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S0: Overview

In this Supporting Information section, we present derivations of the equations used in the main

text as well as derivations of background material. Sections S1-S2 derive basic equations for the

mechanics of the graphene sheet. Section S3 presents calculations of the magnitude of the expected

signal when using the frequency modulated (FM) method for excitation and detection described in

the main text.

The remainder of the supplement can be divided into sections concerning the linewidth in the

linear damping regime (Sections S4-S5) and phenomena in the nonlinear regime (S6-S7). Specif-

ically, section S4 first presents derivations of the non-dissipative line broadening due to stiffness

fluctuations induced by the coupling between the fundamental and the rest of the thermally excited

membrane modes. Section S4 then considers dissipative mechanisms. The energy loss rate from
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fast modes due to interactions with the other sheet modes is calculated using perturbation theory

for the wave equation. The energy loss rate from the fundamental mode due to interactions with

the other sheet modes is also considered, using a model of parametric driving of the fast modes.

Section S5 considers how the fundamental mode quality factor is modified by electrostatic forces.

Finally, section S6 derives results for the membrane motion in the nonlinear regime, while S7

is concerned with the magnitude of the parametric drive by thermal expansion in the nonlinear

regime.

S1: Resonant Frequency and Deflection of Graphene Membranes under Electrostatic Pres-

sure

To calculate the resonance frequency of an initially tensioned graphene circular membrane with

tension T0 versus gate voltage Vg, the starting point is the elastic energy for a two dimensional (2D)

membrane,1,2

U =
1
2

κ

∫
dxdy

(
∇

2h
)2

+
1
2

∫
dxdy 2µ ∑

i, j
u2

i j +λ

(
∑

i
uii

)2

−P
∫

dxdy h, (S1)

where µ is the shear modulus, λ is Lamé’s first constant, h is the vertical height displacement of

the membrane, P is the pressure on the membrane, κ is the bending modulus, and ui j is the strain

tensor. For graphene, λ ≈ 48 N/m, µ ≈ 144 N/m, and κ ∼ 1 eV.3 The strain tensor is given by2

ui j =
1
2

(
∂ui

∂x j
+

∂u j

∂xi
+

∂h
∂xi

∂h
∂x j

)
,

A vector in the x-y plane with components ui(x,y), and a z-component h(x,y) represents the dis-

placement of each point on the membrane from equilibrium. To calculate the deflection and reso-

nance frequency of the fundamental mode, we neglect the bending term.3 The membrane is con-

sidered to be initially tensioned by stretching it by an isotropic in-plane strain factor 1+ c and

then vertically displaced by the pressure. We take a variational approximation to the height to be

h = z0(1− r2/r2
0), where r0 is the radius of the resonator, r is the cylindrical radius coordinate, and

z0 is a variational parameter equal to the vertical displacement of the center of the membrane. This
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gives the strain tensor components

uxx = 2x2(z0/r2
0)

2 + c

uyy = 2y2(z0/r2
0)

2 + c

uxy = 2xy(z0/r2
0)

2 (S2)

Putting eq. S2 into eq. S1 gives

U =
2
3

π
z4

0

r2
0
(λ +2µ)+2πc(λ +µ)z2

0−
1
4

ε0Ā
d2 z0V 2

g +2c2(λ +µ)πr2
0 (S3)

The term 2c2(λ + µ)πr2
0 is a constant arising from the work required to initially strain the mem-

brane, and the electrostatic pressure was expressed as

P =
1
2

ε0

d2V 2
g , (S4)

where ε0 is the dielectric constant and d is the distance between the gate and the ground plane.

Here we neglect the contribution of the first order corrections to the pressure (calculated below)

since they are negligible compared to the tension term for typical device parameters. Minimizing

the energy with respect to z0 gives the equation

8
3

π(λ +2µ)
z̄3

0

r2
0
+4πc(λ +µ)z̄0−

1
4

ε0Ā
d2 V 2

g = 0, (S5)

where Ā is the area of the resonator, and z̄0 is the optimizing value. For sufficiently small Vg we

neglect the cubic terms and get

z̄0 =
1

4πc(λ +µ)

ε0Ā
4d2V 2

g . (S6)

The factor c(λ +µ), which is a strain times an elastic constant, is related to the initial tension. As

the constant term in the energy, 2c2(λ + µ)πr2
0 represents the work required to strain the mem-

brane we use this to determine the tension by considering the work required for an infinitesimal
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expansion. This yields T0 = 2c(λ +µ). Thus equation S6 is then rewritten as

z̄0 =
1

8πT0

ε0Ā
d2 V 2

g . (S7)

For large Vg the cubic term in equation S5 dominates, and we expect z̄0 ∼V 2/3
g .

S2: Effective spring constant, mass, and Duffing term

The resonance frequency ω0 is given by ω0 =
√

ke f f /me f f with an effective resonator spring

constant ke f f and mass me f f . The effective spring constant is given by

ke f f =
∂ 2U

∂ z2
0
,

where U is the total energy including electrostatic terms from the gate voltage. To account for

electrostatic effects on ω0, it is required to approximate the electrostatic energy to 2nd order in

z0 to determine the force gradient. The electrostatic energy is 1
2CV 2, where C is the resonator

capacitance, and V is the voltage on the capacitor. Assuming slow variation of the displacement

laterally, we approximate the capacitance as

C =
∫

ε0

d− z0(1− r2/r2
0)

rdrdθ

Expanding this in a power series in z0, the maximum deflection, so that C =C0+C1+C2..., where

Ci is a term in the ith power of z0, gives

C0 =
ε0Ā
d

C1 =
ε0Āz0

2d2

C2 =
ε0Ā
3d3 z2

0

The contribution to the energy from C2 produces a force gradient and alters the effective spring
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constant, yielding

ke f f =
∂ 2U

∂ z2
0

= 8π(λ +2µ)
z2

0

r2
0
+4πc(λ +µ)− ε0Ā

3d3V 2
g (S8)

Using the relation T0 = 2c(λ +µ) derived above and eq. S7, eq. S8 can be rewritten as

ωres = 2π fres =

√√√√2πT0−
ε0πr2

0
3d3 V 2

g +aV 4
g

me f f
, (S9)

with a a constant.

