Fig. 2. Graph corresponding to [8,4] code 

111. NEURAL NETWORKS AND GRAPH 
THEORETIC CODES 

Any four rows of De form a basis of the cut space of 6. 
For example, the matrix consisting of the first four rows of 
De is a generator matrix pf the error-correcting !inear 
block code associated with G. As is easily observed, G does 
not contain a cut with fewer than three edges (apart from 
the empty cut); thus the code ce has minimum Hamming 
distance 3 and can correct one error. 

The main goal of this section iS to establish the relations 
between neural networks and graph theoretic error-cor- 
recting codes. Let US start by defining the family of graph 
theoretic codes (for more details see [9], [IS]). 
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Given a graph 6, an interesting question is how to 
formulate the maximum likelihood decoding (MLD) prob- 
lem of the cod: Ce in graph theoretic language. That is, 
given a graph G = (V,  E )  and a vector Y in {O,l}~'~, what 
is the codeword in Ce closest to Y in Hamming distance? 
The following lemea will yswer this question. 

Lemma 1: Let G = (V, E )  bz a connected graph. Let Ce 
be the-code associated with G .  Let Y be a vectot over 
{ O , l } l E l .  Construct a new graph, tc be denoted by G,, by 
assigning weights to the edges of G as follows: 

w,= (-l) , .  (8) 
U: is the weight associated with edge i in 6. Then MLD of 
Y with !espect to Ce is equivalent to finding the minimum 
cut in G,. 

Proof: Assume the number of ones in Y is a. Let M 
be an arbitrary codeword in Ce. Let N " J  denote the 
number of positions in which M contains an i E (0,1} and 
Y contains a j E (0, l } .  Clearly, 

a = NO.' + ~ 1 , 1 .  

Thus 

a + "3'. (9) - ",'+ N1.0 = NO,'- 

Minimizing the right side in (9) over all M E Ce is equiva- 
lent to finding a codeword which is the closest to Y. On the 
other hand, minimizing :he left side is equivalent to find- 
ing the minimum cut in G,. Q.E.D. 

From Lemma 1 we have the following. 

Theorem 1: Let 6 = ( 9 , g )  be a connected graph. Then 
MLD of a word Y with respect to Ce is equivalent to 
finding the maximum of the energy fun2tion E of the 
neural network defined by the graph G ,  with all its 
threshold values equal to zero. 

Proof: By Lemma 1 MLD of Y with r:spect to Ce is 
equivalent to finding the minimum cut in G,. By Proposi- 
tion 2 finding the minimum cut in a graph is equivalent to 
finding the maximum of the energy function of a neural 
network defined by a graph with all thresholds being zero. 

Q.E.D. 

Graph theoretic error-correcting codes are limited in the 
sense that [9] 

where d* is the minimum distance of the code. For exam- 
ple, a [7,4] Hamming code is not a graph theoretic code 
because it has minimum distance 3, and 14/5 < 3. Hence 
an interesting question is whether the equivalence stated 
by Theorem 1 can be generalized to all linear block codes. 
The energy function associated with the MLD of graph 
theoretic codes is quadratic. The energy function associ- 
ated with the MLD of a general linear block code turns 
out to be a polynomial over the n-cube. The discussion 
regarding the generalization is the subject of Section IV. 

IV. ERROR-CORRECTING CODES 
AND ENERGY FUNCTIONS 

In this section we will extend the results of Section I11 
and show that the MLD problem of linear block codes is 
equivalent to the maximization of polynomials over the 
binary n-cube. This result is generalized to nonbinary 
codes in Appendix I and to nonlinear codes in Appen- 
dix 11. 

Consider a binary linear [ n, k] error-correcting block 
code, to be denoted by 9 [16], [18]. The code 9 is defined 
by a k x n generator matrix G. An information vector 
b = (b,, b,; . ., b k )  is encoded into the codeword U = 

(q, U,,' . - 2  U,,) by 
k 

uJ = @ b,g,, 1 I j <  n 
r = l  

where @ denotes exclusive OR. 
The key idea in the derivation is to represent the sym- 

bols of the additive group 2, as symbols in the multiplica- 
tive group { 1, - l} through the transformation 

a + ( - 1 ) "  

0 + 1 ,  1 + - 1 .  

We will use a different notation for the (1, -1} repre- 
sentation. The information vector b = (b,, b,, . . e ,  b k )  is 
represented by x = (x~, x,; . e ,  xk), where x, = (- l ) b i ,  and 
the encoded codeword U = ( U,, U,,. . . , U,,) is represented by 

that is, 

y = ( Y l ,  y,,. . - 7  Y d .  Hence 
k k 

r = l  I =1 
yJ = ( - 1) "1 = ( - 1) e!-'_,brgZJ = n ( - 1) b'g'J = n Xlg'J. 

(11) 

Example: Consider the [7,4] systematic Hamming code 
whose generator matrix is given by 

0 0 1 0  1 1  0 -  

1 0 0 0 0 1 1  
0 1 0 0 1 0 1  

0 0 0 1 1 1 1  1 G =  1 
Given the four information symbols (b,, b,, b,, b4), the 
corresponding codeword is 

U = (b, ,  b,, b,, b4, b, @ b, @ b4, b, @ b, @ b4, b l @  b, @ b4). 

