Conformal coupling of gravitational wave field to curvature
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Conformal properties of the equations for weak gravitational waves in a curved space-time are
investigated. The basic equations are derived in the linear approximation from Einstein’s
equations. They represent, in fact, the equations for the second-rank tensor field 4, restricted by
the auxiliary conditions #,”, =0, h =y,zh ¥ = 0, and embedded into the background space-
time with the metric tensor y,,5. It is shown that the equations for 4, are not conformally
invariant under the transformations 7,5 = gf"yaﬂ and h,; = e°h,;, except for those metric
rescalings which transform the Ricci scalar R of the original background space-time into e ~ *’R,
where R is the Ricci scalar of the conformally related background space-time. The general form
of the equations for 4, which are conformally invariant have been deduced. It is shown that these
equations cannot be derived in the linear approximation from any tensor equations which

generalize the Einstein equations.

I. INTRODUCTION

Conformal symmetry appears to be important in con-
temporary physics (see, for example, Refs. 1 and 2). Usually,
the invariance with respect to the 15-parameter Lie group of
conformal transformations C, which generalizes the Poin-
caré group is meant by a conformal symmetry.’* A more
general kind of conformal transformation is a conformal res-
caling of the metric tensor: g, = e~ 2"g},v. Conformal res-
calings are mostly applied to the equations that are written
down in a generally covariant form. The conformal transfor-
mations, viewed as conformal rescaling, correspond to that
particular case in which a flat space—time Minkowski metric
transforms into another flat space~time metric. Even this
simplest kind of conformal symmetry which is important for
high-energy physics may have some relevance to gravity as
well (not curvature!) since a conformal transformation may
be interpreted as a transformation to a constantly acceler-
ated frame of reference.’ Therefore, a property of a physical
system with respect to C, may describe the behavior of the
system in a constant homogeneous gravitational field.

It has been known already for a long time* that some
basic equations of theoretical physics, among them the equa-
tions for massless fields, are invariant not only with respect
to C, but also with respect to the group C, of conformal
rescalings. For instance, the field equations for massless
fields with integer spins remain unchanged under a replace-
ment of g,,,, and field variables @,;.., according to the rule
S =€ urPup =€ " V@,p.,, wheres is the spin
of the field. It is important to notice that the field variables
transform with different powers of the conformal factor
e 27, depending on the spin of the field. For the scalar field it
is @ = e“p, and for the Maxwell equations (s = 1) Za =4,
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or faB = F_;. For the gravitational field (s = 2) the confor-
mal invariance is usually referred to the vacuum Bianchi
identities with the Weyl tensor transforming as C,

=e “Caguy-

Conformal symmetry of the field equations with respect
to C, is important from the physical point of view since it
describes the particular way of coupling of the physical sys-
tem to the external gravitational field (curvature).® The role
of conformal invariance in the context of quantum field the-
ory in curved space~time has been emphasized many
times.”* It was shown in Ref. 9 that the Einstein linearized
equations for weak gravitational waves in nonvacuum con-
formally fiat metrices do not transform into the usual flat
space—time wave equations under the conformal transfor-
mation of the metric tensor and gravitational-wave varia-
bles. Thus, graviton creation in the early Universe is possi-
ble” while other massless particles such as photons,
neutrinos, and gravitinos (spin s = 3/2 massless particle)
cannot be created. (For the properties of the pure supergra-
vity theory in this context see Ref. 10.) This fact seems to be
fundamental enough in order to see to which extent it is
inevitable.

The purpose of this article is to investigate the confor-
mal property of the gravitational-wave equations in more
detail. In particular, we are trying to find such equations
which could be conformally invariant.

It is necessary to clarify the difference between our ap-
proach and that which was used in other works, devoted to
conformal gravitation on the classical and quantum lev-
els.!'-!" We intend to treat the gravitational-wave variables
on the same footing as all other fields embedded in a curved
space-time. It means that under conformal rescaling the
field variables should transform according to their spins = 2
weight. It might be C,,,, = e~ °C according to Pen-

afuv afuy

rose’s suggestion or h,; = e~ “h_; in a linearized approxi-
mation to the Einstein equations which is considered here.

afpv
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(They are obviously consistent in the same way as the con-
formal transformation rules are consistent for electrodyna-
mical field components F,; = F,; and electrodynamical po-
tentials 4, = A_.) The linearized version of Einstein’s
equations provides a natural framework for treating spin

s = 2fields in an external gravitational field since these equa-
tions describe, in fact, the second-rank symmetric tensor
field embedded in a curved space—time. On the other hand,
the works!'-'* are concerned with the action and the field
equations which are invariant under conformal rescaling of
the metric tensor g,; and some scalar function. If the com-
ponents of g5 are to be interpreted as spin s = 2 field varia-
bles, then they transform according to the wrong rule; this
rule includes the factor e ~*° instead of e ~ °. The same rule is
prescribed for the second-rank tensor /4, at the linearized
level. Although this kind of symmetry may be useful for
some purposes, it is certainly not what is meant by conformal
invariance for other massless field equations.

