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Abstract

The reconstruction of azimuth signal in multichannel synthetic aperture radar (SAR) for high-resolution and
wide-swath (HRWS) imaging requires exact steering vectors. The information of ambiguities and system parameters
are used to create the steering vectors. The knowledge of ambiguities involves ambiguity number and index; the
system parameters include the pulse repetition frequency (PRF), platform velocity, and channel spacing. However, in
some cases, the knowledge of ambiguities is Doppler-variant and there exist errors in the system parameters, which
may degrade the reconstruction performance. In this work, an adaptive reconstruction method is developed. Firstly,
we discuss the azimuth sampling of multichannel SAR and derive the equation of ambiguity index. We then utilize the
azimuth cross-correlation to determine the aliasing number. Afterwards, based on the spatial spectrum estimation
methods, an equivalent system parameter is adaptively calculated. With the aliasing number and the equivalent
parameter, we can obtain the ambiguity information of each Doppler bin. Therefore, the steering vectors are
constructed and the azimuth ambiguities can be suppressed. Compared with state-of-the-art reconstruction
methods, our method achieves excellent performance even in highly nonuniform sampling case. Without relying on
any system parameters, the proposed method has better practicality and applicability. We conduct extensive
experiments including simulations and real data processing to verify the effectiveness and evaluate the performance
of the proposed method.

Keywords: Azimuth signal reconstruction, Cross-correlation, High-resolution and wide-swath (HRWS), Multichannel
synthetic aperture radar (SAR)

1 Introduction
Synthetic aperture radar (SAR) is an excellent remote
sensor with good capability to provide all-weather and
all-day observation of Earth’s surface [1, 2]. In recent
years, the high-resolution and wide-swath (HRWS) SAR
imaging has gained intensive attention from the research
community [3–12]. However, the high azimuth resolu-
tion and wide swath coverage contradict each other in
the conventional single channel SAR [3, 4]. In the light
of the Nyquist sampling theory, the finer the azimuth
resolution, the larger the operational pulse repetition fre-
quency (PRF) will be. Whereas, the wide-swath coverage

*Correspondence: zhlj_sjtu@sjtu.edu.cn
Department of Electronic Engineering, Shanghai Jiao Tong University, 800
Dongchuan Road, 200240 Shanghai China

requires a low PRF to avoid range ambiguities. Conse-
quently, the azimuth multichannel SAR is utilized to solve
this inherent contradiction and obtain HRWS SAR images
[5]. In general, multiple uniformly spaced receiver chan-
nels along track are configured in themultichannel SAR as
shown in Fig. 1. The single transmitter of themultichannel
SAR emits a broad beam signal with a low operational PRF
to illuminate wide area. The receiver channels simultane-
ously collect the echo signal to compensate the temporal
sampling.
Because of the low operational PRF, the Doppler spec-

trum for each channel data is aliased. The unambigu-
ous recovery of the Doppler spectrum is essential for
the HRWS SAR imaging. On the basis of the one-
to-one correspondence between the Doppler frequency
and azimuth squint angle, the spectrum components
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Fig. 1 Illustration of multichannel SAR. The positions of transmitter (Tx) and receivers (Rx), and corresponding positions of EPCs in azimuth
multichannel SAR system. Note that D = 2d

within one Doppler bin can be identified as virtual sig-
nal sources from different known directions [4]. There-
fore, the azimuth signal of multichannel SAR can be
reconstructed by digital beamforming (DBF) techniques
in range-Doppler domain. The Krieger DBF algorithm
[3] and the post-Doppler space-time adaptive processing
(STAP) method [4] are two representative DBF meth-
ods for azimuth signal reconstruction [13]. The principle
of Krieger DBF algorithm is to solve a system of lin-
ear equations to reconstruct the Doppler spectrum. In
comparison, the post-Doppler STAP method employs the
Capon beamformer to suppress the azimuth ambigui-
ties [14]. However, the nonuniform azimuth sampling
will deteriorate the performance of the aforementioned
DBF methods in terms of the signal-to-noise ratio (SNR).
From another perspective, the azimuth sampling of mul-
tichannel HRWS SAR can be regarded as the recurrent
nonuniform sampling. Inspired by the theory of recurrent
nonuniform sampling derived by Eldar and Margolis in
[15, 16], a filterbank reconstruction algorithm is proposed
in [17].
The steering vectors related to different spectrum com-

ponents of one Doppler bin are the crucial point of
DBF techniques for ambiguity suppression. The knowl-
edge of Doppler ambiguities (i.e., ambiguity number and
index) and system parameters consisting of the opera-
tional PRF, platform velocity and spacing between two
adjacent channels are utilized to construct the steering
vectors. Nevertheless, the number and index of ambi-
guities are considered to be constant over the baseband
Doppler frequencies in the above DBF methods, causing
the degradation of SNR in the nonuniform sampling cases
[18]. In contrary, the knowledge of ambiguities is Doppler-
variant in some sampling cases, which also complicates
the construction of steering vectors. Several improved
DBF methods for ambiguity suppression are presented in

[18–20]. The key issues of these improved methods are
the calculation of effective Doppler bandwidth (EDB)
and the ambiguity-index screening (AIS) operation, by
which the information of ambiguities can be obtained.
The method proposed in [18], termed as IDBF, defines an
equivalent sampling spacing for the computation of EDB
and then utilizes the Doppler spectrum weighting. The
IDBF overcomes the drawbacks of Krieger DBF algorithm,
but at the cost of degradation of azimuth ambiguity-to-
signal ratio (AASR) and azimuth resolution. Inspired by
IDBF, a method named as ImpMMSE is proposed in [20].
The ImpMMSE uses a weighting process for the calcula-
tion of EDB and theminimummean square error (MMSE)
criterion to suppress azimuth ambiguities. Correspond-
ingly, a remarkable improvement of AASR is realized.
Besides, [19] calculates the baseband Doppler centroid
and the EDB based on the Capon estimation method [14].
In the previous improved DBF reconstruction algo-

rithms, the calculation of EDB and the AIS operation
are critically dependent upon the system parameters.
However, the system parameters may be inaccurate or
unknown in some applications, which degrades the per-
formance of ambiguity suppression [19, 21–23]. In fact,
the real value of velocity is influenced by platform per-
turbation [23]. Additionally, the PRF and channel spacing
may be lacking or influenced by measured errors [19, 21].
In this paper, we propose an adaptive azimuth recon-