In the (1, - l }  representation, this looks like 

y = x 2 ,  x 3 >  x 4 9  x2x3x4, x1x3x4? x1x2x4) 

where xJ = ( -  1)'~. 
Definition: In the (1, -1} representation of a code in- 

stead of a generator matrix, given an information vector 
x = (x,, x,; a ,  xk), we will use an encoding procedure 
x + y ,  where y = (y , ,  y,; . 1 ,  y,,) and every yJ is a mono- 
mial that consists of a subset of the x,. An encoding 
procedure is systematic if and only if yJ = xJ for 1 I j I k .  
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In the example, the [7,4] Hamming code is described by 
the systematic encoding procedure 

( x 1 , x 2 , x 3 , x 4 )  ( x 1 ~ x 2 ~ x 3 ~ x 4 ~ x 2 x 3 x 4 >  

x1x3x4, x1x2x4). (I2) 

Another example, the first-order (shortened) Reed-Muller 
code R(1,3) [16], is described by the systematic encoding 
procedure 

x 2 ~  x 3 )  -, x2, x 3 7  x 1 x 2 7  x1x3, x2x3, x1x2x3) 

while the first-order Reed-Muller code R(1,3) is described 
by the encoding procedure 

(xo, x1, x2, x3) -, (xo, xox1, xox2, xox1x2, xox3, 

x0x1x3> x0x2x3,  x0x1x2x3). (13) 

The generalization to any R(1, m )  first-order Reed-Muller 
code is obvious. 

Definition: Let G be a k X n matrix of ones and zeros. 
The polynomial representation of G with respect to a vector 
w E (1, - l}", denoted by E,, is 

n k  

E , ( x )  = U/ n xF.1. (14) 
1 = 1  

Consider the linear block code defined by the generator 
matrix G (or, equivalently, by the encoding procedure 
associated with G). The polynomial representation of 
G, i.e., E , ( x ) ,  will be called the energy function of w 
with respect to the encoding procedure x + y .  Note that 
E , ( x )  = w . y ( x ) ,  where the centered dot denotes inner 
product. To establish the connection between energy func- 
tions and linear block codes, we will prove that finding the 
global maximum of E,(x) is equivalent to MLD of a 
vector w with respect to the code C. 

Theorem 2: Given an [ n ,  k ]  code C defined by an en- 
coding procedure x -, y ,  and a vector w E (1, - l}", the 
closest codeword (in Hamming distance) to w in C corre- 
sponds to an information vector b = (bl, b2; . ., bk) if and 
only if 

E,(b)= max E , ( x ) .  
x E (1. - l)k 

Proof: Notice that, for any information vector X E  

(1, - I l k ,  
n 

= c U / Y / ( X )  

= n -2l( j :  a/ # Y / ( X ) }  I 

J = 1  

=l{j: w / = ~ / ( x ) } l - l { j '  w J z y / ( x ) } l  

= n -2d,(w, y )  

where d H  denotes Hamming distance. This expression 
implies that E,(b,, b2; . e, bk) will achieve a maximum if 
and only if d H (  U ,  y )  achieves a minimum. Q.E.D. 

Example: Consider the [7,4] Hamming code, defined by 
the encoding procedure in (12). Assume that we want to 

perform MLD of the received word 

U =  (1, -1, - l , l , l ,  -1 , l ) .  

Then, 

E&l, x2, x3, x4) = x1- x2 - x3 + x4 + x2x3x4 

- x1x3x4 + x1x2x4. 

The maximum of this polynomial occurs at E,(l, -1, 
-1,1) = 5. Thus, the received word is decoded as 

Example: Consider the R(1,3) first-order Reed-Muller 
code, defined by the encoding procedure in (13). Given the 
received word o = (coo, wl; e ,  w7) ,  the energy function is 

(1, - 1, - 1,l). 

E ~ ( x 0 , x l , x 2 , x 3 )  = x O ( w O + w l x l + w ~ x ~ + ~ 3 x 1 x ~ +  0 4 x 3  

+ w5x1x3 + W6X2X3 + w7x1x2x3) 

=xo(ao+ E,(x142,xJ) 
where 

E,(x~, ~ 2 ,  ~ 3 )  = 01x1 + ~ 2 . ~ 2  + 0 3 ~ 1 x 2  + ~ 4 x 3  + ~ 5 ~ 1 x 3  

+ W6X2X3 + w7x1x2x3. 

Hence it is enough to find 

If the energy that corresponds to the maximum is positive, 
then xo = 1; otherwise, xo = - 1. Assume that we receive 
w = ( - l , l , l , - l , l , l , l , - l ) .  Wehave, 

E,(Xl, x2, x3) = x1 + x2 - x1x2 + x3 + x1x3 

+ x2x3 - x1x2x3; 

then 

Since the energy is positive, the received word is decoded 
as (1,1,1,1). In t h s  case the decoding is not unique, since 
the maximum is achieved at more than one point. 

