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Abstract

This article proposes high-order balanced multi-band multiwavelet packet transforms for denoising remote sensing
images. First, properties of several wavelet transforms and their relationships are analyzed. The article then presents
theoretical principles and a fast algorithm for constructing high-order balanced multi-band multiwavelet packet
transforms. The remote sensing image denoising method based on this transform scheme is then described, and its
utility is demonstrated by illustrative results of its application to denoise remote sensing images. The method provides
clear improvements in denoising quality, due to the balanced order or band number, consistently outperforming
traditional wavelet transform-based methods in terms of both visual quality and evaluation indicators. The method also
incurs reasonable computational costs compared with the traditional methods.
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1 Introduction
Remote sensing imaging has become a powerful technique
for exploring and obtaining knowledge of numerous phe-
nomena. However, during acquisition and transmission
processes, the images are often contaminated by noise,
which impairs their visual quality and limits the precision
of subsequent processing steps, such as classification, tar-
get detection, and environmental monitoring. Thus, re-
mote sensing image denoising applications have attracted
growing interest. Transform domain denoising methods
have shown remarkable success in the last decade. An as-
sumption typically underlying these methods is that signal
can be sparsely represented in the transform domain.
Hence, by preserving the few high-magnitude transform
coefficients that convey most of the true signal energy and
discarding the rest, which are mainly due to noise, the true
signal can be effectively estimated. The sparsity of the
representation depends on both the transform used and
the true signal’s properties [1, 2].

The wavelet transform (i.e., 2-band scalar wavelet
transform) can provide good sparsity for spatially lo-
calized details, and a number of advanced denoising
methods based on them have been developed [2–4]. For
example, the wavelet thresholding approach popularized
by Donoho is now widely used in scientific and engineering
applications [2]. The best image denoising systems include
filters with symmetric and compact-support properties,
which can effectively extract features and eliminate arti-
facts. Unfortunately, however, no nontrivial, symmetric,
compact-support, orthogonal scalar wavelet transforms are
available [1, 5].
Multiwavelet transforms (i.e., 2-band multiwavelet

transforms or 2-band MWTs) have several advantages
over scalar wavelet transforms, because they can simultan-
eously possess all the above properties [5, 6]. Since these
properties are highly significant in image processing, mul-
tiwavelets have attracted considerable research interest
and shown superior denoising performance over scalar
wavelets in various studies [6–10] (see the diagram
about the development of wavelet transforms in Fig. 1).
Sveinsson et al. [11] and Wang et al. [12] applied 2-band
MWT in remote sensing image denoising and found that
they generally outperform 2-band scalar wavelet transforms
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in both visual quality and objective evaluation. Further im-
provements of 2-band MWT could potentially be obtained
by taking into account the properties of the signal to be an-
alyzed, but all the cited transforms use the unchangeable
transform pattern for diverse images. That is, as illustrated
in Fig. 2a, the decomposition at each decomposition level is
only applied to the low-frequency component of signals
and does nothing to the other, relatively high-frequency
components, although this partitioning is not suitable for
all signals with different behaviors across the frequency
domain [1, 13].
Multiwavelet packet transforms (i.e., 2-band multiwave-

let packet transforms or 2-band MWPT), as one extension
of 2-band MWT, provide an effective mean to select a
suitable decomposition pattern corresponding to an
analyzed signal. As shown in Fig. 2b, a 2-band MWPT
offers a finer frequency domain partition than a 2-band
MWT, especially in the high-frequency domain. Hence,
numerous subsets corresponding to different multiwavelet
bases (or packets) can be found in its partition point
set, one of which will match the properties of the analyzed
signals better than all the others. The 2-band MWPT
based on this subset (the best packet) can provide a better
sparse representation of the signal than those based on
other subsets (including the 2-band MWT, as the sub-
set it uses is just one of these subsets) [1, 13]. Martin et
al. [14] and Wang [15] introduced 2-band MWPTs to