In Sec. II from Einstein’s equations we derive the basic
equations for graviational-wave perturbations #,;. These
equations have the same form both in vacuum space—time
and in space-time filled with matter. We introduce also the
usual auxiliary conditions A,”; = 0, & = 0 which are simi-
lar to that used in a flat space-time for separating spin s = 2
states.'® We investigate the conformal properties of the field
equations and show that they are not conformally invariant
except for those transformations which transform the Ricci
scalar R of the original background space-time into ¢ “>’R,
where R is the Ricci scalar of the conformally related back-
ground space-time. Although we believe that the chosen
field equations, the auxiliary conditions, and the transforma-
tion law for 4, are well motivated, one should not think that
the conformal noninvariance is a consequence of these as-
sumptions. The formulas presented in the Appendix show
that any other choice of the auxiliary conditions (if any) and
of a transformation law cannot improve the situation. More-
over, there is an indication that the prescribed auxiliary con-
ditions and the transformation law emerge in a natural way
under an attempt to make the basic equations conformally
invariant. Having proved conformal noninvariance of the
equations derived from Einstein’s equations, we were inter-
ested in the formulation of the equations for spin s = 2 field
which are conformally invariant.

Essentially, we look for a conformally invariant second-
order differential operator which acts on a symmetric sec-
ond-rank tensor field restricted by some auxiliary condi-
tions. In other words, we generalize the flat space-time
equations in such a way that the coupling of the tensor field
to curvature is conformally invariant. To clarify the method
used, we start from the simplified problem of finding confor-
mally invariant equations for a scalar field ¢ (see Sec. III). It
is known that conformal coupling of the ¢ field to curvature
can be represented by the equation

. R
P — €¢’=0- M

For the sake of generality we take into account some other
fields to which the g field can be coupled (other than the
curvature) and which transform according to definite rules
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under a conformal rescaling. It is shown that the most gener-
al conformally invariant coupling to curvature is expressed
by Eq. (1) while coupling to other fields can also be confor-
mally invariant and then Eq. (1) contains additional terms.
The same method of searching for conformally invariant
equations was applied to spin s = 2 field (Sec. I'V). Since in
this case the equations are more complicated, we restricted
the search to the coupling of this field to curvature. The
general form of such conformally invariant equations is de-
duced. It is seen that these equations could not be derived
from Einstein’s equations in the linearized approximation.
The next step is to look for exact tensorial equations from
which conformally invariant equations can follow in the lin-
earized approximation (Sec. V). If such a theory existed it
might be interesting to investigate it and compare its predic-
tions with the predictions of Einstein’s theory. Quite surpris-
ingly, it turns out that such an exact theory does not exist, at
least within those restrictions which were imposed on it. It is
also shown that there exists a conformally invariant equa-
tion describing the coupling of the second-rank tensor field
to curvature and some additional scalar field. The possibility
of finding an exact theory which would yield this equation in
the linearized limit is not clear. In conclusion (Sec. VI), we
give a discussion of the presented results.

ll. CONFORMAL NONINVARIANCE OF THE
LINEARIZED EINSTEIN EQUATIONS

First we will derive the equations which we will be
working with. Let us start from the vacuum Einstein equa-
tions with the cosmological term

R,Ln' = /lgl“, *

Assumethatg,, =v,, + A,,, wherey,, isthe metric tensor
of a background space-time, and assume that the back-
ground field equations R ) = Ay, are fulfilled. The linear-
ized equations — (7,,,6R,“ + ¥,,6R ) =0or —26R
+2 Ah,, = 0 both lead to the same equation

h,."—2R

via

yaﬁvh A (h,ua - %6[1, ﬂ'h );a;v
- (hvu - %61'(1}1 );aw =0, (2)

where, as usual, all operations are performed in background
space~time. R,, ;. denotes the background curvature tensor;
here and below we will not especially mark the background
quantities. Equation (2) can be regarded as a generally co-
variant equation for a symmetric second-rank tensor field
h

puv*
Choose the solutions to Eq. (2) which are subject to the
auxiliary conditions
h=h, 7" =0, (3
B, =0. @
In analogy to what is known for analogous equations in flat
space—time, Egs. (3) and (4) can be interpreted as the neces-
sary conditions for removing the spin s = 0, and s = 1 con-
tributions to 4,,,. For these solutions Eq. (2) takes the form

h v - 2R,uaﬁvh # = 0. (5)

H

[Of course, Eq. (2) can be reduced to Eq. (5) under the
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simpler condition

X.=h,"—1,*h), =0. @)
We are going to work with Egs. (3)—(5) but before this let us
see which part takes the solutions restricted by Egs. (3) and
(4) (we will call them spin s = 2 solutions), among all solu-
tions to Eq. (2).