Given an encoding procedure, we can use the same 
argument as in Theorem 2 to express the minimum dis- 
tance of the code. Consider the encoding procedure 

x =  ( x l , x 2 > . - , X k >  - , Y = ( Y 1 , ~ 2 , " . , Y n )  

E(X1,X2;..,xk)=y1+y2+ . * *  +y,. 

and the energy function with w = (1,1,. . . ,1) 

As before, 

E(x,, X2,' Xk) = n -2&((11.. . l),(Yl, y2,. .., y,))  
and 

occurs at 

The conclusion is therefore that d* (the minimum distance 
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of the code) is given by 

Example: For the [7,4] Hamming code, 
M =  max x1  + x 2  + x 3  + x4  + x2x3x4  

( X I .  X2 .  x j .  xq) + ( 1 1 1 1 )  

+ x1x3x4 + x1x2x4 = 1. 

Thus 
n - M  7 - 1  

2 2 
Example: For the R(1,3) first-order Reed-Muller code, 

d* = -- -- - 3. - 

M =  max x o ( l  + x1  + x 2  + X l X 2  + x 3  + x1x3  
(xg. XI .  x2. x,) f ( 1 1 1 1 )  

which can be written as 

The maximum in (16) is M = 0, because at least one of the 
x i  (for i > 1) must be equal to - 1. Thus 

n - M  8 
2 2  

d * = - -  --=4. 

The same argument can be used for any R ( 1 , m )  code, 
giving 

2" 

2 
d * = - =  2 m - .  1 

V. REPRESENTING LINEAR CODES AS STABLE 
STATES OF ENERGY FUNCTIONS 

Let V be a linear block code (over GF(2)) defined by 
the generator matrix G. Let E,  be a polynomial over 
(1, -1} (energy function) with the property that every 
local maximum in E,  corresponds to a codeword in V and 
every codeword in V corresponds to a local maximum 
in E,. 

Consider the following question: given a code V defined 
by G, is there an efficient algorithm to construct E,? This 
section describes the development of such an algorithm. 

Consider the [n ,  k ]  linear block code V. Without loss of 
generality, let us assume that the generator matrix G is 
given in a systematic form; that is, 

G =  [ z k :  P ]  (17) 

where Zk is a k X k identity matrix, and P is a k X ( n  - k )  
matrix. The parity check matrix of % is 

r p i  

By the definition of H ,  for all U E %, 

u H T =  0 (19) 

where 0 in (19) is an all zero vector of length ( n  - k ) .  
Equation (19) can be written using the polynomial repre- 
sentation devised in (14), with the vector of coefficients 
being the all-ones vzctor. 

Lemma 2: Let E ( x )  be the polynomial representation 
of H T  with Zespect to the all-ones vector. Then x E V if 
and only if E ( x )  = n - k .  

Proof: E" has ( n  - k )  terms, and all the coefficients 
are equal to 1. Hence E = n - k if and only if all the terms 
are equal to 1. Q.E.D. 

The lemma ensures that in the polynomial E" every 
codeword corresponds to a global maximum (stable state). 
Does every local maximum correspond to a codeword? 

Theorem 3: Let V be a linear block code, with G, H ,  
E,, and E" as defined. Then E" is a polynomial with the 
properties-of E,. That is, x corresponds to a local maxi- 
mum in E if and only if x E %. 

Proof: From Lemma 2, the global maximum of E" is 
n -  k ;  thus every codeword is a global (and a local) 
maximum. The converse follows from the fact that H has 
a-systematic form. Specifically, the last n - k variables in 
E ,  that is, X ~ + ~ , - . . , X , ,  each appear only in one term. 
That is, x k + l  appears only in the first term, xk+2 appears 
only in the second term, and so on. Assume that a vector V 
exists that correspo_nds to a local maximum (which is not 
global). That is, E ( V )  L ,  where L < n - k .  Hence at 
least one term exists in E ( V )  that is not 1. However, this 
term can be made 1 by flipping the value of the variable 
that appears only in this term. This contradicts the fact 
that V is a local maximum. Q.E.D. 

1) Consider the single parity check code; it is an 
Examples: 

[ n ,  n -11 code and 

G = [ Zn-l  : 1,-1] 

H T = l ,  

where 1, is the all-ones vector of length n. Hence 

E ( X )  = x l x 2 " ' x , .  

Clearly E( x )  = 1 if and only if x E T. Also, E"(x) = - 1 
for all x %. Thus local maxima in E have a one-to-one 
correspondence with codewords in V .  

2) Consider the simple repetition code; it is an [ n , l ]  
code and 

G = [1,1;. .,1] 

H =  [ln-l:  Z,-,]. 

Then 

E " ( x ) = x , ( x 2 + x 3 +  . . .  + x , ) .  