struction algorithm for multichannel SAR. The proposed
method can adaptively obtain the information of ambigu-
ities and estimate an equivalent parameter of PRF, plat-
form velocity, and channel spacing. Firstly, concerning the
uniformity of azimuth sampling, we propose to classify
the azimuth sampling of multichannel SAR as uniform-
sampling, under-sampling, and over-sampling. Based on
this novel classification, the aliasing number, the number
of aliased copies of Doppler spectrum to be reconstructed,
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will be computed more simply. We can use the azimuth
cross-correlation (cf. [24–26]) is utilized to determine
the aliasing number. Besides, the calculation equation of
ambiguity index for each Doppler bin is deduced. Notice
that the estimation of EDB is essentially equivalent to
the determination of the aliasing number. Afterwards,
we calculate the equivalent parameter Fp by means of
spatial spectrum estimation methods which have been
widely used in generic imaging problems [27–29]. If there
exist redundant channels, the idea of subspace-based
methods can be utilized [30, 31]; otherwise, we use the
Capon estimator [14, 21]. Based on the aliasing num-
ber and the equivalent parameter (denoted as Fp), the
ambiguity number and ambiguity indexes of each Doppler
bin can be acquired. Thus, the accurate steering vec-
tors can be adaptively constructed based on only the raw
data, without using any system parameters. Consequently,
our method can obtain good performance of ambiguity
suppression even when the azimuth sampling is highly
nonuniform.
The rest of this paper is organized as follows. Section 2

briefly introduces the signal model of multichannel SAR.
Different cases of azimuth sampling in multichannel SAR
are investigated in Section 3. Section 4 presents the
detailed derivation of the aliasing number and the equiv-
alent system parameter. Extensive experimental results
on simulations and real data processing and discus-
sions are given in Section 5. Section 6 concludes this
paper.

Notation Vectors are denoted by lowercase boldface let-
ters and matrices by uppercase boldface letters. The sym-
bols (•)T, (•)∗, and (•)H denote the transpose operation,
conjugate operation, and Hermitian transpose operation,
respectively. E

η
{•} represents the expectation operation

over η. Besides, diag{•} represents a diagonal matrix con-
structed by a vector.

2 Signal model
As illustrated in Fig. 1, a single transmitter (Tx) is com-
bined with M uniformly spaced receiver (Rx) channels
along track in the multichannel HRWS SAR system. The
spacing between adjacent receiver channels is D. In terms
of the data acquisition mode, the multichannel SAR sig-
nal can be regarded as transmitted and received both
from the effective phase centers (EPCs) after the EPC pro-
cessing [5, 12]. The EPC is in the middle position of the
transmitter and its respective receiver. Therefore, the dis-
placement from mth (m = 1, · · · ,M) EPC to the first one
can be denoted as dm = (m − 1) · d, where d = D/2.
With the EPC processing, the relationship between the
signal received bymth channel and the first channel in the
two-dimensional time domain can be expressed as

xm(τ , η) = x1(τ , η + ηm)

= x0(τ , η + ηm)
, (1)

where ηm = dm/vr ; τ and η represents the range and
azimuth time, respectively; vr is the platform velocity;
xm(τ , η) is the signal recorded by mth channel. Note that
x1(τ , η) is generated by the multichannel SAR and its
Doppler spectrum is aliased as a result of the low opera-
tional PRF. Let x0(τ , η) denote the reference signal, which
can be regarded as recorded by a single-channel SAR
under the condition that the Nyquist sampling criterion is
satisfied.
As a result of the low operational PRF represented by

fp, the Doppler spectrum of each channel data is aliased.
Suppose that there exist I, denoting the ambiguity num-
ber, azimuth ambiguities at baseband Doppler frequency
fb, where −fp/2 ≤ fb < fp/2. Let xm(τ , fb) and s(τ , fb +
i · fp) represent the received signal of mth channel in
range-Doppler domain and the equivalent unambiguous
Doppler spectrum at frequency fb+i· fp from range gate τ ,
respectively. i refers to the ambiguity index ranging from
imin to imax. Notice that, sometimes the variables imin
and imax vary with fb, and hence the ambiguity number
calculated by (2) is Doppler-variant [19].

I = imax − imin + 1 (2)

Besides, let nm(τ , fb) be the zero-mean white Gaus-
sian noise recorded by mth channel. Thus using vector
notation, the multichannel SAR signal in range-Doppler
domain can be:

x(τ , fb) =
imax∑

i=imin

ai(fb)s(τ , fb + i · fp) + n(τ , fb), (3)

TheM × 1 vectors x(τ , fb) and n(τ , fb) are the multichan-
nel output and the noise vector, respectively, which can be
written as

x(τ , fb) = [
x1(τ , fb), · · · , xM(τ , fb)

]T , (4)

n(τ , fb) = [
n1(τ , fb), · · · , nM(τ , fb)

]T . (5)

The Doppler-variant steering vector ai(fb) corresponding
to the ambiguity component s(τ , fb+ i · fp) is formulated as

ai(fb) =
[
ej2π(fb+i·fp)·d1/vr , · · · , ej2π(fb+i·fp)·dM/vr

]T
, (6)

For the azimuth signal reconstruction, the EPC spac-
ing d, platform velocity vr and operational PRF fp are
important parameters. These system parameters can be
converted into an equivalent parameter Fp, which can be
expressed as

Fp = fp
d
vr
. (7)
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As a consequence, we can define another new parameter

Fb = fb
d
vr
, (8)

where −Fp/2 ≤ Fb < Fp/2. Since the value of d/vr can be
regarded as constant, we can use Fp and Fb to represent fp
and fb, respectively. As a result, the steering vector ai(fb)
can be reformulated as

ai(fb)
�= ai(Fb)

=
[
1, · · · , ej2π(Fb+i·Fp)·(M−1)

]T
.

(9)

The steering vector ai(Fb) is equivalent to ai(fb). There-
fore, we can construct the steering vector ai(fb) by (9) as
long as Fp and the ambiguity indexes i are known. Besides,
the steering vector ai(fb) is independent of range delay.
The reconstruction of azimuth signal is implemented bin
by bin in range direction, which means the knowledge
of range delay is unnecessary in the process of azimuth
ambiguity suppression. Therefore, we can reconstruct the
azimuth signal when Fp and i are obtained.

3 Azimuth sampling of multichannel SAR
This section analyzes the azimuthmultichannel SAR sam-
pling in terms of the uniformity of azimuth sampling. In
specific, we describe the proposed classification of multi-
channel SAR sampling and derive the calculation equation
of ambiguity index.
The fundamental idea behind the multichannel HRWS

SAR is that the lack of temporal sampling points are com-
pensated by the spatial sampling points. The optimum
PRF, represented by fpo, fulfills a uniform space-time sam-
pling along the synthetic aperture and can be written as

fpo = vr
M · d . (10)

It can be seen that fpo is determined by the platform veloc-
ity, channel number, and channel spacing. Unfortunately,
such a rigid selection of PRF cannot always be satisfied
because of the timing diagram constraints in practical
applications [5]. Any deviation from the optimum fre-
quency fpo will result in nonuniform sampling in azimuth.
Accordingly, different kinds of azimuth sampling schemes
of multichannel SAR are generated with the change of fp
as demonstrated in Fig. 2.
We use the uniformity of azimuth sampling κ as defined

in Eq. (11) to quantitatively analyze the effect of fp on the
azimuth sampling.