Duffing term

The Duffing term is represented by a force term F =−αz3
0. Using eq. S3 and α =− 1

3!∂
3F/∂ z3

0 =

1
3!∂

4U /∂ z4
0, yields

α = 8π(λ +2µ)/3r2
0. (S10)

Effective mass

Here we compute the effective mass and resonance frequency of the vibrating membrane using

a variant of Rayleigh’s method.4 For the vibrating graphene (or few layer) sheet, we have

z0(t) = z̄0 + |δ z|sinωt,

where δ z is the complex amplitude of the oscillation, and t is the time. The maximum kinetic

energy when z0 = z̄0 and the potential energy is minimal is then

KE =
∫ 1

2
σω

2|δ z|2(1− r2/r2
0)

2rdrdθ ,

where σ is the resonator areal mass density. This gives

KE =
1
6

πσ |δ z|2r2
0ω

2.
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Comparing this expression to the result for the ordinary harmonic oscillator, we get

me f f =
1
3

πσr2
0. (S11)

For the resonance frequency when Vg = 0, ke f f = 2πT0 and using the expression for me f f , we get

ω =

√
2πT0

1
3πσr2

0
=

√
6

r0

√
T0

σ
,

which is within a few percent of the exact result.5

S3: Magnitude of FM signal in drum resonator

The FM technique described in the text will produce a signal with geometric factors arising from

the drumhead geometry as compared to a parallel plate model. The signal is expected to be smaller

both because the average deflection is less due to the pinned boundary conditions and because

the average potential is less because of the voltage drop along the sample. Moreover, upon the

transduction of the motion into an electrical signal, because of the shape of the deflection, the

resistance change will also be less.

This yields a total attenuation factor of 16. This can be understood as one factor of 1/2 in

the drive force from the shape of the distortion not being planar, and another factor of 1/2 since

the average potential over the sheet is 1/2 of the applied potential. The signal transduction has

a relative factor 1/4 because the resistance change is only concentrated near the center where the

deflection is largest, and it is probed by a potential near the center which is ∼1/2 the potential

applied. In the following we show the detailed computation of the expected total signal reduction

from these sources.

From equation S1 the electrostatic energy term is given by

Uel =−
∫

dxdy h(x,y)P(x,y),

where here the pressure P is no longer considered constant within the x−y plane since the electro-
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static potential V is now assumed to drop linearly between the electrodes. Supporting Information

Fig. S1 shows a schematic diagram of the device geometry and potential drop. As before varia-

tional expression for the height is given by

h = z0(1− r2/r2
0). (S12)

The local pressure is given by

P =
ε0

2d2 (V −Vg)
2,

with

V =Vsd
L− x− r0

L
,

where Vsd is the source-drain voltage, x = 0,y = 0 corresponds to the center of the circular drum-

head and L = 2r0. We then have

Uel =−
∫

dxdy
ε0

2d2

(
−Vg +Vsd

L− x− r0

L

)2

z0[1− (x2 + y2)/r2
0].

If Vsd <<Vg then

Uel
∼= UDC +

∫
dxdy

ε0

d2VgVsd
L− x− r0

L
z0[1− (x2 + y2)/r2

0] = UDC +UAC,

where UDC is the electrostatic energy arising from the DC gate voltage Vg. Performing the integral

gives

UAC =
ε0Ā
4d2VgVsdz0,

Giving a force magnitude

FAC =
ε0Ā
4d2VgVsd (S13)

As discussed above, compared to the usual expression for a parallel plate capacitance and a spa-
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tially constant electrostatic potential,

F =
1
2

C′V 2
g

=
ε0Ā
d2 VgVsd,

the effective force is 1/4 as much.

Current change caused by a membrane displacement

The total measured FM signal depends on the change in current caused by the membrane

deflection discussed above. The current change caused by the membrane displacement in our

experiment is expected to be smaller than the parallel plate result. This is because under the actual

parabolic displacement the center has the most change in conductance while the edge, which is

pinned by the boundary, has zero. To determine the change in the current, we use the result that if

an inhomogeneous sheet resistance exists then the 2D Laplace equation is modified to6

∇
2V =

∇R ·∇V
R

, (S14)

where R is the local sheet resistance and V the electrostatic potential within the sheet. To solve

this, we use perturbation theory by assuming the right hand side is small. The correction to lowest

order will be

∇
2Vin =

∇R ·∇Vhom

R
, (S15)

where Vin is the inhomogeneous potential produced by the forcing term on the right hand side

of eq. S15, and Vhom is the unperturbed (homogeneous) potential. The total potential will be

V =Vhom +Vin. Assuming small resistance changes, we replace the denominator of the right hand

side of eq. S15 by the unperturbed value of R which we label R0. To get an expression for ∇R, we
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start with an expression for R due to small changes in the charge density ρ .

R = R0 +
∂R
∂ρ

δρ

∇R =
∂R
∂ρ

∇(δρ) (S16)

using eq. S12 δρ can be expressed as

δρ =
∂ρ

∂ z0
z0[1− (x2 + y2)/r2

0] (S17)

Eqs. S16 and S17 taken together yield

∇R =
∂R
∂ρ

∂ρ

∂ z0

z0

r2
0
(−2rr̂), (S18)

where r̂ is the in-plane unit radial vector. The two derivatives in eq. S18 are considered constant.

We define TR = ∂R/∂ρ . We also have

∂ρ

∂ z0
=

∂

∂ z0
(−CAVg) =−Vg

∂CA

∂ z0
=−Vg

∂

∂ z0

ε0

z0
=−Vg

ε0

z2
0
,

where CA is the capacitance per unit area. This yields

∇R = TR
Vgε0

d2
z0

r2
0
(2rr̂),

where d is the distance between the gate and the undisplaced membrane, assuming that positive z0

indicates downwards deflection towards the gate. The unperturbed potential gradient is given by

∇Vhom =−Vsd

L
x̂
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so the right hand side of eq. S15 is given by

∇R ·∇Vhom

R0
=

TRVgε0

R0d2
z0

r2
0
[2rr̂ · (−Vsd

L
x̂)]

=
−2TRε0VgVsd

R0d2L
z0

r2
0

x

Taking the solution to the 2D Poisson equation

∇
2V = δ (~x),

where δ (~x) is the Dirac delta function as

V =
1

4π
ln(x2 + y2).

Vin is therefore given by

Vin(~x′) =−
∫

dxdy
2TRε0VgVsd

R0d2L
z0

r2
0

x
1

4π
ln |~x′−~x|2.

= A0

∫
dxdy x ln |~x′−~x|2,

with

A0 =−
TRε0VgVsd

2πR0d2L
z0

r2
0
.

The integral is taken over the resonator area, a circle of radius r0. Converting this into a dimension-

less integral over the unit circle by a change of coordinates and evaluating the integral numerically

gives

∆V ∼= πA0r3
0.
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Since the voltage and current are related by resistance R by V = IR,

∆V
V

=
∆R
R

=−∆G
G

,

where G = 1/R is the conductance. Then we have

∆G =−
TRVgε0z0

4d2R0
G =−

TRVgε0z0

4d2R2
0

.

Considering the vibration amplitude |δ z| this yields an expression for the ac current δ I:

δ I =−
TRVgVsdε0|δ z|

4d2R2
0

.

We can rewrite this in terms of the transconductance T = ∂G/∂ρ . We have

T =
∂G
∂ρ

=
∂ (1/R)

∂ρ
=
−1
R2

∂R
∂ρ

.