Clearly two stable states exist in E ,  the all-ones and the 
all-( - 1's) vectors. 
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3) Consider the [7,4] Hamming code (see also Section 
IV), 

E ( X )  = x 1 x 2 x 4 x 5  + X 1 X 3 X 4 X 6  + x2x3x4x,. (21) 
Again, the polynomial in (21) has the [7,4] Hamming code 
as the set of its local maxima. 

To summarize, given a linear code V, the algorithm for 
constructing a polynomial E ,  is as follows. 

1) Construct the systematic generator matrix of V by 
performing row operations on the generator ma- 
trix G. 

2) Construct the systematic parity check matrix of V, 
in accordance with (18). 

3) Construct E ,  which is the polynomial representa- 
tion of H T  with respect to the all-ones vector. By 
Theorem 3, let E ,  = E .  

A few remarks and generalizations regarding the above 
development are now in order. 

1) The construction just described also works for cosets 
of linear codes._Let w be the vector of length n - k of the 
coefficients of E .  In the foregoing construction we chose U, 
to be the all-ones vector and concluded that E, = E .  Let V 
be a coset of y, and let S be the syndrome which 
corresponds to W. It can be proven (basically as in the 
proof of Theorem 3) that a one-to-one correspondence 
exists between local maxima of the polynomial representt- 
tion of H T  with w = S and the vectors in the coset 9. 
Clearly, the syndrome that corresponds to the code V is 
the all-ones vector (remembering that, in the transforma- 
tion in Section IV, 0 goes to 1). 

2) The foregoing construction (with respect to the one 
suggested in Section IV) is a dual way of defining the 
MLD problem. Consider a linear block code 9 defined by 
its parity check matrix H.  Given a vector V, the MLD 
problem can be defined as finding the local maximum in 
E, closest to V or, equivalently, finding a local maximum 
of the energy function associated with the syndrome (cor- 
responding to V )  that is achieved by a vector of minimum 
weight. 

VI. SOLVING 0-1 NONLINEAR PROGRAMMING 
PROBLEMS USING DECODING TECHNIQUES 

An unconstrained nonlinear 0-1 program [12] is a prob- 
lem of the form 

where Sf is a subset of ( l ; . . , n } ,  and x , E  {O, l} .  Basi- 
cally, the problem in (22) is a problem of finding a 

maximum of a 0-1 polynomial. A special case of (22) is 
the quadratic polynomial over { 1, - l }  that was presented 
in Section 11. Clearly, every polynomial over (1, - 1) can 
be transformed to an equivalent one over (0,1} by a 
change of variable as discussed in Appendix 11. The maxi- 
mization of a quadratic polynomial over (0, l} is known to 
be NP-hard [7]. One way to prove it is by showing that the 
maximum cut in a graph problem can be reduced to it. The 
reduction is based on the same techmque used in Section 
I1 to show the equivalence between quadratic energy func- 
tions and cuts in a graph. 

The problem in (22) was studied extensively in [lo], [12]. 
The main effort concentrated in identifying special cases 
which are solvable in polynomial time [13] and in devising 
approximation techniques [ll]. The most common tech- 
nique for solving unconstrained 0-1 programs is by trans- 
forming them to the problem of finding the maximum 
weight independent set in a graph [2], [20]. Finding the 
maximum weight independent set in a graph is NP-hard, 
but some solvable cases exist. For example, the problem is 
solvable in polynomial time (by “min cut-max flow” 
techniques) if the graph is bipartite [2]. A known class of 
problems, like (22), that are solvable in polynomial time 
includes those problems that correspond to finding the 
maximum weight icdepepdfnt set in a bipartite graph. 

Definition: Let G = ( V ,  E )  be a graph; S is an indepen- 
dent set of nodes in the graph if and only if S c V and no 
two nod%s of S are connected by an edge. Suppose every 
node in V is assigned a positive integer called the weight of 
a node. The problem of finding an independent set of 
nodes such that the sum of its weights is maximal over all 
possible independent sets is known as the maximum weight 
independent set problem. 

The problem in (22) is transformed to the problem of 
finding the maximum weight independent set by using the 
concept of a conflict graph of a 0-1 polynomial [2], [20]. 
The idea is illustrated in the following example. 

Example: Consider the following 0-1 polynomial: 

f ( X )  = - 2 x l - 2 ~ , + 5 X l X 2 - 4 ~ l ~ 2 ~ 3 .  (23) 

One can show that f( X )  can be transformed to an equiva- 
lent polynomial so that all the terms (except the constant 
one) have positive coefficients. The new polynomial in- 
volves both the variables and their complements. This is 
done by noticing that 

x = l - X .  
Hence 

f( X )  = - 4 + 2X1 + 22, + x1x2 + 4x,x2X, .  (24) 
Clearly, the maximization of f ( X )  is equivalent to the 
maximization of f( X )  without the constant term; thus the 
constant term can be nfglected. 