κ = Md
vr/fp

. (11)

The uniformity of azimuth sampling has crucial effect on
the suppression of azimuth ambiguities. Combining (10)
and (11) yields a new formation of fp:

fp = κ · fpo. (12)

We observe a proportional relationship between the uni-
formity of azimuth sampling κ and the operational PRF
fp.
According to the value of the uniformity of azimuth

sampling, the azimuth sampling can be classified into
three categories: κ = 1 refers to the uniform-sampling
(Fig. 2a); κ > 1 indicates the over-sampling (Fig. 2b);
κ < 1 represents the under-sampling (Fig. 2c). The over-
sampling scheme is described that d0, the displacement
fromMth EPC to the first one in the next pulse, is smaller
than d. If d0 is larger than d, the sampling is under-
sampling. Notice that d0 would reduce with the increase
of κ . When the sampling position of the first channel coin-
cides with that ofMth channel, κ becomesM/(M−1) and
the received data are redundant [5]. For the sake of system
complexity of the multichannel SAR, κ is assumed not to
be larger thanM/(M − 1) in this paper.
The aliasing number denoted by N is defined as the

number of aliased copies of the Doppler spectrum within
the scope of [−fp/2, fp/2] and can be calculated by

N = Brd
fp

, (13)

where Brd represents the reconstructed EDB of multi-
channel SAR by ambiguity suppression. It should be noted
that the maximum value of aliasing number is M. As
derived in [18, 19], the uniform-sampling, where Brd is
Mf po, achieves optimal performance on ambiguity sup-
pression. In this work, Brd is designed to approach Mf po.
Therefore, in the cases of uniform-sampling and under-
sampling where κ ≤ 1, the aliasing number is M and
the value of Brd can be κ · Mf po based on (12). Never-
theless, the aliasing number is less than M in the case
of over-sampling. When the case of coinciding-sampling
(κ = M/(M − 1)) occurs, the aliasing number is M − 1
and Brd is equivalent to M · fpo. Thus, the reconstructed
EDB Brd for uniform-sampling and coinciding-sampling
can both achieve the value ofM · fpo. We can conclude that
the aliasing number N ranges from M − 1 to M for sam-
pling schemes withM/(M − 1) > κ > 1. Besides, κ ·Mf po
should be at least larger than the 3dB-Doppler bandwidth
of multichannel SAR in under-sampling cases. Thus, in
terms of the valuing of κ , we have the criterion:

Bd
M · fpo < κ ≤ M

M − 1
, (14)

where Bd is the 3dB-Doppler bandwidth of multichannel
SAR.
As known, except the system parameters, the recon-

struction of azimuth signal involves another three param-
eters: the aliasing number N, the ambiguity number I, and
the ambiguity index i. The aliasing number is an overall
concept reflecting the relationship between Brd and fp. N
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a

b

c

Fig. 2 Different azimuth sampling schemes for multichannel SAR regarding the positions of EPCs. a Uniform-sampling, κ = 1. b Over-sampling,
κ > 1. c Under-sampling, κ < 1. Here, the channel number is 3, and d1 = 0. Besides, the triangles and circles stand for the sampling positions in
different pulses

may not be an integer in the over-sampling scheme. The
azimuth ambiguities are just the spectrum components
within a specific Doppler bin fb. The number of azimuth
ambiguities is referred to as ambiguity number, which
must be an integer. Also, I is Doppler-variant when the
over-sampling scheme is generated. The ambiguity index
i indicates the connection between the instantaneous
Doppler frequency fa [19] being reconstructed and the
basebandDoppler frequency fb, which can be expressed as

fa = fb + i · fp i ∈ [ imin, imax]. (15)

Figure 3 shows the relational diagram between fa and
fb, which is the Doppler spectrum diagram (DSD) [19].
The ambiguity indexes imay vary over fb under the influ-
ence of the channel number M and the aliasing number
N. When M is odd, the index i can be formulated by (16)
(Fig. 3a); otherwise, i can be acquired by (17) (Fig. 3b).
Obviously, the ambiguity indexes i are Doppler-variant in
the case of over-sampling. With the equivalence between
fp and Fp, we can determine the ambiguity indexes i of
each Doppler bin as long as Fp and N are obtained. We
also observe that the ambiguity number I is less thanM at

some Doppler bins in the over-sampling scheme, meaning
the existence of redundant channels. However, there is no
redundant channel in the cases of uniform-sampling and
under-sampling.

i =
{ −M−1

2 + 1, . . . , M−1
2 , − 1

2 fp ≤ fb <
(− 1

2 + M−N
2

)
fp

−M−1
2 , . . . , M−1

2 ,
(− 1

2 + M−N
2

)
fp ≤ fb <

( 1
2 − M−N

2
)
fp

−M−1
2 , . . . , M−1

2 − 1,
( 1
2 − M−N

2
)
fp ≤ fb < 1

2 fp
.

(16)

i =
⎧
⎨

⎩

−M
2 + 1, . . . , M2 , − 1

2 fp ≤ fb < −M−N
2 fp

−M
2 + 1, . . . , M2 − 1, −M−N

2 fp ≤ fb < M−N
2 fp

−M
2 , . . . ,

M
2 − 1, M−N

2 fp ≤ fb < 1
2 fp

.

(17)

4 Adaptive reconstructionmethod
In this section, we introduce the proposed adaptive
azimuth reconstruction method for multichannel HRWS
SAR. The proposed method can be separated into two
principal procedures: the first one is the determination of
the aliasing numberN, and the other one is the estimation
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b

a

Fig. 3 The DSDs with different number of channels. a The number of
channels is odd, takingM = 5 as an example. b The number of
channels is even, takingM = 4 as an example

of the equivalent parameter Fp. Then the algorithm steps
are given. Finally, we analyze the computation complex-
ity of our adaptive reconstruction method, demonstrating
low computation load.