image compression and texture segmentation, respect-
ively, and showed that they exhibit performance generally
superior to 2-band MWT. Liu et al. proposed a choice al-
gorithm of the best multiwavelet packet and found that
the 2-MWPT based on the algorithm can generally obtain
better denoising result than 2-band MWT at the same
condition [16]. Developing a 2-band MWT scheme into
its “packet” version is an effective way to improve per-
formance (as shown in Fig. 1), however, the problem of
balanced or high-order balanced must be addressed when
using them in practical applications.
The balanced order ρ of a multiwavelet system corre-

sponds to its ability to represent images sparsely [17, 18].
Recent studies show that the 2-band MWTs based on bal-
anced (ρ = 1) multiwavelets (i.e., balanced 2-band MWT, as
shown in Fig. 1) consistently outperform those based on
unbalanced (ρ = 0) counterparts (i.e., 2-band MWT) in
image denoising [19–22]. Also, balanced 2-band MWPT
schemes derived by developing the balanced 2-band MWT
into “packet” versions also consistently outperform (unbal-
anced) 2-band MWPT in seismic data compression and
denoising [23]. However, there have been no published in-
depth studies on the relationship between the balanced
order ρ and sparse representation ability of balanced (ρ = 1)
or high-order balanced (ρ > 1) 2-band MWPT (or even
MWT). More importantly, although the 2-band MWPTs
overcome many shortcomings of wavelet transforms, they

Fig. 1 Development of wavelet transforms and relationships among different kinds of wavelet transform schemes. The transform schemes marked
with light green color are compared with our proposed scheme (with light blue color) in our evaluation experiment of denoising performance

Fig. 2 The ideal frequency domain portioning patterns offered by different multiwavelet transforms with normalized highest frequency, taking M = 3
and k = 3 (k refers to a decomposition level) as an example. a For a 2-band multiwavelet transform, the ideal partition points are only in the
set {1/2, 1/22,⋯, 1/2k}. b For a 2-band multiwavelet packet transform, they are in the set {1/2k, 2/2k,⋯, 2k− 1/2k}. c For an M-band multiwavelet transform,

they are in the set ∪ki¼1 1=Mi; 2=Mi;⋯;M−1=Mi
� �

. d For an M-band multiwavelet packet transform, they are extended to the set {1/Mk, 2/Mk,⋯,
Mk − 1/Mk}
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retain the “2-band” weakness of the latter, especially in
spatial-frequency tiling, which has triggered great interest
in their extension [1].
As another extension of 2-band MWT, M-band (M ∈

ℤ and M> 2) MWTs provide greater flexibility in spatial-
frequency tiling and more robust sparse representation [1,
24] (see Fig. 1). As shown in Fig. 2c, the ideal partition point
set of an M-band MWT is denser than that of a 2-band
counterpart (see Fig. 2a). M-band MWT has been shown to
outperform 2-band MWT in terms of both visual quality
and objective indicators in image fusion [25]. Similarly, high-
order balanced M-band MWTs reportedly outperform (un-
balanced) M-band MWT in image compression [26]. Poten-
tially, a high-order balanced M-band MWT may also be
further improved (like a 2-band counterpart) by using a
“packet” version (i.e., an M-band MWPT, as shown in Fig. 1).
As shown by the theoretical partition pattern of an M-band
MWPT in Fig. 2d, it may provide a finer partitioning pattern
and better matching subset (or more effective representa-
tion) for an analyzed signal, relative to a 2-band counterpart.
M-band MWPTs may offer great potential for image pro-
cessing, but substantial extension of both their fundamental
theory and convenient methodology are required. Thus, here
we present basic principles of, and fast algorithms for, high-
order balanced M-band MWPT by developing the high-
order balanced M-band MWT presented in [26], according
to key theory of developing balanced 2-band MWT into
“packet” versions presented in [23]. We also evaluate their
performance in remote sensing image denoising in
comparison with the 2-band MWPT presented in
[14–16], the balanced 2-band MWPT in [23], the M-

band MWT in [25], and the high-order balanced M-band
MWT in [26] (see Fig. 1). Moreover, we systematically
analyze the impact of the balanced order ρ and band num-
ber M on the sparse representation ability of MWPT.
The rest of the paper is organized as follows. In Section 2,

we analyze the basic principles and fast algorithm of high-
order balanced M-band MWPT based on the relative the-
ory of M-band MWT. In Section 3, we present the denois-
ing method based on the proposed transform, and evaluate
the denoising performance of the method by using both
synthetic and real noisy remote sensing images in compari-
son with the method based on the transforms recently pro-
posed. We also analyze the impacts of the balanced order
ρ and band number M on their denoising performance. We
summarize and discuss the work in Section 4.