The conflict graph G ( f )  associated with a polynomial 
f ( X )  has a node set which corresponds to the terms of 
f ( X ) ,  each node to a term (but the constant term). Two 
nodes in G (  f )  are connected by an edge if and only if one 
of the corresponding terms contains a variable and the 
other corresponding term contains the same variable com- 
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plemented. The weight of a node in & ( f )  is the coefficient 
of the corresponding term in f .  Fig. 3 shows the conflict 
graph associated with f (  X ) .  

whether or not a given polynomial is in HP. We will 
describe both the recognition procedure and the maximiza- 
tion procedure by continuing with the previous example. 

Proposition 4: The polynomial M ( X )  is a Hamming 
polynomial. 

Proof: 2 1 2 2  

1) Transform M ( X )  to an equivalent polynomial over 
{ 1, - l} by a change of variable x = 0.5(1- U): 

222 4X,X& 
M (  U )  = - ~2 - 243 + ~4 + ~ 1 ~ 2  + ~ 1 ~ 3  + ~ 1 ~ 4  + ~ 2 ~ 3 ~ 4 -  

(26)  

251 x 
Fig. 3. Conflict graph associated with f ( x ) .  

The maximum weight independent set of 6 ( f )  is (2,4}; 
that is, the nodes that correspond to xlx2 and to x 1 x 2 X 3 .  
The weight of the set is five, the assignment which achieves 
the maximum corresponds to x1 =1, x2 =1, and x3 = 0. 
Thus the maximum of f (  X )  is - 4 + 5 = 1. 

One can prove that this procedure works in the general 
case as follows. 

1) Every maximum weight independent set in & f )  
corresponds to a maximum in f (and vice versa), 
with the values of the terms associated with the 
nodes in the set equal to 1. 
In general, the problem of finding the maximum 
weight independent set in a graph is solvable in 
polynomial time for bipartite graphs (the graph in 
Fig. 3 is bipartite). 

3) The conflict graph associated with a polynomial is 

2) 

2) By the derivation in Section IV, M is clearly equiva- 
lent to the MLD of 

0 = (1,1,0,0,0,0,0) 
with regard to the code defined by the following generator 
matrix: 

10 0 0 1 1  1 0 )  
1 0 0 1 0 0 1  

G =  I o  1 0 0 1 0 1 I .  (27) 

\ o  0 1 0  0 1 l j  
3) The mapix G can be brought to a systematic form, 

denoted by G ,  by row operations: 

I 1  0 0 0 1 1  1 \  
0 1 0 0 1 0 1  

G =  I o  0 1 0 0 1 1 I .  (28) 
\ o  0 0 1 1  1 0 1  

not unique, because a term can be made positive by From 6 we obtain fi, the systematic parity check matrix 
complementing any odd number of its variables. (see Section v>: 

In the following we will show how decoding techniques 
can be used to maximize 0-1 nonlinear programs. Con- 
sider the 0-1 polynomials associated with Hamming codes 
(see Section IV). The family of these polynomials will be 
denoted by HP (Hamming polynomials). It will be shown 
by an example that HP is not contained in the family of 
polynomials related to bipartite conflict graphs. Thus HP 
is not a subset of the family of polynomials whose maxi- 
mization is known to be easy. 

Consider the following polynomial over { 0,1} : 
M (  X )  = 3 -6x1 -2x2 -2x3 -6x4 

-I- 4( X l X 2  + X1X3 X1X4 + X2X3 X2X4 + X3X4)  

- 8x2x3x4. (25 ) 
The polynomial M ( X )  is not associated with a bipartite 
conflict graph (see the following proposition). 

Proposition 3: There does not exist 6 ( M ) ,  a conflict 
graph associated with M (  X ) ,  which is bipartite. 

Proof: The proof is straightforward; it follows from 
checking all the possible ways to convert the sign of the 
cubic term. Q.E.D. 

A maximum of a polynomial that belongs to HP can be 
found by applying the decoding procedure for Hamming 
codes. Also, an efficient method exists for recognizing 

1 1 0 1 1 0 0  

1 1 1 0 0 0 1  
1 0 1 1 0 1 01. (29) 

The polynomial M ( U )  is a Hamming polynomial because 
its parity check matrix contains all the possible columns 
(but the all-zeros column). 

4) To decode w ,  we will use the syndrome; that is, 

U H T =  ( O , l , O ) .  

The error is in the location corresponding to the row in 
fiT that is equal to the syndrome. Hence the result of the 
decoding is ( l , l ,O ,O ,O, l ,O) .  The maximum is attained at 
X* = (1,1,1,0), and M( X*) = 5. 

By this procedure we proved that M is in HP and found 
its maximum. Q.E.D. 

A few remarks with regard to the foregoing procedure 
are in order. 

1) The procedure in the proof can be applied to a 
general 0-1 polynomial. Consider the polynomial repre- 
sentation over (1, -1} (the one obtained after step 1 
above). A necessary condition that a polynomial is in HP 
is that the absolute values of the coefficients in the { 1, - 1) 
representation are equal (the constant is neglected). 

2) The complexity of the recognition process is deter- 
mined by the complexity of the transformation from the 

7 
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(0, l} representation to the { 1, - l} (step 1). This transfor- 
mation is exponential in the degree of the polynomial over 

By Section IV, maximization of polynomials over 
(1, - 1) with coefficients in (1, -1} is equivalent to MLD 
problem of linear block codes. The generalization to poly- 
nomials that have integer (or rational) coefficients follows 
immediately by expressing a term with a coefficient being 
equal to a (a positive integer) as a identical terms with 
coefficients equal to one. 