4.1 Determination of aliasing number
Here we elaborate the determination of aliasing number
N by using cross-correlation technique presented in [26].
Based on the azimuth cross-correlation, the coherence
between x0(τ , η) and x0(τ , η + �η) can be

μ(�η) =
E
η

{∣∣x0(τ , η)x∗
0(τ , η + �η)

∣∣}

√
E
η

{|x0(τ , η)|2}E
η

{∣∣x∗
0(τ , η + �η)

∣∣2
} , (18)

According to (1), the received data of mth channel is
just the delayed version of the first channel with time shift
ηm = dm/vr during a pulse. While, η0, termed as the time
shift between Mth channel in the former pulse and the
first channel in the next pulse, is η0 = d0/vr . Recall that
d0 denotes the distance from theMth EPC during the for-
mer pulse to the first EPC in the latter pulse. Thus, the
time shift for adjacent azimuth samples generated from
the same pulse is ηc = d/vr ; the time shift for adja-
cent azimuth samples in different pulses is η0. Note that
we derive that in the case of over-sampling, the expres-
sion η0 < ηc can be obtained; otherwise, the expression
η0 ≥ ηc can be determined.
Utilizing (1) and (18), the coherence of neighboring

azimuth samples in the same pulse, denoted by α, can be
defined as

α= 1
M − 1

M∑

m=2

E
η

{∣∣xm−1(τ , η)x∗
m(τ , η)

∣∣}

√
E
η

{|xm−1(τ , η)|2}E
η

{|xm(τ , η)|2}
,

(19)

The coherence of adjacent samples from different pulses,
namely γ , can be derived as

γ =
E
η

{∣∣xM(τ , η)x∗
1(τ , η + 1/fp)

∣∣}

√
E
η

{|xM(τ , η)|2}E
η

{∣∣x1(τ , η + 1/fp)
∣∣2

} . (20)

Combining (1), (18), (19), and (20), the approximation of
α and γ can be obtained:

α = μ(ηc), (21)

γ = μ(η0). (22)
Considering that μ(�η) decreases with an increasing �η

[32], the azimuth sampling of multichannel SAR is over-
sampling when α < γ ; otherwise, the azimuth sampling is
uniform-sampling or under-sampling. Furthermore, if the
value of γ approaches 1, we can infer that η0 is zero and
the azimuth sampling is coinciding-sampling.
As discussed in Section 3, the aliasing number N is

influenced by the uniformity of azimuth sampling κ ,
which determines the azimuth sampling scheme. The
value of N can be expressed as:

M − 1 ≤ N < M , M
M−1 ≥ κ > 1

N = M , κ ≤ 1 . (23)

Bear in mind, in the case of uniform-sampling (κ = 1), the
aliasing number N equals M; in the coinciding-sampling
case (κ = M/(M − 1)), N is just M − 1. Hence, after the
classification of azimuth sampling schemes, the aliasing
number can be adaptively determined. With the descrip-
tion in (23), we only focus on the calculation of N for the



Zhang et al. EURASIP Journal on Advances in Signal Processing  (2018) 2018:40 Page 7 of 19

over-sampling scheme. Here, we formally present the cri-
terion in terms of the determination of N when κ > 1.
Based on the above analysis, we creatively propose the
following determination criterion:

N = γ − α

1 − α
(M − 1) + 1 − γ

1 − α
M

= M − γ − α

1 − α

. (24)

Since α < γ ≤ 1 in the over-sampling scheme, (24) is
a convex function related to the coherence of adjacent
azimuth samples in multichannel SAR.
According to (24), N is in the range from M − 1 to M.

For the azimuth uniform-sampling, γ is equivalent to α

and hence the aliasing number isM.When the operational
PRF leads to coinciding-sampling, γ reaches 1 and thus
N reduces to M − 1. For other over-sampling schemes
where κ ∈ (1,M/(M − 1)),N is larger thanM− 1 but less
than M. Besides, as the increase of κ , the aliasing num-
ber reduces. Thus, we can conclude that the reconstructed
EDB Brd approaches Mf po under the criterion formula
expressed in (24).
With the coherence coefficients α and γ , we can clarify

which case the azimuth sampling is. After that, the aliasing
number N can be directly obtained as M or calculated by
(24). Furthermore, we can adaptively decide the aliasing
number without using any system parameter.
It should be noted that the coherence coefficients α and

γ are not obtained in reality due to the expectation oper-
ations in (19) and (20). α and γ can be estimated by (25)
and (26), respectively.

α̂ = 1
M − 1

M∑

m=2

∑
η

∣∣xm−1(τ , η)x∗
m(τ , η)

∣∣

∑
η

√∣∣xm−1(τ , η)2
∣∣ · ∣∣xm(τ , η)2

∣∣
(25)

γ̂ =
∑
η

∣∣xM(τ , η)x∗
1(τ , η + 1/fp)

∣∣

∑
η

√∣∣xM(τ , η)2
∣∣ · ∣∣x1(τ , η + 1/fp)2

∣∣
(26)

For the purpose of improving estimation accuracy, we use
all of the azimuth samples of each range gate to calculate
coherence coefficients.

4.2 Estimation of the equivalent system parameter
In this part, we present the estimation of the equiva-
lent system parameter Fp. The spatial spectrum estima-
tion techniques can be utilized to adaptively estimate Fp
[33]. The principles of the classical algorithms, includ-
ing Caponmethod, multiple signal classification (MUSIC)
method and estimation of signal parameters via rotational
invariance technique (ESPRIT), will be employed in this
paper. Since there is no redundant channel in the uniform-
sampling or under-sampling case, only the Capon method

can be used. In comparison, the three spectrum estima-
tion techniques are all suitable for some Doppler bins
of the over-sampling case. However, the subspace based
methods have higher accuracy than Capon method. Also
note that the Capon method and MUSIC method require
spectral peak searching to obtain the estimation of Fp,
which would complicate the estimation process. There
should be a good balance between the estimation accuracy
and the complexity regarding which technique is selected
to calculate Fp.

4.2.1 Caponmethod
A new steering vector b(Fa) over the instantaneous
Doppler frequency fa is defined as

b
(
fa

) �= b(Fa)

=
[
1, ej2πFa , · · · , ej2π(M−1)Fa

]T
,

(27)

where Fa is a new equivalent parameter expressed as

Fa = fa · d/vr fa ∈
[
−M

2
fp,

M
2
fp

]
. (28)

Combining (7) and (11) yields

Fp = κ

M
. (29)

Thus the inferior and superior limits of Fa for estimat-
ing Fp are −κ/2 and κ/2, respectively. Moreover, based on
the categorization of the azimuth sampling scheme and
the inequality (14), the scope of Fa can be approximately
determined.
The Capon spectrum at Fb (equivalent to fb) over Fa is

PCapon(Fa, Fb) = 1
b(Fa)HR(Fb)−1b(Fa)

, (30)

where R(Fb) is the covariance matrix of multichannel SAR
signal at Fb. R(Fb) can be expressed as

R(Fb) = E
τ

[
x(τ , fb)xH(τ , fb)

]

= A(Fb)Rss(Fb)A(Fb)H + σ 2
n IM.