It can be easily checked using the background field
equations that if 4 ¥, is a solution to Eq. (2) then

b =hi + 8 + 50, (6
for arbitrary £, is also a solution to Eq. (2). This fact is
frequently referred to as a gauge freedom.'™"* For any given
solution 4 *, one can find a vector £, which will map this
solution into the class of solutions restricted by Eqgs. (3) and
{#).? Therefore, the spin s = 2 solutions represent in a sense
all the solutions to Eq. (2). Moreover, the spin s = 2 solu-
tions map into themselves by the gauge transformations with
..~ =0,8", = 0. The remaining gauge freedom can be
used to impose the initial conditions (4,,,u"),; =0,
(h,,4").,n" 5 = 0 on some hypersurface 2 with the normal
vector n”, where u“ is a vector field. It was shown in Ref. 19
that the sufficient condition for £, u” to be equal to zero not
only on X but also off X is the existence of u® obeying the
equation

u;l;v = u/ta\’ + by;nr! (7)

where a, and b are arbitrary vector and scalar fields, respec-
tively. In flat space~time such a vector u* does exist and
therefore ali solutions to Eq. (2) can be mapped into a class of
solutions which fulfill Egs. (3) and (4) and

hu"=0 )

I
(TT gauge, according to Ref. 17). We will call this class of
solutions the spin s = 2 solutions with definite helicity.

As for the curved space~time in general Eq. (7) is not
integrable, except for a certain class of background metrics,
among them the important case of conformally flat me-
trics.”’ Soin these cases the spin s = 2 solutions with definite
helicity represent all solutions to the wave equations, simi-
larly to what we have in flat space-~time.

Let us turn now to gravitational-wave equations in a
nonvacuum space-time, The Einstein equations
R,. —1g.,R +A4g, = T,, inthelinearized approximation
— ¥ (OR$ ~ 187 6R) ~ v,,(6R," — 16°,,6R)
= — (187", + 7,87 °,) have the following form:

/luv;u o 2R/L(1/}1'h o Xp.;v - XV;;:
F V(= AR+ o — )

= (;/;11187'“\' - 7/"7157—‘“[1)' (9)
Equation (9), similarly to Eq. (2), is gauge invariant. If 2 %,
and 6T %, are a solution to Eq. (9), then £, defined by Eq.
(6), and 67, defined by

5'1;4\/ = 6T7:V + Tyuga;v + Tvaé‘a;l“

are also a solution to Eq. (9). For any given solution one can
find £, which will map this solution into a class of solutions
subjected to Eq. (4') (see Ref. 20). Moreover, there still re-
mains some gauge freedom &, %, + & “R,,, = 0 which can
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be used to impose the zero-initial conditions for 4, 4., n°,
h, v, (h,,u"),n" onsomeinitial hypersurface 5. However,
in the general case, & and h,,, 4" will not vanish off 3.
Equation (9) includes metric perturbations as well as
perturbations of 7, . It is clear, however, that the source-
free gravitational-wave perturbations should be associated
in some sense with the perturbations of the gravitational
field itself and not the matter. We shall define the spins =2
solutions in a nonvacuum background as a class of solutions
for which Egs. (3) and (4) are valid together with §7,” = 0.
The last condition reduces Eq. (9) to the form of Eq. (2) and
8T.,” = 0 together with Eq. (4") reduces it to the equation

Bre™ = 2R 5, h # =0, (10)

M
which is exactly the form of Eq. (5) (but R,,, — Ag,, #0
now). The fact that Egs. (5), (10), (3), and (4) formally coin-
cide in a vacuum and in a nonvacuum background corre-
sponds to an intuitive feeling that a free gravitational wave
should be “sensitive” to a curvature in the same way, inde-
pendently of what is the source of that curvature. The other
argument in favor of Egs. (10), (3), and (4) is that for those
space-times (for instance, for Robertson-Walker back-
ground metrics) for which a unique decomposition of all
perturbations into proper modes is possible, the tensorial
(gravitational wave) modes obey these equations (cf. Ref.
22).

uapy

It is important that we impose the condition §7,” =0
(variation of T, # with mixed indices.) Other authors some-
times define the gravitational-wave perturbations as the set
of conditions 67, = 0 or §(T,,, — 1g,, T') = O together
with Egs. (3) and (4). These alternative equations differ from
Eq. (10) and do not lead to tensorial proper modes in sym-
metric backgrounds, which we regard as an unsatisfactory
drawback. As far as conformal invariance is concerned,
these alternative equations are not conformally invariant.