Thus,

δ I =
TVgVsdε0|δ z|

4d2 , (S19)

We can compare this to the parallel plate result

δ I = Vsd∆G

= VsdTVgC′|δ z|

=
VsdTVgε0|δ z|

d2

Thus we have another 1/4 factor signal reduction because of the geometry. The total signal will be

1/16 of that expected from a parallel plate model for the resonator. With this factor of 1/4, the FM
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signal is expected to be, using the parallel plate result from ref. 7

δ I =
1
8

∂G
∂Vg

VsdVg
C′

C
f∆

∂

∂ f
ℜ[δ z],

We have also the relation for a harmonic oscillator on resonance

dℜ[δ z]
d f

=
−2|δ z|

δ f
,

where δ f is the frequency width of the resonance. Therefore the amplitude in terms of known

experimental parameters is given by:

|δ z|= 4dδ Iδ f
(∂G/∂Vg)VsdVg f∆

(S20)

S4: Dissipation and line broadening from intermodal interactions

Recent theoretical work has suggested that the linewidth in carbon nanotube8 or graphene9 res-

onators could result from fluctuations in the tension caused by the thermally excited modes. How-

ever, the work on carbon nanotubes considers tension fluctuations, which is not immediately ap-

plicable to two-dimensional membranes. It also does not consider the temporal behavior of the

fluctuations, which is important for determining the contribution of motional narrowing to the

linewidth. The work on graphene does not explicitly consider a tensioned membrane, which is

relevant to our experimental situation. As a result, we first consider a model in which the modes

of the sheet are divided conceptually into “fast” and “slow” modes by their frequency. As the

fast modes oscillate due to thermal excitation, they perturb the slow modes’ resonance frequency

through nonlinear coupling. Later in this section we consider dissipative line broadening due to

intermodal energy transfer. This contribution to line broadening is found to be small compared to

the frequency fluctuation broadening for our device geometry and typical parameters.

We now focus specifically in the fluctuations in the effective spring constant of the fundamental
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mode. We take its equation of motion as that of a harmonic oscillator:

d2z
dt2 +ω

2
0 [1+ x(t)]z = Fext(t)/m, (S21)

where z is the displacement, t is the time, ω0 is the characteristic frequency, Fext(t) is any external

force applied to the oscillator, m the oscillator mass, and x(t) is a random function with a mean of

zero and autocorrelation function R(τ) = 〈x(t)x(t+τ)〉which represents the frequency fluctuations

δω due to the fast modes. Since the frequency in the oscillator equation is a stochastic variable,

the physical situation is reminiscent of that in nuclear magnetic resonance (NMR) in which a pre-

cessing spin undergoes Larmor frequency fluctuations due to fluctuating environmental magnetic

fields.10,11 For this situation, this stochastic equation was successfully treated using the method of

model coefficients in which the random variable is assumed to have a specific known behavior that

produces an exact result for the mean solution of equation S21.10,11 (see also ref. 12 for review.)

Two limits exist with different behavior, determined by comparing the magnitude of the fre-

quency fluctuations δω with the inverse correlation time of the fluctuations ν . If ν << δω then the

frequency fluctuations are sufficiently slow that the full intrinsic linewidth Γi = δω results. On the

other hand, if ν >> δω the oscillator averages the fluctuations, resulting in a narrower linewidth

Γmn than δω , which is the regime of motional narrowing in NMR.

The spectral density of the frequency fluctuations in x, S(ω), defined as

S(ω) =
∫

∞

−∞

R(τ)eiωτdτ,

at zero frequency can be written as S(0) = ∆t〈x2〉 = 4∆t〈δω2〉/ω2
0 , where ∆t is a characteristic

correlation time for the fluctuations. Setting ∆t = 1/ν , the frequency width Γmn is given by10–12

Γmn =
ω2

0
2

S(0), (S22)
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The linewidth is therefore

Γ = min [Γmn,Γi] (S23)

To compute Γi and Γmn, we begin by Fourier transforming the energy given in eq. S1, by using

the Fourier transform relations

h(~q) =
∫

h(~x)e−i~q·~xd2~x

h(~x) =
∫

h(~q)ei~q·~x d2~q
(2π)2

which yields

U =
∫ d2~q

(2π)2 h∗(~q)h(~q)
[

c(λ +µ)q2 +
1
2

κq4
]

+
∫ d2~q1d2~q2d2~q3d2~q4

(2π)6 h∗(~q1)h∗(~q2)h(~q3)h(~q4)u(~q1,~q2, ~q3, ~q4)

× δ (~q4 + ~q3−~q2−~q1) (S24)

where u(~q1,~q2, ~q3, ~q4) is given by

u(~q1,~q2, ~q3, ~q4) =
1

16
λ [(~q1 · ~q3)(~q2 · ~q4)+(~q1 · ~q4)(~q2 · ~q3)]+

1
4

µ(~q1 ·~q2)(~q3 · ~q4)

If u were zero then U would be that of noninteracting quadratic normal modes. The u function

thus describes the nonlinear modal interactions to 4th order in h. For a given configuration of h(q)

values the shift in the effective spring constant of the mode with wavevector ~̄q is determined by

adding a cosine wave to the sheet and collecting quadratic terms in its amplitude Am. The height

Fourier components then become

hm(~q) = h(~q)+
(2π)2Am

2
[δ (~q−~̄q)+δ (~q+~̄q)]
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Then

δU =
∫ d~q1d~q2d~q3d~q4

(2π)6

(
h∗(~q1)+

(2π)2Am

2
[δ (~q1−~̄q)+δ (~q1 +~̄q)]

)
×

(
h∗(~q2)+

(2π)2Am

2
[δ (~q2−~̄q)+δ (~q2 +~̄q)]

)
×

(
h(~q3)+

(2π)2Am

2
[δ (~q3−~̄q)+δ (~q3 +~̄q)]

)
×

(
h(~q4)+

(2π)2Am

2
[δ (~q4−~̄q)+δ (~q4 +~̄q)]

)
× u(~q1,~q2,~q3,~q4)δ (~q1 +~q2−~q3−~q4) (S25)

Collecting the terms quadratic in Am, the shift is related to integrals over the mean squares of

the modal displacements. In thermal equilibrium, the mean square modal displacements undergo

thermal fluctuations, broadening the frequency response. The contribution of a given fast mode

with frequency ω ′ to S(0), labeled Sω ′(0) is

Sω ′(0) =
4

ω2
0
〈δω

2〉ω ′∆tω ′,

where 〈δω2〉ω ′ is the mean square fluctuation in the slow mode with frequency ω0 caused by the

fast mode with frequency ω ′, and ∆tω ′ is the characteristic time scale of those fluctuations. Since

the bandwidth of a harmonic oscillator with characteristic frequency ω ′ and quality factor Qω ′ is

ω ′/Qω ′ this gives ∆tω ′ ≈ Qω ′/ω ′. We then have

S(0) =
∫

Sω ′(0)ρ(ω
′)dω

′, (S26)

where ρ(ω ′) is the density of modes at frequency ω ′.