(31)

The array manifold A(Fb) at Fb is given by

A(Fb) = [
aimin(Fb), · · · ,aimax(Fb)

]T , (32)

and the matrix Rss(Fb) given by

Rss(Fb) = E
τ

[
s(τ , fb)s(τ , fb)H

]
, (33)

where s(τ , fb) = [
s
(
τ , fb + iminfp

)
,· · ·, s (τ , fb + imaxfp

)]T.
Besides, σ 2

n denotes the variance of noise, IM is an identity
matrix with size M × M. Because of the unavailability of
R(Fb) in practical applications, it is usually replaced with
the sample covariance matrix R̂(Fb) which is calculated by
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R̂(Fb) = 1
L

L∑

l=1

{
x(τl, fb)xH(τl, fb)

}
, (34)

where L is the number of used training samples of every
receiver channel and x(τl, fb) denotes the lth training
sample vector in range direction from fb.
The peaks of PCapon(Fa, Fb) correspond to the ambigu-

ities within Doppler bin fb. Hence, the interval between
adjacent peaks of the Capon spectrum PCapon(Fa, Fb) is
just Fp.

4.2.2 MUSICmethod
The eigen-decomposition of the covariance matrix R(Fb)
as expressed in (31) can be

R(Fb) =
M∑

m=1
λmemeHm = Es�sEH

s + En�nEH
n , (35)

where λ1 ≥ λ2 ≥ · · · ≥ λI ≥ λI+1 = · · · =
λM = σ 2

n are the eigenvalues of R(Fb) sorted in descend-
ing order and em are the corresponding eigenvectors. The
eigenvalues and their corresponding eigenvectors are rel-
evant to the baseband Doppler frequency fb. The matrix
Es =[ e1, · · · eI ] and matrix En =[ eI+1, · · · eM] are uti-
lized to span the signal subspace and noise subspace,
respectively. The formulations of matrices �s and �n are
�s = diag{λ1, · · · , λI} and �s = σ 2

n IM−I , respectively.
The dimension of the signal subspace is equivalent to the
ambiguity number I and can be obtained by using (2), (16)
and (17). The MUSIC pseudo spatial spectrum at Fb over
Fa can be calculated by

PMUSIC(Fa, Fb) = 1
M∑

m=I+1

∣∣eHb
m (Fa)

∣∣2
. (36)

The distance between the adjacent peaks in the pseudo
spectrum PMUSIC(Fa, Fb) is just Fp.

4.2.3 ESPRITmethod
Define two selection matrices with size (M − 1) × M:

J1 = [IM−1|0M−1] , (37)

J2 = [0M−1|IM−1] , (38)
where 0M−1 indicates a zero vector with size (M − 1) × 1.
Let us multiply the array manifold A(Fb) as in (32) by J1
and J2, respectively, two sub-matrices are obtained as

A1(Fb) = J1A(Fb), (39)

A2(Fb) = J2A(Fb). (40)
With the steering vector ai(Fb) as formulated in (9), we
can express the relationship betweenA1(Fb) andA2(Fb) as

A2(Fb) = A1(Fb)� , (41)

where

� = diag
{
ej2π ·imin·Fp , · · · , ej2π ·imax·Fp

}
. (42)

� is just the translational invariance matrix induced by
the configuration of uniformly spaced channels in the
multichannel HRWS SAR.
Take into account that the variable Fb on the right side

of (35) is omitted for brevity. Then, multiplying matrix
Es(Fb) as appearing in (35) by J1 and J2, respectively, we
have

Es1(Fb) = J1Es(Fb), (43)

Es2(Fb) = J2Es(Fb). (44)

According to the theory of ESPRIT [31], there exists
an underlying rotational invariance between Es1(Fb) and
Es2(Fb), which is expressed as

Es2(Fb) = Es1(Fb)�(Fb). (45)

�(Fb) just represents the rotational invariance between
signal subspaces. Moreover, �(Fb) can be formulated as

�(Fb) = T(Fb)−1�T(Fb), (46)

where T(Fb) is a nonsingular matrix and can be written as

T(Fb) = Rss(Fb)AH(Fb)Es(Fb)
(
�s − σ 2

n II
)−1 . (47)

From (46), we know that � and �(Fb) have the same
eigenvalues; the diagonal elements of � are just the eigen-
values of �(Fb). The difference value between two adja-
cent phases (in radian) of the eigenvalues of �(Fb) equals
2π ·Fp, and hence the value of Fp can be acquired. Besides,
�(Fb) can be easily obtained by using (45).

4.3 Algorithm steps
Based on the above derivation and discussion, here, we
present the algorithm steps of the proposed adaptive
azimuth reconstruction method as illustrated in Fig. 4.
The implementation details are as follows:

Step 1: Perform azimuth cross-correlation to the
multichannel SAR received data by (25) and (26),
and obtain the coherence coefficients α and γ .

Step 2: Through comparing α and γ , the azimuth
sampling scheme is determined. In the case of
uniform-sampling or under-sampling, the aliasing
number can be directly obtained as M; otherwise,
N is calculated by (24).

Step 3: Implement azimuth fast Fourier transform (FFT)
to each receiver channel data and obtain the
multichannel output expressed in range-Doppler
domain.

Step 4: Based on the odd-even character of M and the
calculated aliasing number N, estimate the
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Fig. 4 Algorithm steps of the proposed adaptive azimuth reconstruction method for multichannel HRWS SAR

equivalent parameter Fp by the principles of
Capon, MUSIC or ESPRIT method.

Step 5: Calculate the ambiguity indexes and ambiguity
number of every Doppler bin by (16) or (17).

Step 6: With the ambiguity index i and Fp, construct the
Doppler-variant steering vector ai(Fb).

Step 7: Suppress azimuth ambiguities by MMSE criterion
proposed in [10, 20] and the idea in [21] to reduce
computation load. Finally, obtain the HRWS SAR
image by using conventional imaging algorithm,
like the chirp scaling (CS) algorithm [1].

We can use several Doppler bins to estimate Fp and then
average these estimates in order to improve the estimation

accuracy. Besides, the assumption that the signal is band-
limited can be relaxed due to the utilization of the MMSE
criterion.