Thus, we regard Egs. (10), (3), and (4) as those whse
conformal property should be investigated. We will mark by
carets all quantities in an original space-time and apply the
conformal transformation

5/‘\‘“/ = 6‘20}/"“,, (1 1)
h:“, =e’h,,, (12)

to careted Eqgs. (10), Q), and (4). Under the transformation
(11) the Ricci scalar R, Ricci tensor R,,,, and Weyl tensor
C*,.; transform as follows:

R=¢ " [R —6(0," + 0,07, (13)

é\/u' = R;L\' - 20’;1;1* + zoy g, — (oa:u + 20(1 aﬂ)y/n"
(14)

é\aﬁu.v = C lxﬁpv ’ Ty Eo.a M (1 5)

Recall also the relation between C “3,, and the curva-
ture tensor R %5,

S o
C”/};u' = R ‘llf,u\' + %( a\'R/j‘,u - 6 ;LRIJV +g/5/LR Y

R {24
- gB\'R u}l) - Z(‘Suvgﬁu —8 /(gli\')’

which helps to restore the transformation rule for R 5, .
Onecanseethath =e~“h and h,, =e” “(h,",
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+ 3h,%0, — ha,). Thus, Eq. (3) is conformally invariant.
To keep Eq. (4) conformally invariant as well one needs

h, o, =0=h0,. (16)
This condition is analogous to one which keeps the electro-
dynamic Lorentz gauge 4, “ = 0 conformally invariant.

With Egs. (3), (4), and (16) valid the left-hand side of
Eg. (10) transforms as follows (one can consult formulas in
the Appendix with & = 1):

e Mo — 2R, 5 h ™’ —(0,%+ 0,0, =0
1t follows that Eq. (10) is not conformally invariant, unless
o, +0,0°=0. 17

Equation (17) severely restricts conformal transformations
with respect to which set of Egs. (10), (3), and (4) is confor-
mally invariant. For a given h:t *, Eq. (16) also restricts o;
however, the origin and the meaning of the restrictions (17)
and (16) are completely different. Equation (17) represents,
so to say, the “genuine” noninvariance of the wave equation
(10), while Eq. (16) is a necessary condition for keeping the
auxiliary condition conformally invariant. Conformal in-
variance of the wave equations and auxiliary conditions for
potentials seems to be a more significant property than just a
conformal invariance of the wave equations in terms of field
components.

Equation (16), together with Eqgs. (3) and (4), selects the
spin s = 2 solutions with definite helicity as those which
could be conformally transformed. In general, fora givenao,,
Eq. (16) restricts h:, ¥; however, in some cases, the conditions
(16), (3), and (4) can be achieved at the expense of the gauge
freedom and therefore do not, in fact, restrict the trans-
formed solutions. Again, this is true for the Friedmann uni-
verses—the case which we are most interested in. For exam-
ple, in a background metric

ds* = a*(n)(dn? — dx* — dy* — d2°), (18)

the gravitational-wave perturbations obey the auxiliary con-
ditions (3), (4), and (8), where u* = (1/4,0,0,0). The metric
(18) transforms into the flat space-time metric by o = Ina
and therefore Eq.(16) is automatically fulfilled.

Notice, that gravitational-wave equations and auxiliary
conditions in Minkowski space-time are conformally invar-
iant with respect to C,. Really, a solution to Eq. (17) in Min-
kowski space-time is

= —In(1 + 2a,x" + a’x,,x%), (19)

uafv

where @’ = a,a”, and a,, are constants. Conformal rescaling
with the o factor (19) corresponds to a group of conformal
transformations C,. This rescaling transforms the Min-

kowski line element ds?,, into the line element ds? = e*7ds?, -

ds* = !

= dt? —
(1 + 2a,x" + a*x,,x%)? ¢

dx’ — dy* — dz°).

(20)
Due to the gauge freedom in Minkowski space-time one can
introduce Eqs. (3) and (4) and reduce the field equations to
h,..." = 0. The gauge freedom which remains is described
by §,..*=0,£°, =0. For o, given by Eq. (19), we intro-
duce u” = a” + a°x"= — le ~ “0”. Note that h,.,u"),*=0.
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The remaining gauge freedom can be used to impose

(., u") s =0(h,,u"),n%5 =0,and hence A, u"

= 0= h,,0". Thus, the field equations, the auxiliary condi-
tions, and the spin s = 2 solutions with definite helicity in the
conformally related space—times (20) transform into each
other.

lil. COUPLING OF A SCALAR FIELD TO CURVATURE
AND OTHER FIELDS

The aim of this section is to find the covariant and con-
formally invariant, second order, linear, homogeneous dif-
ferential equations for a scalar field @. As far as this equation
will be formulated in a curved space-time it will describe the
coupling of @ to curvature, but, for the sake of generality, we
also allow for coupling of @ to other (nongravitational) sca-
lar, vector, and tensor fields, which could be present in the
given space-time.