To summarize, we have established a technique for 
solving 0-1 nonlinear programs by decoding techniques. 
In particular, for the family of Hamming polynomials it 
was proven that this family of polynomials is not a subset 
of the family of polynomials associated with bipartite 
conflict graphs. Both a recognition procedure and a solu- 
tion procedure were derived. 

{0,1}. 
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APPENDIX I 
GENERALIZATION TO NONBINARY CODES 

Consider now a linear [n, k]  error-correcting code over a field 
GF(p) with p a prime. Let G be the generator matrix of the 
code. Then k symbols in Zp (b , ,  b2; . ., b k )  are encoded into 
codeword U = ( u1 , u 2 , .  . . , u , ~ )  by 

k 

U / =  b,,g,,,(modp), l i j i n .  

Again, the key idea is to use the multiplicative representation. Let 
U be the pth root of unity 

m = l  

= e 2 n r / P  
VII. CONCLUSION 

The additive group Z, can be represented as a multiplicative 
group of p roots of unity through the transformation a + u'. 

In the multiplicative representation, the k information symbols 
(b , ,  4,. . . , bh ) are represented as 

The following three problems were considered: 

1) maximum likelihood decoding of error-correcting 
codes, 

2) finding the global maximum of a neural network, ( X I ,  X 2 , . ' . , X k )  = (Uh,,Uh,,. . .,I&). 

3) solving 0-1 nonlinear programming problems. 

It is well-known that all of these problems are NP-hard [7],  
i.e., the problems are believed to be intractable. We have 

Thus the encoded codeword U = ( u l ,  u 2 , .  . . , U,,) is represented as 
= ( y 1 3  h3'  ' ' '  where 

k 

y/ = = U x h - ~ h m s n , , ( m d ~ )  n Ubmsm, = n X i m J .  
shown that these three problems are related to one another m = l  m = 1  

in a very natural way and revealed the equivalence be- 
tween them for the binary as well as for the nonbinary 
case. 

Here are a few implications of the equivalence between 
the three problems. 

1) Solvable cases in one problem can be used to identify 
new solvable cases in the equivalent problem. In particular 
we have shown how to use the decoding algorithm for the 
Hamming code to solve certain 0-1 nonlinear problems 
that are not solvable by known techniques. In the opposite 
direction, the design of codes that correspond to solvable 
cases of 0-1 nonlinear problems and hence have an effi- 
cient decoding algorithm, is a subject for future research. 

2) The equivalence between problems can be used to 
prove new results. For example, we have found a simple 
proof for the minimum distance of Reed-Muller codes by 
considering the equivalent problem in polynomials. 

3) Neural networks is an area that attracts new interest. 
The equivalence established in the paper reveals their rich 
graph theoretic structure as well as their algebraic struc- 
ture. In particular, it enables us to solve the programming 
problem for neural networks. That is, given an error- 
correcting code, we can construct a neural network in 
which every local maximum is a codeword and vice versa. 
Since the MLD problem is NP-hard, we cannot expect to 
have the network converge to the closest local 
maximum/codeword. Finding families of codes for which 
there exist networks that perform MLD is another interest- 
ing research direction. 

Example: Consider the [4,2] ternary Hamming code whose 
generator matrix is 

G = ( '  0 2 0 ) .  
0 1 2 1  

Given the two information symbols (b , ,  b2), the corresponding 
codeword is 

U = ( b, , b2 ,2b, +2b,(mod3), 4 ) .  
In the multiplicative representation, this becomes 

where xI  = U'], U = e2n' /3 .  
Hence as for the binary case, we can represent a code on a 

field with p elements ( p  a prime) by an encoding procedure. The 
elements are now pth roots of unity. Thus, given k information 
symbols, we have the 1-1 assignment 

x = ( X I ,  9' ' ' 9 x k )  y =  ( y 1 ,  y,,' . ' ,  yn) 
where y, = y/ ( x, ,  x 2 , .  . . , x A  ) is a monomial. 

We will present two generalizations. In the first generalization 
we consider solving the MLD problem with the metric being the 
Hamming distance while in the second we consider the Lee 
distance. The generalization for the case in which the MLD 
problem is defined using the Hamming distance is based on the 
following well-known lemma [16]. 

Lemma 3: Let p be a prime, and let u = e 2 " ' / p .  Assume 
k E  {O;..,(p-l)}; then 

1 P - 1  

P m = 0  

i fk=O 
otherwise. 

The generalization is stated by the following theorem. 
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Theorem 4: Consider an [ n ,  k ]  block code over GF( p)  with p 
a prime. Let x + y be the corresponding encoding procedure. 
Let E,P be the following: 

Proof: Using the definition of the energy function, 
- E,( a )  = I { j :  w,b, = l} I - I { j :  G, b, = u2 or U'} I 

j = 1  m = O  

= n - 1 { j :  ~ , 4  = u or U"} 1 -2) { j :  zJ4 = u2 or u ' }  1 
= n - dL(  U ,  b )  

Then the MLD of is equivalent to finding the maximum of E:. 