4.4 Computation complexity
Here, the computation load of the determination of alias-
ing number N and equivalent system parameter Fp is
investigated. Since the multiplications need more com-
putation time and hardware sources, we only consider
the calculation burden of multiplication. The computa-
tion complexity of the proposed adaptive reconstruction
method is listed in Table 1. Assume that there are Na
azimuth samples in one range gate for each channel data
of multichannel SAR, and K Doppler bins are selected to
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Table 1 Computation complexity of our adaptive reconstruction
method

Parameter dimension Operation Computation complexity

M, Na , L, K 1. N 3 · K · M · Na

2. Fp K · (
L · M2 + O

(
M3

))

R̂(Fb) L · M2

Fp(Fb) O(M3)

Total 3KMNa + K
(
LM2 + O

(
M3

))

improve the estimation accuracy of coherence coefficients
and the equivalent parameter.
According to Eqs. (19), (20) and (24), the number of

complex multiplication for determining the aliasing num-
ber N is 3 · K · M · Na. Based on Eq. (34), the sample
covariance matrix R̂(Fb) needs L ·M2 complex multiplica-
tions. In addition, the estimation of Fp(Fb) by using spatial
spectrum techniques as presented in our paper requires
O(M3) complex multiplications for each Doppler bin.
Thus, the computation complexity for estimating equiva-
lent system parameter is K ·(L · M2 + O(M3)

)
. Therefore,

we can conclude that the total computation complexity
for our method is 3KMNa + K

(
LM2 + O(M3)

)
. With the

relationship that Na � M, Na � K and Na � L, we can
confirm that the computation complexity of our method
is not high and can be easily implemented.

5 Experiment results and discussion
To verify the effectiveness and evaluate the performance
of our proposed adaptive azimuth reconstructionmethod,
we conduct extensive experiments on simulated data and
real multichannel SAR data. We perform evaluation of the
adaptive determination of aliasing number N. Then, the
validity of the estimated equivalent parameter Fp and its
performance over SNRs and azimuth sampling uniformity
κ are demonstrated. We also analyze how the errors of Fp
estimated by our method affect the azimuth reconstruc-
tion. Finally, the real airborne multichannel SAR data is
utilized to verify the effectiveness of our reconstruction
method.

5.1 Simulations about aliasing number
A six-channel SAR system with relevant parameters sum-
marized in Table 2 is employed to generate the simulated
data and then implement the following simulation exper-
iments. From the perspective of the aliasing number N,
we perform comparisons between the proposed adaptive
reconstruction method and several other state-of-the-art
reconstruction methods including Krieger DBF [3], IDBF
[18], and ImpMMSE [20]. Note that the weighting fac-
tor ρ is set to be 0.5 in the ImpMMSE reconstruction
method. The performance of these aforementioned algo-
rithms over the uniformity of azimuth sampling κ would

Table 2 Relevant parameters of the azimuth six-channel SAR
system for simulation experiments

Parameter Symbol Value

Carrier wavelength λ 0.059 m

Platform velocity vr 7100 m/s

Slant range R0 850 km

Single antenna length D 2 m

Optimum PRF fpo 1183.3 Hz

Number of channels M 6

3dB-Doppler bandwidth Bd 6290.6 Hz

Range bandwidth Br 150 MHz

Range sampling frequency fr 180 MHz

be investigated. The uniformity of azimuth sampling κ

is set to be from 0.9 to 1.2, where κ = 1 indicates
the uniform-sampling and κ = 1.2 just the coinciding-
sampling. Moreover, for the sake of comparison, the over-
all reference is compared to all methods. The values of
overall reference are achieved by a single channel SAR
with the operational PRF Mfp. Besides, for the purpose of
evaluating AASR, the Doppler bandwidth BD is set to be
8165 Hz yet the 3dB-Doppler Bandwidth Bd is 6290.6 Hz.
Independent white noise is added to the simulated mul-
tichannel SAR data such that the SNR of raw data is
20 dB.
Firstly, we conduct experiment with respect to the esti-

mation of coherence coefficients α and γ . All of the
available azimuth samples are used to calculate α and γ .
Figure 5 shows the calculation results of coherence α and
γ versus κ . In spite of the varying κ , the value of α is 0.27.
The value of γ rises with the increasing κ when κ is in
the range from 0.9 to 1.2. We see that the curves α and

Fig. 5 Calculation result of coherence α and γ versus the uniformity
of azimuth sampling κ
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γ intersect at κ = 1 where the azimuth sampling is uni-
form. Observe that α > γ when the azimuth sampling
is under-sampling (0.9 ≤ κ < 1) and α < γ in case
of over-sampling (1 < κ ≤ 1.2). We also observe that
γ reaches 1 in the case of coinciding-sampling (κ = 1).
The calculation results are in good agreement with the-
oretical analysis as discussed in Section 4.1. This experi-
ment proves that the estimation of α and γ by (25) and
(26) have high accuracy. Therefore we can claim that the
uncertainty of estimation for coherence values α and γ is
negligible, which lays a foundation for the evaluation of
aliasing number N.
Essentially, a primary difference among the above

reconstructionmethods is the calculation of aliasing num-
ber N. The aliasing number reflects the reconstructed
EDB and hence controls the azimuth resolution. Figure 6

b

a

Fig. 6 Aliasing number N and relative resolution degradation. a
Aliasing number obtained by different reconstruction methods
against the uniformity of azimuth sampling κ . b Relative resolution
degradation obtained by different reconstruction methods against κ

shows the aliasing number and the relative resolution
degradation (in percentage) against varying κ realized by
different reconstruction methods, respectively. The value
of the difference between the resolution and reference
resolution divided by the reference resolution is just the
relative resolution degradation. From Fig. 6a, we can see
that the aliasing number determined by Krieger DBF is
constant and equivalent toM. In the case of over-sampling
(κ > 1), the aliasing numbers obtained by our method,
IDBF and ImpMMSE all reduce with an increasing κ . The
aliasing number of our method decreases more quickly,
which infers that its EDB is closer toM · fpo. Moreover, we
note that the aliasing number of IDBF is slightly inferior to
that of our method when κ approaches 1.2. One can also
notice that the aliasing numbers of IDBF and ImpMMSE
are less thanM in some under-sampling cases, which vio-
lates the fact that the ambiguity number is always M for
any Doppler bin fb when κ < 1. Figure 6b shows that

b

a

Fig. 7 The mean squared values of reconstruction filters calculated by
different reconstruction methods. a The uniform-sampling scheme .
b The over-sampling scheme (κ = 1.195)
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the relative resolution degradations of our method, IDBF
and ImpMMSE are all under 20%, which are maintained
at acceptable levels. We know that the azimuth resolu-
tion of multichannel SAR is determined by the EDB. The
ambiguity suppression in multichannel SAR can achieve
excellent performance when EDB reachesMfpo. Although
our method seems to provide the ’worst’ performance in
resolution comparing with other methods in case of over-
sampling, its EDB is closest to Mf po. Moreover, the SNR
scaling factor �bf and AASR could better represent the
reconstruction performance. The finest azimuth resolu-
tion does not mean the best performance of ambiguity
suppression. Next we will implement simulations to eval-
uate the reconstruction performance realized by different
algorithms.
The curves of mean squared values of reconstruction

filter obtained by different methods are plotted in Fig. 7.

b

a

Fig. 8 Reconstruction performance achieved by different algorithms.
a The value of SNR scaling factor �bf versus the uniformity of azimuth
sampling κ . b The value of AASR versus the uniformity of azimuth
sampling κ