The quantity 〈δω2〉ω ′ is computed by first computing the total 〈δω2〉 by squaring equation

S25 and thermally averaging it with respect to the quadratic part of U , using the relation that

1
2δke f f /ke f f = δω/ω , where ke f f is the slow mode effective spring constant. To perform the
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thermal average, we use the relation that

〈h∗(~q4)h∗(~q3)h(~q2)h(~q1)〉0> =
1
4
(2π)2δ (~q4−~q2)

β (A~q2
4 +B~q4

4)

(2π)2δ (~q3−~q1)

β (A~q2
3 +B~q4

3)
+

1
4
(2π)2δ (~q3−~q2)

β (A~q2
3 +B~q4

3)

(2π)2δ (~q4−~q1)

β (A~q2
4 +B~q4

4)
,

+
1
4
(2π)2δ (~q4 +~q3)

β (A~q2
4 +B~q4

4)

(2π)2δ (~q2 +~q1)

β (A~q2
2 +B~q4

2)
(S27)

where A = c(λ + µ) and B = 1
2κ are elastic constants that define the quadratic part of U , and

β = 1/kBT , with kB the Boltzmann constant and T the temperature. (See for example, ref. 13.)

The factor of 1/4 and the extra term compared to the work in ref. 13 arise because the height is

real, so h(~q) = h∗(−~q). The result is that the total mean square frequency fluctuations are given by

〈δω
2〉=

27Āq̄4ω2
0 E

512β 2k2
e f f

∫ dq
2π

q5

(Aq2 +Bq4)2 =
27Āq̄4ω2

0 E
2048πβ 2k2

e f f AB
, (S28)

where E = N2(λ 2 +4λ µ +4µ2) is an elastic constant and N is the number of layers. Converting

this to an integral over frequency using the density of modes obtained from the frequency relation

ω =
√

2(Aq2 +Bq4)/σ gives,

〈δω
2〉=

27q̄4ω2
0 E

512β 2k2
e f f

∫
dω
′

(
−A+

√
A2 +2σω ′2B

B

)2
1

σ2ω ′4
ρ(ω ′)

From this we find that Sω ′(0) is given by

Sω ′(0) =
27q̄4E

128β 2k2
e f f

(
−A+

√
A2 +2σω ′2B

B

)2
Qω ′

σ2ω ′5
(S29)

Fast mode behavior

Completing the calculation requires finding the Qω ′ in eq. S29. Similar to the fundamental

mode, the linewidth and Qω ′ of the fast modes also have two potential sources, frequency fluc-

tuations and energy damping. However, frequency fluctuations are ineffective at causing the fast

mode amplitude fluctuations that produce the frequency shifts in the fundamental mode. These

amplitudes fluctuate on a timescale determined by the modal energy damping rate. Therefore a de-

S16



termination of the energy damping rate for the fast modes is necessary to find the appropriate Qω ′ .

A variety of energy relaxation mechanisms are possible including coupling to electrons, clamping

losses, or to in-plane phonons which are expected to produce relatively high quality factors ∼ 105

or higher for geometries similar to our experiment.14–16 Here, we also consider a mechanism of

energy transfer from one vibrational mode to another. The tension fluctuations within the sheet

give rise to spatially inhomogeneous wave velocity fluctuations. Such fluctuations also scatter the

standing waves of the sheet in a manner similar to Rayleigh scattering. However, because the

fluctuations are time dependent, scattering among modes with different frequencies is expected

to occur. We compute the energy damping rate of the fast modes due to such scattering using

perturbation theory for the wave equation. The Lagrange density for the membrane is

L =
1

2σ

(
∂h
∂ t

)2

−A(∇h)2− 1
8
(λ +2µ)(∇h)4−B(∇2h)2.

Neglecting bending for modes that are longer wavelength than the cutoff
√

A/B the equation of

motion is

σ
∂ 2h
∂ t2 −A∇

2h−
{

1
4
(λ +2µ)

[
∇(∇h)2 ·∇h+(∇h)2

∇
2h
]}

= 0

We consider the term in braces as a perturbation. The unperturbed problem has time-periodic

solutions satisfying the eigenvalue equation

∇
2h+ k2

l h = 0,

where k2
l is the lth eigenvalue for each solution. The perturbation scatters a given mode into

other modes, giving it a finite lifetime. We denote the instantaneous state of the membrane as a

superposition of eigenmodes Ψl = 1/
√

Āei~kl ·~x, where l is the mode index.

h(t) = ∑
l

Ψle−iωltcl(t),

where cl(t) are coefficients for which we want to obtain a differential equation. Substituting the
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expression for h(t) into the equation of motion, we get

∑
l

Ψle−iωlt
{
−2iωl ċl(t)+ c̈l(t)+

1
4σ

(λ +2µ)
[
2(~kl ·∇h)2 +(∇h)2k2

l

]}
= 0

Taking the inner product denoted by

〈 f ,g〉=
∫

d2~x f ∗(~x)g(~x)

of this equation with Ψmeiωmt yields

−2iωmċm(t)+ c̈m(t) = ∑
l

1
4σ

(λ +2µ)〈Ψm, [2(~kl ·∇h)2 +(∇h)2k2
l ]Ψl〉eiωlmtcl(t)

where ωlm = ωm−ωl . Assuming only one of the modes has non-negligible amplitude so that

cl(t)≈ 0 << cn(t) except for one particular mode n, the equation becomes

−2iωmċm(t)+ c̈m(t) =
1

4σ
(λ +2µ)〈Ψm, [2(~kn ·∇h)2 +(∇h)2k2

n]Ψn〉eiωnmtcn(t)

For large times, growing amplitude solutions for cm occur when the right hand side of the above

includes zero frequency components. In this case the c̈m term yields a fast oscillating homogeneous

solution and no time-averaged energy transfer so long as that the perturbation is sufficiently weak

that cn(t) varies slowly on the time scale of 1/ωm. We will see below that this condition is satisfied

to first order. Neglecting this term, which makes a negligible contribution to the energy transfer,

the equation then becomes essentially the same as time-dependent perturbation theory in quantum

mechanics. The lowest order solution is

cm =
i

2ωm

∫ t

0

cn(0)
4σ

(λ +2µ)
[
〈Ψm,(∇h)2k2

nΨn〉+ 〈Ψm,2(~kn ·∇h)2
Ψn〉

]
eiωnmt ′dt ′ (S30)

The first matrix element term in the brackets results from velocity fluctuations. The thermal expec-

tation value of the second term is the same as the first. Therefore we replace the entire integrand
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with twice the first term. Factoring out the kn the matrix element is therefore

Vmn = 〈Ψm,(∇h)2
Ψn〉=

1
Ā

∫
d2~x(∇h)2ei(~kn−~km)·~x (S31)

Thus the matrix element is the Fourier transform of (∇h)2 at the scattering wave vector ∆~k =

~kn−~km. This should depend on the squared height modulations with wavevector ∆~k, which have a

characteristic frequency ω(∆~k).