Next we consider MLD with respect to the Lee distance. Here 
the result is not general for every P as in the Previous case. We 
will show that for p = 3 or 5, there are easy expressions of the 
energy function. We start by redefining the energy function. 
Given an encoding procedure 

where d ,  denotes Lee distance. Hence E,( a )  reaches a maxi- 
Q.E.D. if and Only if d L ( w 9  b,  a 

Example: Consider the [6,2] code on Z, generated by 

1 2 3 4 1 0  
G' (1  1 1 1 0 1). 

~~ 

The corresponding encoding procedure, taking the symbols as 
fifth roots of unitv. is eiven bv = ( x2,' . ., xk) + y =  (.h, y23' ' . )  y n )  

I I  " 
and w = ( wl, w2; . . , U,,) a vector whose entries are pth roots of 
unity, we define the energy function as follows: 

E,(x) =1Re(w,y,)l+lRe(02y2)l+ ... +lRe(Tj,yn)l (30) 
where Re(x) denotes real part, 1x1 integer part, and X complex 

( X I  > x2) + (3x2 9 x:x2 9 x:., 9 4.2 > x1, x2). 
A ~ u m e  W = ( U ~ , U " , ~ , U ~ , U , ~ )  is received, where U=eZnr/' .  The 
energy function is then 

conjugate of x. E,(x,,x2) = [Re( u3x1x2)] + [Re( ux:x2)] + [Re( x:x2)] 
Notice that this energy function coincides with the one for 

p = 2 (in that case, U = - 1). Before proceeding further, let us 
recall the definition of the Lee distance [18]. 

Definition: the Lee weight of an n-tuple ( a l ,  a2; . ., a,,), a, E 
Z p ,  p a prime, is defined as 

n 

w/.= I a J 1  
J =1 

where 

0 I a, I p/2 
l a , [ =  i p - a ,  p/2<a,<p-1.  

The Lee distance between two n-tuples is defined as the Lee 
weight of their difference. 

We study the cases p = 3 and p = 5. Henceforth, x + y de- 
notes an encoding procedure that defines a code C,  and x and y 
are vectors of length k and n ,  respectively, of third or fifth roots 

We are going to prove two theorems. The first one is similar to 
Theorem 2. It states that MLD in a ternary code is equivalent to 
the maximization of the energy function in (30). The second 
theorem states something similar for codes on the fifth roots of 
unity but with respect to the Lee distance. 

Theorem 5: Let p = 3, a + b; then b is the closest codeword 
(in Hamming distance) to a word w if and only if 

of unity. 

E,( a )  = max E,( x). 
X 

Proof: The proof is similar to that of Theorem 2. Q.E.D. 

Example: Consider again the [4,2] ternary Hamming code. 
Assume w = (U, u2,  1, U) is received (U = e2"'/'); then 

E , ( X I ? X 2 )  = lRe(.'x1)1 +lRe(.x2)1 

+ [Re(x:x:)] + [Re( u2x2)1. 

+1Re(u2xfx2] +[Re(u"x,)] +t[Re(x,)]. 

It can be verified that the maximum occurs at E,( U', 1) = 4; thus 
w is decoded as (u2,1). 

APPENDIX I1 
GENERALIZATION TO NONLINEAR CODES 

We consider nonlinear block codes and generalize the result in 
Section IV. The key idea for getting this generalization is to 
consider the representation of Boolean functions as polynomials 
over the field of real numbers. Although part of this discussion is 
known (see, for example, [16], [17]), we include a detailed deriva- 
tion as we believe that it is novel with regard to the mode of 
presentation. Let us start with some definitions and notation. 

Definition: A Boolean function f on n variables, is a mapping, 

f :  {0,1}"-. {O,l}. 

As in Section IV, it is useful to define Boolean functions using 
the symbols 1 and -1 instead of the symbols 0 and 1, respec- 
tively. 

Definition: A Hadamard matrix of order m,  denoted by H,, is 
an m X m matrix of + 1's and - 1's such that 

H,, HL = mI, (31) 
where Z,, is the m X m identity matrix. The above definition is 
equivalent to saying that any two rows of H are orthogonal. 

Hadamard matrices of order 2k exist for all k 2 0. The so-called 
Sylvester construction is as follows: 

HI = [I1 

.=[: -:I 
It can be easily verified that max E,(x1, x2) = 
thus w is decoded as (U, U'). 

uz)  = 2;  Definition: Given a Boolean function f of order n ,  Pf is a 
polynomial (with coefficients over the field of real numbers) 
equivalent to f if and only if for all X E (1, - l}": 

/(XI = p / ( x ) .  
Theorem 6: Let p = 5, a + b; then b is the closest codeword 

(in Lee distance) to a word w if and only if 

E,(a)=maxE,(x). 
Problem: Given a Boolean function f of order n ,  compute Fj, 

X a polynomial which is equivalent to f .  