The general form of the equation is

CG.c5+BG, + 45 =0, 1)
where ¢, =¢ ,;4,B %, and C *” are some scalar, vector, and
tensor fields, respectively, C ¥ = C**, since ¢, = @p,, .
We make two additional assumptions also. Firstly, we as-
sume that the coupling to the external gravitational field can
be realized only through the metric tensor, the curvature
tensor, and their different algebraic combinations, so that
the gravitational part of coefficients, 4, B %, and C ** should
be constructed from them. Secondly, we note that the first
term in Eq.(21) contains a piece $,:“ among all other possi-
ble contributions. We want this piece to be present in the
original and in the transformed equation.

Under a conformal rescaling of the metric tensor the
gravitational part of the coefficients 4, B ¢, and C * trans-
form according to the law which is basically determined by
Egs. (13) and (15). As for the transformation laws for the
nongravitational contributions to 4, B %, and C ** we will
derive them from the condition of conformal invariance of
Eq. (21).

First we will transform the g field and its derivatives in
Eq. (21). Under the transformation rules

?uv = "Q 2}’[.1\” é)\: ‘Q -l¢’ (22)
Eq. (21) takes the form

278 (s 209, 3, + 0,0,)

+ ‘Q _lya[i¢00 7 — "Q ~Iﬂa;ﬁ¢
+4027° 02,29 — 27y,,02,.02% |

A .Qa A~ '
+B"(¢a——{7¢’)+A¢]=0- (23)

For Eq. (21) to be conformally invariant, we need the left-
hand side of Eq. (23) to be equal to the left-hand side of Eq.
2D (w/i\thout “carets””) multiplied by 2 in some power: £2 ".
Since C **@,;; includes $*%p,.; and this term transforms as
1/02° 9,5 + ), we want n = —3. Comparing the coef-
ficients in front of ¢ 4, @.,, and @ in between Egs. (23) and
(21) (without “carets’) multiplied by £2 -3, one can obtain the
transformation laws
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6(13 = ZCaB ’ Wﬂé\aﬁ Eé\ = C Eyaﬂca ’ (24)
B, =B, +42°'(2,C,° —102,C), 25)

A=074+0QB, +0,,CP). (26)

Let us see what the gravitational contnbutlons to ( C s could
be. This coefficient could contain 7,4, Raﬁ, R R(,B, etc.
However, only %, Y.p €an meet the transformatxon law (24).

Hence,
Caﬁ = ?aﬂ + éaﬁ) (27)

where ¢, is some tensor field which does not depend on the
metric, but is connected by a relation

by =Ny (28)

in the conformally related space~time. Since the coefficient
B, has an odd number of indices, it cannot have any gravita-
tional contribution, so B, = b, where b, is a vector field,
independent of metric. Substituting C.; = 7,5 + C4g into
Eq. (25), one obtains the transformation law for b,,:

b, =b, +402°" Q,(cf, — 1c8°.). (29)

The ggavigational contributions to 4 could be of the form, 1/'(’\
R? s R.sR °%, etc. However, only the first term can meet the
condition R = 2R + - - which is dictated by Eq. (26).
Hence, the general form of As

where a is some function and 7 is a scalar field. Substituting
Eq.(30)and B, = b, and C.5 = ¥, + ¢, into Eq. (26), we
obtain the equation

a? (R —6027'02,%)+m

=07[aR+m+ 0272, + 02,7 + 2,5c7)],
which gives rise to the relations

—6a=1, M=07m+ 02732, + 2,5c%).(31)

Thus, the most general conformally invariant equation
of the form of Eq. (21) is

Qo — RO+ P 5 + b, + mp=0, (32)

wherec,4, b,, and m transform according to Egs. (28), (29),
and (31), respectively, unless all of them or some of them are
equal to zero. Notice that if there exists any other conformal-
ly invariant equation for the g field, it cannot contain the
operator ¢, *“. The first two terms in Eq. (32) give the famil-
iar equation for a scalar field in a curved space-time.

V. CONFORMALLY INVARIANT EQUATIONS FOR A
SECOND-RANK SYMMETRIC TENSOR FIELD

Having proved that the equations which follow from
the Einstein equations for the second-rank tensor field 4.,
are not conformally invariant, we will try now to find certain
equations which are conformally invariant. For simplicitly,
we will consider only the coupling of 4, to the external
gravitational field and not to other fields. The general strate-
gy will be similar to the one used in the previous section.
However, in the case of 4, ; there is a complication related to
the fact that #,,, should obey not only the field equations but
also the auxiliary conditions.
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We are looking for conformally invariant equations
within the following class of equations. They should be co-
variant, second-order, homogeneous differential equations.
Coefficients in these equations can contain the metric tensor
Va5 the curvature tensor, and their different algebraic
combinations.