The energy transfer rate is determined from eq. S30.

1
En

dEm

dt
=

d
dt

ke f f ,m|cm(t)|2

ke f f ,n|cn(0)|2
=

ke f f ,m

ke f f ,n

k4
n(λ +2µ)2

64ω2
m

∫ t

0
Vmn(t)V ∗mn(t)e

iωmnτdτ + c.c.

Taking the thermal average gives

〈
1

En

dEm

dt

〉
=

ke f f ,m

ke f f ,n

k4
n(λ +2µ)2

64ω2
m

∫ t

0
〈Vmn(t)V ∗mn(t)〉eiωmnτdτ + c.c.

for large t, this becomes

〈
1

En

dEm

dt

〉
=

ke f f ,m

ke f f ,n

k4
n(λ +2µ)2

32ω2
m

ℜ[SVmn(ωmn)], (S32)

where SVmn is the power spectral density of Vmn at frequency ωmn. This should be peaked at fre-

quency ω(∆~k) with width ∼ ω(∆~k), while the area under the peak vs. frequency is the thermal

average of |Vmn|2. We therefore expect an analog of Fermi’s golden rule to apply, i.e.

〈
1

En

dEm

dt

〉
=

ke f f ,m

ke f f ,n

k4
n(λ +2µ)2

32ω2
m

〈|Vmn|〉2δ [ω(qn)−ω(qm)±ω(qn−qm)] (S33)

=
k2

n(λ +2µ)2

32σ2u2 〈|Vmn|2〉δ [ω(qn)−ω(qm)±ω(qn−qm)],
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where ke f f ,n ≈ ĀAq2
n, u is the wave velocity and

ω(q) =

√
2(Aq2 +Bq4)

σ
,

where the final result for the total normalized energy loss rate is obtained by an integration over

the final states. Evaluating eq. S33 numerically for typical parameters yields Q f ∼ 104 at room

temperature and ∼ 106 at low temperature, scaling as 1/T 2. Note that using a broader frequency

function than a δ -function to account for the finite frequency width of SVmn leads to a larger pre-

dicted Q, thus the above estimates constitute a lower bound on Q from this mechanism. Having

found Q f , we must now compare Γmn to Γi to determine whether motional narrowing is expected

to be important. To first evaluate Γi we use eq. S28 using ke f f ≈ ĀAq2, yielding

Qi =
ξ T 3/2

0 r0

kBT

√
κ

E
(S34)

where ξ ≈ 6.84 is a numerical factor, E = N2(λ 2 +4λ µ +4µ2)≈ N2×1.1×105 (N/m)2 with N

the number of layers, κ ≈ 10−16 Nm is the bending modulus, T0 the tension, kB is the Boltzmann

constant, and r0 is the resonator radius. Evaluation of eq. S26 using Qω ′ = Qi ∼ 100− 1000,

obtained from eq. S34 using typical parameters gives Γi ∼ Γmn. Since we have instead Qω ′ =

Q f >> Qi, the fluctuations are sufficiently slow so that we find that Γi << Γmn and thus the

static limit is the relevant one, since other energy damping mechanisms14–16 such as clamping loss

mentioned above are also expected to produce significantly larger Q values than Qi. Therefore

we expect the effects of motional narrowing to be minimal and the measured quality factor should

follow the relation given for Qi, eq. S34, as observed.

Energy Transfer to fast modes from fundamental mode

In the steady state, vibrations of the fundamental mode produce a periodic modulation of the

membrane tension with frequency ω0 and amplitude δω . Each fast mode, approximated as an

independent oscillator with frequency ω f , then has its frequency modulated at frequency ω0. The

equation of motion for each fast mode can then be written as17
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z̈+Γż+ω
2
f [1+ ε cos(ω0t)]z =

√
ΓDξ (t)

where D = kBT/me f f is a diffusion constant and
√

ΓDξ (t) is a delta-correlated stochastic function

that models the Langevin force. In the steady state the root mean square amplitude of the oscillator

is given by (assuming Q >> 1 and neglecting terms of order higher than ε2 (ε = 2δω f /ω f or

terms with frequency 2ω0 or higher)

σzz =
D
ω2

f
+

3D
2ω4

f
δω

2−2δω
D
ω f

[
1

2ω2
f

cos(ω0t)+
Γ

4ω0ω2
f

sin(ω0t)

]
. (S35)

Here we neglect frequency broadening, since we are in the static limit where ν << δω , and the

moments of the solutions σzz(ω f ) corresponding to the equations with different ω f in the ensemble

would be expected to be very similar since ω0 <<ω f . When the parametric drive is zero, the modal

amplitude thermal fluctuations are given by σzz = D/ω2
f . For finite parametric drive caused by the

vibrations in the fundamental mode, the relative frequency modulations δω f /ω f =
1
2δT0/T0 and

are therefore the same for each fast mode. The sine and cosine terms thus represent a coherent

response of all the fast modes to the vibration of the fundamental mode. Thus the fundamental

mode vibration modulates the sheet tension at the same frequency ω0. Since the membrane is under

electrostatic pressure, the changing tension displaces the equilibrium point of the fundamental

mode, which corresponds to a force z0δke f f . The term proportional to the sine therefore yields a

frictional damping force on the fundamental mode that is proportional to its velocity.

In addition, the second term of eq. S35 shows that in steady state each fast mode has excess

energy above the equipartition energy, Eexcess =
3D
4ω4

f
δω2

f k f ast , where k f ast is the stiffness of the fast

mode. Each fast mode oscillator dissipates this excess energy at an average rate 3D
4ω4

f
δω2

f Γk f ast ,

which balances the input power due to the parametric drive. The total energy loss per unit time

from all the fast modes is given by

〈
dE
dt

〉
=

δω2
0

ω2
0

3
4

Ā2A
mβ

∫ qmax

0

dq
2π

q3

Qω(q)
(S36)
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where qmax =
√

A/B. The damping force Fd due to the coherent tension modulations is given by

(setting 〈h∗(~q1)h(~q2)〉= 1
2 Āσzz(2π)2δ (~q1−~q2) and taking the expectation value of the eq. S25 to

find the mean stiffness modulation)

Fd = ż
Ẽq̄2Ā2δω0

2ω3
0 mβ

∫ qmax

0

dq
2π

q3

Qω(q)
, (S37)

where Ẽ is an elastic constant on the order of the Young’s modulus. It can be verified that the

damping force given by eq. S37 leads to essentially the same energy loss from the excited slow

resonator mode as the steady state loss from the fast modes given by eq. S36 when the tension

is dominated by the stretching from the displacement. Thus, within this picture, energy flows

from the slow modes to the fast modes via coherent tension oscillations in the sheet. Energy

relaxation can also occur to the wider environment through loss mechanisms such as clamping loss

or radiation of in-plane phonons.