In the uniform-sampling scheme, we observe that the
mean values of the reconstruction filter over the instanta-
neous Doppler frequency fa are all equivalent to 0 dB (see
Fig. 7a), and hence all the four reconstruction methods
have similar performance. Whereas, the mean squared
values over the outmost Doppler band are much higher
in the case of over-sampling as illustrated in Fig. 7b. Bear
in mind that the uniformity of the over-sampling case is
κ = 1.195, which makes fp approach the operational sin-
gular PRF 1414.1 Hz (generate coinciding-sampling). The
rising mean squared values of the over-sampling case can
be explained by the increasing condition number of the
array manifoldA(Fb) [34]. Furthermore, the aliasing num-
ber and AIS operation, to a certain extent, are beneficial
to reduce the value of condition number of A(Fb). As a
consequence, we can see that the IDBF and our recon-
struction method have less range of rising value than the
ImpMMSE and Krieger DBF method. The rising mean
squared value dominates the deterioration of SNR, indi-
cating an increasing SNR scaling factor denoted by �bf
[5]. Although the reduction of N can enhance the SNR
of the reconstructed azimuth signal, it might result in the
drop of AASR [5, 20].
We further study the performance of these algorithms

about SNR scaling factor �bf and AASR versus κ (0.9 ≤
κ ≤ 1.2). Figure 8a shows the curves of SNR scaling fac-
tors obtained by different methods. We note that when κ

is close to 1, all methods realize the best performance in
terms of �bf . Too large deviation from κ = 1 will mag-
nify the SNR scaling factors of all methods, implying the
degradation of SNR for the reconstructed signal. Obvi-
ously, the proposed method outperforms its competitors
regarding SNR scaling factor. This is because our method
has the minimum aliasing number (see Fig. 6) and carries

Fig. 9 Envelopes of spatial spectrum realized by different estimation
methods for the six-channel SAR simulated data
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out the AIS operation. However, the reduce of aliasing
number may degrade the AASR.
Figure 8b presents the AASR achieved by different

methods. Clearly, when the azimuth sampling is highly
over-sampling, the degradation of AASR occurs in our
proposed method, the IDBF method and the ImpMMSE
method. The proposed method has optimum perfor-
mance, even better than the reference case, when the uni-
formity of azimuth sampling κ is close to 1. Although the
AASR of our method is slightly inferior to those of other
methods in the case of highly over-sampling, its AASR is

still under − 30 dB. Considering that there should be a
good balance between the SNR and AASR for the recon-
structed signal, our adaptive method can be an excellent
method to suppress azimuth ambiguities especially for
nonuniform sampling cases. Moreover, our method dose
not require any system parameters.

5.2 Simulations on the equivalent system parameter
We firstly use the simulated data with parameters listed
in Table 2 to verify the effectiveness of the adaptive esti-
mation of the equivalent system parameter Fp, which is

b

a

Fig. 10 ARMSE curves of Fp by means of different spatial spectrum estimation techniques. a ARMSE versus SNR in different cases of κ . b ARMSE
versus κ under conditions with distinct SNRs
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inspired by spatial spectrum estimation techniques. Then
we evaluate the estimation accuracy of Fp in terms of the
average root-mean-squared error (ARMSE) versus SNR
and the uniformity of azimuth sampling κ , respectively.
We also investigate how the estimation errors of Fp affect
the azimuth reconstruction of multichannel SAR signal.
Here the uniformity of azimuth sampling is set to be

κ = 1.1 for the convenience of using MUSIC and ESPRIT
techniques. Thus, the number of ambiguities in frequency
bins around zero Doppler are 5 (cf. (17)). Besides, the
range of Fa is from − 0.55 to 0.55 and the SNR is 20 dB in

this simulation. The spectrum envelopes at zero Doppler
bin generated by different estimation techniques are plot-
ted in Fig. 9. Observe that the peaks are uniformly spaced;
the peaks of MUSIC and ESPRIT spectrums are sharper
than Capon spectrum. The distance between adjacent
spectrum peaks just equals the equivalent parameter Fp.
Therefore, we can confirm that Fp can be estimated
without using any system parameters, which makes our
algorithm more practically applicable.
We further investigate the performance of estimating

Fp versus SNR under conditions with various κ (0.95, 1,

b

a

Fig. 11 Profiles of the azimuth PSFs for multichannel SAR when there are estimation errors in Fp . The azimuth PSFs for the point target and
ambiguitites; b Enlarged view of the ambiguities in the green rectangle of a
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and 1.15). Note that, in the case of κ = 1.15, the three
spectrum estimation techniques all can be utilized. Based
on 200 trails, the empirical results regarding the ARMSE
of Fp (in percentage) are shown in Fig. 10a. From an
overall perspective, the estimation accuracy is fairly good.
One can see that the estimation accuracy improves with
the increasing SNR. Compared with the under-sampling
scheme, the over-sampling scheme achieves better accu-
racy. This experiment implies that the estimation accuracy
is sensitive to the uniformity of azimuth sampling κ . Next,
we explore the effect of κ on the estimation of Fp.
Figure 10b plots the curves of ARMSE versus κ in dis-

tinct cases where SNR is 0 and 20 dB, respectively. Notice
that the MUSIC and ESPRIT techniques are only utilized
in the over-sampling schemes where κ ≥ 1.025. Clearly,
the estimation accuracy of Fp improves with a rising κ .
Furthermore, we see that the ARMSE achieves the mini-
mum value when κ is close to 1.05, but not 1. This can be
explained that a high PRF is beneficial to enhance the esti-
mation accuracy of Fp under condition that the azimuth
sampling is quasi-uniform.
We can confirm that in terms of estimating Fp the sub-

space based methods have higher accuracy than Capon
method from Fig. 10. The MUSIC method achieves
slightly better performance than the ESPRIT method.
Whereas, the Capon method and MUSIC method
involves the spectral peak searching.
According to Fig. 10, we know that the estimation errors

of Fp are inevitable. These errors may degrade the per-
formance of ambiguity suppression. Next, we conduct
experiments about reconstructing azimuth signal under
circumstance that errors are added to Fp. Fp is set to be
1.195 and the aliasing number is adaptively decided by
our method. Figure 11a plots the profiles of azimuth point
spread functions (PSFs) when different errors (0, 1, 5, and
10% of the original Fp) are added to the equivalent system
parameter Fp. Figure 11b demonstrates the enlargement of
the ambiguities located at the green rectangle of Fig. 11a.
The PSF results show that the azimuth ambiguities can
still be suppressed to − 26.32 dB even when the error of
Fp is 10%. Furthermore, in general, the estimation error
is considerably inferior to 10% as illustrated in Fig. 10.
Therefore, we can conclude that our method is effec-
tive and efficiency. On the other hand, the deterioration
of ambiguity suppression indicates the importance and
necessity of the exact system parameters. This experiment
also verifies that our reconstruction method obtain good
performance in highly nonuniform sampling case.