The general form of these equations can be written as
follows;

B @iy + P hegs, + U hag =0. (33)
We also assume the validity of the auxiliary conditions

h =0, (34)

k", =0, (35)

osv

and will derp\and their conformal invariance. In fact, we
should put P,,**” = O since a tensor with an odd number of
indices cannot be constructed as an algebraic combination of
metric tensor and curvature tensor. N N

Some properties of the symmetry of tensors Fand U
follow from the fact that 4, is a symmetric tensor and Eq.
(33) is assumed to be symmetric with respect to the free indi-
ces u and v. To the same end, since

haﬁ:mp - haﬁ;p;n = hasR EBap + heBR (twp’
we may assume that the first term in Eq. (33) contains only
the symmetric (with respect to o,p) part of 44, while the
antisymmetric part is included in the last term in Eq. (33).
This assumption also determines, in part, the symmetry
properties of the tensor F.

As we know from Sec. II, under the transformations
(11) and (12) the gauge conditions (34) and (35) transform
into Egs. (3) and (4), respectively, if Eq. (16) is satisfied.
With the use of Eq. (16) one obtains the following transfor-
mation rules for .-, and &

uvialf
h,uv;a =e (h;tva o, — hVaau ,uv a)’ (36)
pviasB = € (h/waﬁ + h/trﬁ ) o 4 hosY, uali

+ h Z aff + hvVZvaB + hy& uvap b)’ (37)
where
Yius =V apb, 70" — 0,(8,78,° + 8576, %)

—8,10,84° + 058,°), 38)
ZWIBY = %61'7( - aa:ﬁ + 30(1 Og — 7/(1/30.6 0.6)

+ (Sa 7( - U\/;ﬂ + 3av0ﬁ - YBVU:S Ub)

- yﬁva; a + 20",0'[1 5/3 Y’ (39)
Vi’ = 20,0,8,785°. (40)

The conformal invariance of Eq. (33) implies that after_
substituting Eqs. (12) and (37) and transformation laws for F
and Uinto Eq. (33), the left-hand side of Eq. (33) transforms
into the same expression (without “carets”) multiplied by
some power of e”. The power is determined from consider-
ations similar to the ones used in Sec. ITI. The first term in
Eq. (33) contains a piece h ;o "+ This arises from the contri-

bution to F,,, “** of the following form:
F, 0" =6, 1. (41)

We want to save the term £, in the transformed equa-
tion. So we will sacrifice all other contributions to F, o if

v
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they do not fit into the transformation law for i;w;a;”. Since

};,uvg =€ a(h‘uv*tr;a + "')’
we will demand that Eq. (33) be transformed into
e O(F,uvaaﬁphalizcrp + U uv aB) - (42)

The right-hand side of Eqs. (36) and (37) already contains
the factor e”; therefore, Eq. (42)/\implies that the transforma-
tion law for the tensors £ and U must have the following
form:

j;v:w:faﬁp —e (Fuv sabp | .., (43)

U =e 7 (U7 + ). (44)
Unlike what was done in Sec.AIII, hg\re, we could not obtain
the transformation rules for F and U directly as a result of
comparing the coefficients in front of &.4,.,, A4, and A,
in both Eqgs. (33) and (42). This is because there may be
additional terms in these transformation rules which after
multiplying them by ;. , and h,; can vanish due to the
auxiliary conditions (3) and (4).

Let us see what are the possible contributions to Fand 7
and whether they can satisfy the conditions (43) and (44). As
far as the tensor F'is concerned, the only contribution which
meets the condition (43) is Eq. (41). All other contributions
which can contain different combinations of Kronecker
symbols, metric tensor, Ricci tensor, and curvature are not
appropriate. Some of them, 6%, 8,77 or 8%, 6%, 7%, though
they have the correct transformation property, do not play
any role because they dlsappear due to egs. (34) and (35).
The other terms, like 67,6,°R R or ¥, R “°R % or
R L R“R% which do not disappear due to Egs. (34) and
(35) transform with the wrong dependence on e ~?; they
acquire coefficients e ~*°, e 7%, or even e ~%7.