For typical device parameters and at room temperature and below this friction force produces

a frequency broadening less than Γi. We thus expect the frequency broadening to dominate the

linewidth. This is consistent with the observed ∝ T linewidth dependence.

Relation between steady-state dissipation and the friction force

In steady state, we assume that the motion is effectively ergodic and the time and ensemble

averages of quantities related to the motion are equal. The oscillator susceptibility determines

the steady state response of the fundamental mode. The imaginary part determines the mean rate

of energy dissipation in the fundamental mode due to energy transfer to the environment. If the

frictional damping force is represented by mΓd ż, then the power dissipated is P = 1
2mω2

0 Γd〈δ z2〉.

On the other hand the imaginary part of the susceptibility including frequency fluctuations on

resonance is

χ
′′(ω) =

1
ω0Γ

,

with Γ determined by the fluctuation broadening, eq. S34, assuming that Γd << Γ. The dissipated
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power is then P = F2Q/(mω0), where F is the magnitude of the sinusoidal force drive. Equating

these, we find the mean square amplitude of the motion is

〈δ z2〉= F2

ΓΓdm2ω2
0
. (S38)

Note that since Γd < Γ this is in general larger than 〈δ z2〉 would be if Γ originated from a frictional

force. Nevertheless, the amplitude response measured at the drive frequency, e.g. by a lock-in

amplifier will be identical to that determined by χ(ω), just as if Γ represented a frictional force.

This is because unlike the case of purely frictional force damping, the amplitude response power

spectrum is spread out in frequency ∼ δω because of the fluctuating stiffness, while a lock-in

measures the amplitude only in a narrow bandwidth around the excitation frequency.

S5: Electrostatic forces effect on quality factor

The electric field up to second order in the height is given by,18

E(~r) =

[
−V

d
+

V
d

∫ d2~q
(2π)2

cosh(qz)
sinh(qd)

qh(q)ei~q·~x (S39)

− V
d

∫ d2~q1

(2π)2
d2~q2

(2π)2
cosh(q2d)
sinh(q2d)

cosh(q1z)
sinh(q1d)

q1q2h(~q2)h(~q1−~q2)ei~q1·~x
]

ẑ

− V
d

∫ d2~q
(2π)2

sinh(qz)
sinh(qd)

qh(~q)ei~q·~x(iq̂)

+
V
d

∫ d2~q1

(2π)2
d2~q2

(2π)2
cosh(q2d)
sinh(q2d)

sinh(q1z)
sinh(q1d)

q2h(~q2)h(~q1−~q2)ei~q1·~x(i~q1)

where~r = (~x,z) is the three dimensional position vector for in-plane position~x = (x,y). Using the

expression of the electric field the capacitance correction can be computed from the surface charge

density σs = ε0~E · n̂ with the unit normal to the graphene membrane n̂ = (∇h− ẑ)/[1+(∇h)2]1/2.

The capacitance C is given by C = Q/V =
∫

σsdĀ/V . Including this electrostatic term modifies

U . Keeping terms up to 2nd order yields additional terms ∆U (The 4th order electrostatic term is
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negligible compared to the mechanical one under typical physical conditions in our experiment).

∆U =
∫ d2~q

(2π)2 h∗(~q)h(~q)

(
−

ε0V 2
g

2d2
coshqd
sinhqd

q−
ε0V 2

g

4d
q2

)

The addition of these terms modifies eq. S28 to

〈δω
2〉= 27

512
Āq̄4ω2

0 E
β 2k2

e f f

∫ dq
2π

q5[
− ε0V 2

g
2d2

coshqd
sinhqd q+(A− ε0V 2

g
4d )q2 +Bq4

]2 , (S40)

This can be approximated by

〈δω
2〉= 27

512
Āq̄4ω2

0 E
β 2k2

e f f

∫ dq
2π

q5

(C+Dq+Aq2 +Bq4)2 , (S41)

with A = c(Vg)(λ +µ)− ε0V 2
g

4d , B = 1
2κ , C =− ε0V 2

g
2d3 , D =− ε0V 2

g
2d2 . Equation S41 is used to compute

Q by numerical integration and plotted for appropriate parameters in the main text Fig. 3b.

S6: Nonlinear resonator dynamics

The equation of motion for a nonlinear oscillator can be expressed as

m
d2z̄
dt̄2 +Γ

dz̄
dt̄

+mω
2
0 z̄+ χ̄ z̄2 + µ̄0z̄

dz̄
dt̄

+ ᾱ z̄3 + η̄ z̄2 dz̄
dt̄

= Ḡ0 cos(ω̄ t̄ +φ). (S42)

To switch to units such that α = m = ω0 = 1 the dimensionless length variable is taken to be

z = z̄
√

ᾱ/mω2
0 , and the parameters of the oscillator equation of motion can be expressed in di-

mensionless form as follows19

ε = Q−1 =
Γ

mω0
;η =

η̄ω0

ᾱ
;G0 =

Ḡ0

ω3
0

√
ᾱ

m3 ; χ =
χ̄

ω0
√

mᾱ
; µ0 =

µ̄0√
mᾱ

;ω =
ω̄

ω0
.

Here we assume that Q is determined from frictional forces alone, and ignore frequency broad-

ening. We take this as a good approximation when the resonator is driven into the regime where

S24



nonlinear damping is important. The equation of motion can then be scaled to yield

z̈+ ε ż+ z+χz2 +µ0zż+ z3 +ηz2ż+[h0ε cos(2ωt +2φ)]z = ε
3/2g0 cos(ωt +φ) (S43)

The parameter ε which is the inverse quality factor is considered a small parameter that enables

approximate solutions that are expanded in ε . Motivated by our experimental results, in eq. S43 we

have also included a parametric drive parametrized by h0 that modulates the resonance frequency

by δω0 at a frequency 2ω as well as force drive parametrized by g0 such that G0 = ε3/2g0. The

quantity h0ε = 2δω0/ω0 gives the fractional amplitude of the frequency modulation relative to the

undriven characteristic frequency ω0. To solve this equation, following the original method used

by Duffing, (See for example ref. 20) we first assume to zero order the time dependence for the

oscillator displacement with amplitude parameter Γ0 and frequency ω given by

z0 = Γ0ε
1/2 sinωt. (S44)