5.3 Demonstration with real airborne four-channel SAR
data

Real data collected by an airborne multichannel SAR
system is utilized to validate the effectiveness of our
adaptive azimuth reconstruction method. The airborne

Table 3 Main parameters of airborne azimuth multichannel SAR
system developed by IECAS

Parameter Symbol Value

Carrier wavelength λ 0.03125 m

Platform velocity vr 162.6 m/s

Slant range R0 25.6 km

Single antenna length D 0.144 m

Optimum PRF fpo 564.44 Hz

Operational PRF fp 749.76 Hz

Number of channels M 4

Range bandwidth Br 420 MHz

Range sampling frequency fr 500 MHz

multichannel SAR is developed by the Institute of Elec-
tronics, Chinese Academy of Sciences (IECAS) and its
main parameters are summarized in Table 3. The chan-
nel number of the airborne multichannel SAR system is 4
and hence the optimum PRF fpo is 564.44 Hz. Whereas,
the operational PRF of the multichannel SAR is 749.76 Hz
and the uniformity of azimuth sampling κ is 1.3283.
Consequently, the multichannel SAR generates a highly
nonuniform azimuth sampling considering that κ =
1.3333 would lead to the coinciding-sampling scheme. In
addition, before the process of azimuth reconstruction,
we employ the approach based on the azimuth cross-
correlation to calibrate the unavoidable channel errors
[32, 35].
The aliasing number N adaptively determined by our

method is 3.1542. In contrast, the aliasing number is
3.0242 by IDBF method. When the weighting factor ρ is

Fig. 12 Envelopes of spatial spectrum achieved by different
estimation methods for the real airborne four-multichannel data
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0.5, the calculated aliasing number is 3.5121 via the Imp-
MMSE method. Regarding N, our method is just equiv-
alent to the ImpMMSE with ρ = 0.8668 and the IDBF
equivalent to the ImpMMSE with ρ = 1 for the real data.
This infers that our method is effective in terms of the cal-
culation of aliasing number and can offer a good tradeoff
between AASR and SNR.
Then the equivalent parameter Fp is adaptively esti-

mated by our method. Figure 12 plots the spatial spec-
trums at zero Doppler bin achieved by means of Capon,
MUSIC and ESPRIT techniques, respectively. Observe

that there are 3 uniformly spaced peaks in every spa-
tial spectrum, which is consistent with the fact that
there exist 3 spectrum components at zero Doppler bin.
The values of Fp calculated from Capon, MUSIC and
ESPRIT spectrum are 0.3357, 0.3350, and 0.3355, respec-
tively. Considering that the nominal Fp is 0.3321, the
estimation errors for the given Fp are 1.0840, 0.8797, and
1.0303%, respectively. With the results shown in Figs. 10
and 11, we can believe that the estimated Fp is fairly
accurate, manifesting the efficiency of our method in
estimating Fp.

Fig. 13 SAR images using the results reconstructed by different algorithm. a Krieger DBF method. b The IDBF method. c The ImpMMSE method. d
Our proposed method
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Afterwards, the azimuth signal is reconstructed by dif-
ferent algorithms, i.e., the Krieger DBF, IDBF, ImpMMSE
and the adaptive reconstruction method. It should be
noted that our reconstruction method utilizes the adap-
tively estimated Fp via the MUSIC technique while other
reconstruction methods employ the given Fp. With the
reconstructed signal, the CS algorithm is employed to
perform the imaging procedure [1]. Figure 13 presents
the imaging results processed by different reconstruc-
tion methods. Observation of the SAR images shows that
high level of residual ambiguities are still remained in
Fig. 13a which is processed by the Krieger DBF method.
In contrast, from Fig. 13b, c, d, we see the azimuth
ambiguities can be effectively suppressed by using IDBF,
ImpMMSE, and our adaptive reconstruction method,
indicating an acceptable balance between the SNR and
AASR.
Furthermore, we calculate the relative ambiguity-plus-

noise (AN) levels of the yellow dotted rectangles in Fig. 13
to quantitatively evaluate the performance of ambiguity
suppression [20]. The area marked by the yellow dotted
rectangle is selected for the reason that its image back-
ground is relatively pure and weak. In order to make
the maximum value of the AN level for the marked
zone of Fig. 13a be 0 dB, we normalize the image data

achieved by the four methods. To better demonstrate the
AN levels, Fig. 14 presents the enlargements of the yel-
low dotted areas in Fig. 13. The mean AL levels on the
marked zone for the Krieger DBF, IDBF, ImpMMSE and
our adaptive method are − 31.82, − 42.38, − 41.23, and
− 44.75 dB, respectively. It can be seen that our pro-
posed adaptive method outperforms its competitors in
terms of the real data processing. Therefore we can ver-
ify that our adaptive method is a promising candidate to
reconstruct the azimuth signal of multichannel SAR even
in highly nonuniform sampling scheme. Furthermore,
compared with its competitors, another great advantage
of our adaptive method is that it does not need any system
parameters.

6 Conclusions
We have proposed an adaptive azimuth reconstruction
algorithm for the multichannel HRWS SAR signal. To
this end, we proposed to classify the azimuth sampling
of multichannel SAR and derived the calculation for-
mula of ambiguity indexes. Then we presented the two
crucial procedures of our adaptive method: the determi-
nation of aliasing number N and the estimation of the
equivalent system parameter Fp. Utilizing the azimuth
cross-correlation, the aliasing number can be adaptively

a

c

b

d

Fig. 14 Enlargements of the yellow dotted zones of Fig. 14. a The ambiguity-plus-noise levels achieved by Krieger DBF. b The ambiguity-plus-noise
levels achieved by IDBF. c The ambiguity-plus-noise levels achieved by ImpMMSE. d The ambiguity-plus-noise levels achieved by our adaptive
method
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calculated. The principles of these spatial spectrum esti-
mation techniques are employed to estimate Fp. Then,
with N and Fp, the ambiguity number and ambiguity
indexes of each Doppler bin can be obtained. Conse-
quently, we can adaptively create the steering vectors and
then reconstruct the azimuth signal without requiring any
system parameters. Comprehensive experiments on sim-
ulated data and real data of the airborne multichannel
SAR developed by IECAS validate that our adaptive algo-
rithm can effectively suppress azimuth ambiguities and
offer an excellent balance betweenAASR and SNR. There-
fore, we can claim that our method is a promising method
to reconstruct the azimuth signal of the multichannel
HRWS SAR even when the azimuth sampling is highly
nonuniform.
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