Substituting Eqs. (12), (37), and (41) into Eq. (33) and
comparing the result with Eq. (42), one can derive the trans-
formation rule for U. In the course of the calculation it is
important to notice that because of Eq. (4) the following
relaton is valid:

—6o

5(1 6/1’/}/ (hayzS ﬁap + h/}}/;& Yaop 7’5) = 0‘
The other terms give the equation
Py Zo®™ + By Zo™ + bV, 4 U2, Phope®
=U®,. Rz,

which in more detail reads as

A"Wﬁh p=e (U, hog +2h,,0,%
+2h,, a# 4+ hw(aa; + 30,0%). (45)
The general form of U "m,”' which might be consistent with
Eq. (44) is
Ue, »=as*,8 R+b(é‘" R7+6%R %)
+ P R+ dCe, 7, (46)

wherea, b, ¢, and 1 d, are arbitrary functions of the space-time
variables. Since C*,,# = ¢~ *°C*®, fand 7, R= hop

=e ¥y, (R — 20"‘3 + 20"0-" a "’7/""

— 20,0V Y3 = ey, R “Ph,, the functions ¢ and d
are not restricted by Eq. (45) and they can remain arbitrary.
As for the functions a and b, they are determined after substi-
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tution of Eq. (46) into Eq. (45) and they must be a = 1/6,
b= —1.

Thus, the general form for conformally invariant equa-
tions for a second-rank symmetric tensor field 4,,, is

. R o «
By + % B — uoR %, —h R, +cy, R %hy,
+dC°,. h,, =0. 47

These equations and the auxiliary conditions (3) and (4) are
conformallv invariant if Eq. (16) is satisfied.

For an easier comparison of Eq. (47) with Eq. (10) we
can rewrite the former one in the form

By — 2Ry @ — iRA,,, — tky, . R “h

uv;a auvp
+1C,.sh " =0, 48)

where k and / are arbitrary functions. Multiplying this equa-
tion by y,,, we obtain its consequence

2(1 —k)h “°R,; =0,

which says that either £ = 1 and then R_z/ “* is not neces-
sarily equal to zero, or & “*R_; = O (what has been true for
the linearized Einstein equations) and then we can put & = 0.
In any case, it is seen from Eqs. (48) and (10) that the most
important difference between them is the term iRh,,,. The
lack of this term was the cause of conformal noninvariance
of Eq. (10).2

One should remember that the conditions (43) and (44)
were obtained as a consequence of a desire to keep the opera-
tor 4,,,., * in the equations. So if there exist any other confor-
mally invariant equations, different from Eq. (48), it does
not include this operator.

We have considered the conformally invariant coupling
of h,; to curvature. There must exist conformally invariant
equations which describe the coupling of 4, to curvature
and other fields. Derivation of the general form of such equa-
tions is a complicated problem, so we shall restrict ourselves
to a specific example. This is provided by the equation

/\ Aa

Iy ~

h,n e 2Rauv,;h b h,, (49)

where @ is a scalar field. This equation transforms into

e v (hm “ 2R, ph ‘DZ hw,) =0, (50
under the transformation rules @ = e ~ % and Eqs. (11) and
(12), and the conditions (16), (34), and (35). Since the scalar
field @ transforms with the correct dependence on the con-
formal factor, it may obey the conformally invariant equa-
tion as well. In that case Eq. (50) can be represented in terms
of the background variables only, since (¢, *)/¢ = R /6.

It is interesting to note that Eq. (49) can be obtained
from Eq. (10) as a result of applymg the conformal transfor-

mation h,,, = & hm, Viw =@ Preo-

V. NONEXISTENCE OF A GRAVITATIONAL THEORY
WITH CONFORMALLY INVARIANT LINEARIZED WAVE
EQUATIONS

Equation (10) was derived from the Einstein equations
in the linear approximation. Let us see if Eq. (48) can be
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derived in a similar way from some exact equations which
generalize Einstein’s equations.

Suppose that the generalized equations have the follow-
ing form:

N;U'ER;W - %g,“,R + ig;u' + F,uv = 7—;LV’ (51)

where F,, is a symmetric tensor, constructed in an arbitrary
way from the exact metric g, (g, ~7,. + 4,.) and its de-
rivatives. In principle, among possible contributions of F,,,
could be terms like RR,,,, R 4R “, 7. etc. We do not assume
that NV, *. =0 should hold necessarily, at least for the time
being.

In analogy to the way in which Eq. (10) was derived
from the first variation of the Einstein equations, Eq. (48)
should follow from the equations

- ()/;t<1 5Nv<l + yvaa]\rp Cl) =0 (52)

and the auxiliary conditions (3) and (4). Since the first two
terms of Eq. (48) follow from the expression — 7, (6R,”
+A8,%) — 7, (6R,,* + A8,,%), Eq. (52) can be reduced to

2651\' - h (1;117(“' - hvaFa,u = (l)thv + (%k _1) y;tvhu/}R o
- IC(I;LvBh aﬁ‘ (53)

[Obviously, the background, or “unperturbed,” values of the
curvature enter the right-hand side of Eq. (53) and back-
ground values of F,, enter the last two terms on the left-hand
side of this equation.] The question is whether there exists a
tensor F,,, whichis a solution to Eq. (53). First of all, one can
notice that since the right-hand side of Eq. (53) is linear in
the background curvature, the tensor F,, can only consist of
terms which are not higher than quadratic order in curva-
ture, or otherwise the variation of F,,, would give rise to
quadratic and higher order terms, which are not present at
the right-hand side of Eq. (53). Secondly, since the right-
hand side of Eq. (53) does not contain derivatives of &, we
should exclude the contributions to F,,, which could lead to
them, unless they disappear due to Eq. (4).