-7 
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As an example, let f = x 1 8 x , ;  that is, f is the XOR function of 
two variables. It is easy to check that in the (1, - 1) representa- 
tion, Pf = x ,x , .  

Notice that, for every Boolean function f ,  the polynomial Pf is 
linear in each of its variables because x 2  =1 for x E { - l , l } .  It 
turns out that every Boolean function has a unique representa- 
tion as a polynomial. This representation is derived by using the 
Hadamard matrix, as described by the following theorem. 

Theorem 7: Let f be a Boolean function of order n .  Let P, be 
a polynomial equivalent to f .  Let A denote the vector of coeffi- 
cients of P,. Let P denote the vector of the 2" values of P, (and 
f ) .  Then 

1) the polynomial Pf always exists and is unique; 
2) the coefficients of P, are computed as 

1 
A = - H , . P  

2" 

Proof: The proof is constructive. The idea is to compute A 
by solving a system of linear equations. Let us start by computing 
the coefficients of P, for f a function of one variable: 

P / ( X J  = a0 + alxl 

P,(l) = a, + a, 

P/(  -1) =a ,  - al. 

and 

Clearly, 

and by (31), 

P =  H,A  (33) 

A = - H , P .  ( 34) 
1 
2 

Claim: The above result can be generalized to n variables as 
follows: 

P =  H,.A. (35) 

The proof is by induction. The case n =1 has been proven. 
Assume (35) is true for n. Clearly, every polynomial of n + 1 
variables can be written as a combination of two polynomials 
each of n variables, 

$ ( x i , '  . . )  x , , + i )  = PI( x i , ' .  . t  x , )  + xfl+1Pf2( x i , '  . ' 9  x H ) .  (36) 

There are two possibilities, either x ,  + = 1 or x ,  + = - 1. Hence, 
by the induction hypothesis (35), the system of linear equations 
for n + 1  variables becomes 

(37) 

From the recursive definition of Hadamard matrices (32), 

P =  H2n+1A. (38) 
Hadamard matrices are nonsingular; thus, for any given / a 
unique P, (defined by the vector of coefficients A )  always exists. 

Q.E.D. 

The representation theory developed above holds also if one is 
interested in the question of finding an equivalent polynomial, 
over {O,l}, of a Boolean function. To see this, simply observe 
that any monomial over { l ,  - 1) can be written as a polynomial 

over (0, l }  by the change of variable x = 1 - 2 u ,  as follows: 

k k 

r I x , = l +  c (-2)'C n U, (39) 
I = 1  r = l  S, J E 

with S, a subset of {l; . ., k} with i elements. 
For example, 

x , x , x , = ~ - ~ ( u , +  U , + U , ) + ~ ( U , U ~ + U , U , + U ~ U ~ ) - ~ U ~ U ~ U ~ .  

It is also possible to derive the recursive definition of the trans- 
formation from a Boolean function to an equivalent polynomial 
over { 1, - l }  by using the recursive definition of the Hadamard 
matrix (for more details see [6]) .  

The representation theory developed above can be used for 
representing error-correcting codes in a way that generalizes the 
representation described in Section IV. Consider the linear [n, k] 
block code Q. The code Q can be represented by viewing each 
coordinate of the code as a Boolean function of k variables. A 
vector V E Q if and only if there exists a vector X E (1, - l}k 
such that 

V =  ( f l (  XI 9 f 2 (  X )  9 .  . . 7  f"( XI) . 

Clearly, the Boolean functions associated with the coordinates of 
a linear block code are determined by the basis by which the code 
is represented. For linear block codes, every coordinate f, corre- 
sponds to an XOR operation of some variables (according to the 
basis of the code). Thus, for every i ,  the Boolean function f, can 
be transformed by the method described in Theorem 7 to an 
equivalent polynomial over { l , - l J k  which consists of one 
monomial only. By the same argument as in Theorem 2, the 
MLD of a given word W is equivalent to solving the following 
maximization problem, with X E (1, - l}k,  

The MLD problem as defined by (40) holds also for nonlinear 
codes. For nonlinear codes, a coordinate f, can consist of more 
than one monomial. For example, consider the following nonlin- 
ear code of four codewords: 

Q = [ (00100) ,(11111) ,(10101) ,(01011)]. 

Then, 

/I = X l X 2  

f 2  = X I  

f 3  = OS( - 1 - x ,  - x2 + x1.2) 

f 4  = x1 

f s  = OS( - 1 + X I  + x2 + x , x , )  

From this generalization, it follows that, for both linear and 
nonlinear codes, the MLD problem is equivalent to a maximiza- 
tion of a polynomial over (1, - l } .  Hence a rather surprising 
theorem follows. 

Theorem 8: The following three problems are equivalent: 
1) maximization of polynomials with rational coefficients 

over the k-cube; 
2) the MLD problem of an [n, k] linear block code; 
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3) the MLD problem of a not necessarily linear block code 
that consists of 2k codewords. 
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