Here we reference the phases of the force and parametric drives to the response, which is taken

to be a sine function. For a linear oscillator, the φ = 0 on resonance (the drive being proportional

to a cosine when the response is a sine). Note that in this definition of the phase φ occurs in the

drive term rather than the response. This differs from the conventional treatment of the harmonic

oscillator but simplifies the calculations below. The equation of motion S43 is rearranged to yield

an expression for the acceleration:

z̈ =−ε ż− z−χz2−µ0zż− z3−ηz2ż− [h0ε cos(2ωt +2φ)]z+ ε
3/2g0 cos(ωt +φ) (S45)

the expression for z0 is substituted into the right hand side of the above equation, and integrated

twice to yield a solution for z1. which produces the following result:
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z1 = −1
4

Γ
2
0χεt2 +

Γ3
0ε(

3
2)η cos(ωt)

4ω

−
Γ3

0ε(
3
2)η cos(3ωt)

36ω
+

Γ2
0εµ0 sin(2ωt)

8ω

+
3Γ3

0ε(
3
2) sin(ωt)
4ω2 −

Γ3
0ε(

3
2) sin(3ωt)
36ω2

−
Γ2

0χε cos(2ωt)
8ω2 − Γ0ε(

3
2)h0 sin(ωt +2φ)

2ω2 +
Γ0ε(

3
2)h0 sin(3ωt +2φ)

18ω2

+
Γ0ε(

3
2) cos(ωt)

ω
− ε(

3
2)g0 cos(ωt +φ)

ω2 +
Γ0
√

ε sin(ωt)
ω2

(S46)

Equating the coefficients of sin(ωt) and cos(ωt) between z0 and z1 produces a set of equations that

can then be solved for Γ0 and φ . The resulting solution is approximate, and when substituted into

the original equation of motion produces non-zero error terms. However, these error terms will

be at other harmonics besides those at frequency ω and of order ε or smaller. Thus the obtained

values for Γ0 and φ will be correct to lowest order in ε . In the present case, there are two additional

issues to the expression given for z0 in eq. S44. One is that it generates a term quadratic in t of

order ε in z1. This can be eliminated by adding an ε-order constant to z0 and setting it so the t2

term vanishes. The other issue is that z1 contains terms of order ε and frequency 2ω . If one were

to proceed to higher order, the quadratic terms in the equation of motion would generate additional

terms of order ε3/2 which are at the same order as the terms with frequency ω . To avoid this, z0

must be corrected to add these terms so that z1 is correct to order ε3/2 with only one iteration. The

necessary expression is then:

z0 = Γ0
√

ε sin(ωt)+Λ1ε sin(2ωt)+Λ2ε cos(2ωt)+Λ3ε,

with Λ1, Λ2 and Λ3 constants to be determined. After substituting z0 into the right hand side of eq.

S45 and matching the appropriate coefficients we get the following coupled cubic equations for Γ0
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and φ with effective cubic parameters η and α:

(
2Ω+

1
2

h0 cos2φ − 3
4

αΓ
2
0

)
Γ0−g0 sinφ = 0

1
4

Γ
3
0η− 1

2
Γ0h0 sin2φ +Γ0−g0 cosφ = 0 (S47)

The frequency width in the FM technique is determined by the frequency spacing between the

stationary points of the real part of the response.7 The real part is given by the in-phase response

to the drive, which we find based on eq. S43 to yield ℜ[z] = −Γ0 sinφ . Thus we want to find the

stationary points of−Γ0 sinφ subject to the constraints given by the coupled cubic equations in eq.

S47. Thus we use the method of Lagrange multipliers, which requires finding the stationary points

of the function

f = −Γ0 sinφ +λ1

[(
2Ω+

1
2

h0 cos2φ − 3
4

αΓ
2
0

)
Γ0−g0 sinφ

]
+λ2

(
1
4

Γ
3
0η− 1

2
Γ0h0 sin2φ +Γ0−g0 cosφ

)
,

introducing auxiliary Lagrange multiplier variables λ1, and λ2 that multiply the two constraint

equations. Optimizing this gives 3 equations, which together with the original constraints eq. S47

yield 5 equations and 5 unknowns for the variables Ω,φ ,Γ0,λ1, and λ2.

1
4
(
3Γ

2
0η−2h0 sin2φ +4

)
λ2−

1
4
[
9Γ

2
0α−2h0 cos2φ −8Ω

]
λ1− sinφ = 0

−(Γ0h0 cos2φ −g0 sinφ)λ2− (Γ0h0 sin2φ +g0 cosφ)λ1−Γ0 cosφ = 0

2Γ0λ1 = 0(
2Ω+

1
2

h0 cos2φ − 3
4

αΓ
2
0

)
Γ0−g0 sinφ = 0

1
4

Γ
3
0η− 1

2
Γ0h0 sin2φ +Γ0−g0 cosφ = 0

(S48)

From the third equation down in the above equation, we see that unless Γ0 is zero then λ1 = 0. The
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system of equations can then be simplified to

1
4
(
3Γ

2
0η−2h0 sin2φ +4

)
λ2− sinφ = 0 (S49)

−(Γ0h0 cos2φ −g0 sinφ)λ2−Γ0 cosφ = 0 (S50)(
2Ω+

1
2

h0 cos2φ − 3
4

αΓ
2
0

)
Γ0−g0 sinφ = 0 (S51)

1
4

Γ
3
0η− 1

2
Γ0h0 sin2φ +Γ0−g0 cosφ = 0 (S52)

We first seek an asymptotic solution to the system of equations S49-S52 valid for large g0 and h0.

Dividing eq. S52 through by Γ0h0 gives

Γ2
0η

4h0
− 1

2
sin2φ +

1
h0
− g0 cosφ

Γ0h0
= 0 (S53)

If we assume the parametric drive comes from heating as discussed in the main text, then we

expect the parametric drive h0 will be related to the force drive by h0 = bg2
0, where b is a constant.

Therefore in the limit of large g0, keeping the dominant term in Γ0 eq. S53 reduces to

Γ2
0η

h0
= 2sin2φ

Eq. S50 can then be solved for λ2:

λ2 =−
Γ0 cos(φ)

Γ0h0 cos(2φ)−g0 sin(φ)

and substituted in to eq. S49, which gives

1
4

(2Γ2
0η +4)Γ0 cosφ

Γ0h0 cos2φ −g0 sinφ
+ sinφ = 0

Neglecting the 4 compared to 2Γ2
0η , as appropriate for the large amplitude limit, and dividing the
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top and bottom of the fraction by h0 gives:

1
4
(2Γ2

0η)
h0

Γ0 cosφ

Γ0 cos2φ − (g0/h0)sinφ
+ sinφ = 0 (S54)

In the limit of large h0 this reduces to

1
4
(4sin2φ)

cosφ

cos2φ
+ sinφ = 0

which gives

sin2φ cosφ + cos2φ sinφ = 0

sin3φ = 0

φ = 0,±π/3,±2π/3...