Then, the general form of F,,, which could meet these
restrictions is F,,, = ag,,, + bRg,, + R, + mRR,,,
+nR, "R, + pRzR“."+q¥ (R g, + R, where
all the coefficients are arbitrary functions of space-time and
¥ (R *) symbolizes any quadratic function of scalars con-
structed out of the curvature tensor. A more detailed analy-
sis shows that, in fact, none of the terms with coefficients, ¢,
m, n, p, q and ris useful because the variation of each of them
gives either (i) the second (or higher) derivatives of /.,
which cannot be cancelled out, or (ii) the terms which are
quadratic in the background curvature. Both these cases
contradict the form of the right-hand side of Eq. (53). Thus,
we should seek among the terms with coefficients @ and b.
The term with coefficient a (like the cosmological term in the
Einstein equations) does not play any role because the left-
hand side of Eq. (53) calculated from this term is identically

]

equal to zero. The term with coefficient b, for b = | — 1k, can
give rise to the second term on the right-hand side of Eq.
(53). However, this term cannot explain the appearance of
the first and the third term. Since / is an arbitrary coefficient,
we can choose ! = 0. However, the presence of the term
iRh,, is areal obstacle.

To demonstrate this in a more straightforward way we
will choose/ = k = 0in Eq. (48). Then, a consequence of this

equation and Eq. (3)is # *’R; = 0, and hence 6R is equal to

zero, since SR = — h xR “” — h“ + h,” ;. Equation
(53) can now be rewritten in the following form:
:V,ua (SF”\» + y\'ztéFﬂ,u = 8(%Rg/u) (54)

One can solve Eq. (54) with respect to quantities §F;“ which,
by assumption, should be variations of some tensor. Howev-
er, from the very way of constructing the solution to Eq. (54)
it is clear that this solution is not a variation of a tensor.
Thus, conformally invariant Egs. (48) cannot follow in a
linear approximation from any tensor equations of the form
of Eq. (51).

V1. CONCLUSIONS

It seems that one is left with two options, though each of
them looks interesting. One of them is to agree that the equa-
tions which govern weak gravitational waves in a curved
space-time are not conformally invariant. Then, it means
that on both levels—classical and quantum-—gravitons be-
have drastically different from other massless particles.
Classical gravitational waves can be amplified and gravitons
can be created (contrary to other massless fields and parti-
cles) in a nonstationary isotropic gravitational field, particu-
larly in the strong gravitational field of the early Universe.
The other option is to try to endow gravitons with the same
kind of coupling to the external gravitational field that other
massless particles have. Then one has to find some nontrivial
generalization of the Einstein equations.
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APPENDIX

We will give here the transformation rules for different
terms which could enter the linearized Einstein equations.
The background metric tensor 7. and the field variables
};(,ﬁ transform as follows:

~

2 "~ __ ko
Vg =€ Vo h.sz =€ Nz,
where k is an arbitrary constant. We denote o, =0 ,; notice
also that o, = 0,,,. Then,

it

+ (k _2)h g “ + 20& (h,uu;v + hva;;l '_2(hua;aa'v + hva;ao—,u) - 40a(hp‘10v + hvao;t)
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¢ 7-)"};\‘“;(1?(1 = h;n';a “ + 2(k - 1) hlw;aoa + (k 2 - 2k - 2) hl“’aa Uu
uvoa,
+ 2¢,,h 500" + 2ha, 0,
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—e ’”"ﬁauvﬂl;"ﬁ = —Rzh?+h¥ (0,05 — 00p)V,y + 1 0,0° + h, %0,
+h,%0,, ~0,(h, %, +h,%0,)+h(0,0,—0,, —7,,0,0%,

_ef(kfl)oha .

Hiav

= —h% ., —k=3Dh 0, +h" 0, —h “Bﬁaayyv —(k+2)h @ n0a —(k 2 k—6)h * 0,0,
—k+2)h%, 0., +k+2Dh%, 0,0, — k+Dh*0,04Y,, +h 0, +h|o,, +0,0%,, +k—H0,0,],
e * "2"’/;;“;‘, =h,, +k-3Nhr,0,+h,0,)+ Yunh o0 + (k —2)h [k —4&)o,0, +0,, +0,0%,, 1,
e 2 R4 FR,)= —(h, Ray +h,"Re,) + 2h %00 + h%,0,.)
—20,(h, %0, +h,%0,)+2h,,(0,." + 20,0%.
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