The values φ = 0,π are not considered since in conjunction with eq. S54 these values imply that

Γ0 = 0. Since the low-amplitude resonance has φ = 0, we expect the flanking minima will have

φ =±π/3. These values for the phase can then be substituted into eq. S52. For φ = π/3, we get

the cubic equation

Γ
3
0 +

(
4−
√

3h0

η

)
Γ0−

2g0

η
= 0

For large h0, it can be shown that there are three real roots, and the one that matches continuously

to the single real root for small h0 is given approximately by

Γ0 ≈

√√
3h0−4

η

This value for Γ0 can then be substituted back into eq. S51 along with φ to determine Ω corre-
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sponding to a stationary value of the phase. Solving eq. S51 for Ω yields

Ω =
3
8

Γ
2
0α− 1

4
h0 cos(2φ)+

g0 sin(φ)
2Γ0

This gives for large h0 the frequency of the upper frequency minimum in the FM signal, Ω+:

Ω+ =
1
8

h0 +
3
8

α

η
(
√

3h0−4)+
31/4

4

√
η

b

=

(
1
8
+

3
√

3
8

α

η

)
bg2

0 + const.

for the case φ =−π/3 the equation for Γ0 is given by

Γ
3
0 +

(
4+
√

3h0

η

)
Γ0−

2g0

η
= 0

It can be shown that this equation has one real root,

Γ0 =
2
√

3
3

g0

h0

When substituted into eq. S51 along with the value for φ , we find for large h0 the frequency of the

lower frequency minimum Ω−:

Ω− =−1
4

h0 =−
1
4

bg2
0

This gives in the large drive asymptotic limit

∆Ω = Ω+−Ω− =
3
8

(
1+

√
3α

η

)
bg2

0 +
31/4

4

√
η

b
− 3

2
α

η
. (S55)

This is quadratic in the drive as observed experimentally. Going back to physical units gives

δ f =
3
8

(
1+

√
3α

2πη f0

)
bF2

AC f0 + const., (S56)
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where FAC is the ac electrostatic force on resonator as in the main text.

To obtain an approximate solution valid for any drive strength, numerical solutions of the sys-

tems of equations S49-S52 are used to show that the two oscillator phases φ+ and φ− corresponding

to the two minima in the FM signal can be serviceably approximated by the mathematical functions

φ+ = π/4+π/12tanh(bg2
0)

φ− = −π/4−π/12tanh(bg2
0)

These phases can be substituted into eq. S52 and the resulting cubic equation for Γ0 solved for

each phase. When these values for Γ0 are substituted back into eq. S51 the resulting equation can

be solved for Ω. The difference between the two Ω solutions corresponding to φ+ and φ− gives the

frequency width function. The solution can be expressed in physical units and then fit to the data.

S7: Estimate for b and expression for α/η

Using the Fourier heat law, the temperature rise ∆T at the center of the graphene membrane as-

suming thermal equilibration to the ambient substrate temperature at the boundary is

∆T =
P0r2

4κ2DĀ
,

where Ā is the membrane area, P0 is the power dissipated, r is the radius, and κ2D is the two-

dimensional thermal sheet conductivity. Taking P0 =V 2
sd/R, where R is the device resistance then

∆T =
V 2

sd
4πRκ2D

.

If aT is the (negative valued) thermal expansion coefficient, then the change in strain δc is given

by

δc≈
V 2

sd|aT |
4πRκ2D

,
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which changes the membrane tension T0 by an amount δT0 given by

δT0 =
V 2

sd|aT |(λ +µ)

2πRκ2D

The parametric drive H is given by 2δ fres/ fres, where δ fres is the modulation of the resonance

frequency fres. In terms of the tension, we have δ fres/ fres =
1
2δT0/T0. Thus,

H =
V 2

sd|aT |(λ +µ)

2πRκ2DT0

Using the result for the force drive from eq. S13, we find

H =

(
4d2

ε0ĀVg

)2

G2
0
|aT |(λ +µ)

2πRκ2DT0
,

and therefore the constant b is given by

b =

(
4d2

ε0ĀVg

)2 |aT |(λ +µ)

2πRκ2DT0
(S57)

Expression for α/η

The ratio α/η can be determined from the data at small drive, from the equations S49-S52 set-

ting h = 0, and considering g to be small. The phase at the minima of the FM signal is taken

to be ≈ ±π/4. Using these approximations, the system of equations can be solved to yield in

dimensionless units

∆Ω = 1+
3
4

ηΓ
2
0

Using also the expression for the frequency shift with drive in terms of α 21,22

fres = f0 +
3α|δ z|2

32π2 f0m
(S58)

where f0 is the linear response resonance frequency, and setting ∆ f = fres− f0 and δ f = ε f0∆Ω
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the linewidth we find
α

η
= 4π

d∆ f
dδ f

f0, (S59)

which gives a way of measuring the ratio α/η as discussed in the main text.
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Supporting Information Figure S1: Schematic diagram of device geometry

Figure S1: Schematic diagram of device geometry on an oxidized Si wafer, with a source, drain,
and Si gate. The coordinate directions are indicated as well as the origin by O at the center of the
resonator. The diameter of the drum membrane is L, and the radius is r0. The spacing from the
substrate is d. The voltage drop profile along the sample is also shown below the device diagram.

S34



Supporting Information S2: Room temperature variation of frequency and Q with gate volt-

age

Figure S2: (a) Plot of the frequency vs. gate voltage measured at room temperature for the device
discussed in the main text taken with Vsd = 70 mV. The solid line is a fit to a 2nd order polynomial.
Since the dependence of the frequency on Vg is relatively strong, we assume that the frequency
is dominated by the tension and neglect electrostatic effects. The tension is then related to the
frequency by ω =

√
2πT0/m. (b) The measured Q vs. Vg is shown as the black circles. We then

use the method discussed in section S5 to compute the expected Q, which is plotted as the solid
line. Since Q was not easily extrapolated back to zero frequency, the data and theory were matched
at the lowest measured Vg.

S35



Supporting Information S3: Nonlinear parameter analysis for temperature T = 57 K.

Figure S3: Nonlinear oscillator dynamics of the lowest-frequency mode. Main panel: resonance
frequency vs. frequency width at T = 57 K and Vg = 18 V plotted as black circles. Solid curve
is a straight line fit to the data. Inset: resonance frequency vs. amplitude at T = 57 K and Vg =
18 V plotted as black circles. The amplitude is obtained from the FM lineshape when it is still
approximately Lorentzian (eq. S20). Solid curve is a fit to the theoretical expectation (eq. S58).
The data analysis yields η = 8×104 Ns/m3 and α = 2.4×1014 N/m3. The lower value for α than
at T = 16 K may indicate the presence of quadratic displacement terms as in eq. S43.
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