2 High-order balanced M-band multiwavelet
packet transforms
Classical wavelet transforms cannot provide many key
properties simultaneously, as they establish a multi-
resolution analysis frame using a single scale function
[1, 5, 6]. In contrast, multiwavelet transforms use r (r ∈ ℤ
and r > 1) scale functions (r-multiplicity) for this work,
thus reducing the number of constraint conditions
and increasing the freedom in design. The r scale func-
tions are denoted in vector form, i.e., Φ0(t) = [ϕ0,0, ϕ1,0,⋯,
ϕr − 1,0]. An M-band r-multiplicity multiwavelet system
has M-1 wavelet function vectors denoted as Φi(t) = [ϕ0,i,
ϕ1,i,⋯,ϕr − 1,i] (1 ≤ i <M). If (and only if) such a system is
orthogonal, the Φi(t) meets the following condition [24, 26],

Fig. 3 Library of M-band multiwavelet packet basis functions, in 3-level decomposition

Fig. 4 Decomposition patterns of different M-band multiwavelet packet transforms (taking M= 2 and k= 3 as an example). The pattern in (a) corresponds
to the standard M-band multiwavelet decomposition scheme and that in (d) corresponds to a kind of multiwavelet decomposition scheme that presents
the finest frequency-domain partition. The patterns in (b-c) correspond to two other possible decomposition schemes respectively
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ΦiðxÞ ¼
ffiffiffiffiffi
M

p X
n∈ZPiðnÞΦ0ðMx−nÞ: ð1Þ

Here, Pi(n) is a vector filter bank of r × r and n ∈ ℤ (the
same as below). We can get the following M-band multi-
wavelet transform algorithm after developing the corre-
sponding algorithm of the classical wavelet transform
(i.e., Mallat algorithm) [24, 26],

C kþ1ð Þ
i nð Þ ¼

ffiffiffiffiffi
M

p X
m∈ℤ

Pi mð ÞC kð Þ
0 Mnþmð Þ; ð2Þ

C kð Þ
0 mð Þ ¼

ffiffiffiffiffi
M

p X
i∈ℤ

X
n∈ℤ

PT
i nð ÞC kþ1ð Þ

i Mnþmð Þ:
ð3Þ

Here, m, n ∈ ℤ and both are shift parameters, while Ck
i

is an r-dimensional vector (the same as below).
A multiwavelet system is said to be balanced of order

ρ if its lowpass and highpass filters preserve and cancel,
respectively, all the monomial polynomial signals of
order less than ρ. The order of a multiwavelet system
corresponds to its ability to effectively represent the in-
formation of the macroscale change trend and local tex-
tures of a signal [17, 18]. If Pi(n) meets the constraint
condition corresponding to each property above (e.g.,
ρ-order balanced, orthogonality), the balanced or high-
order balanced M-band MWPT could be constructed by
developing the above M-band multiwavelet transform
algorithm. Their basic principles and fast algorithms
are present as follows.

2.1 Basic principles
Let Ψi(t) =Φi(t) (0 ≤ i <M), and define

ΨMlþi ¼
ffiffiffiffiffi
M

p X
n∈ZPiðnÞΨ lðMx−nÞ: ð4Þ

M-fold rescaling and translation of these functions yield a

function library χ ¼ fΨ ðkÞ
l ¼ M−k=2Ψ lðM−kx−nÞg (0 ≤ l <

Mk). As shown in Fig. 3, the library can be viewed in terms
of an M-fold complete tree, and the lth function at the kth

decomposition level Ψ kð Þ
l yields M functions at the k + 1

level, i.e., Ψ ðkþ1Þ
Mlþi (0 ≤ i <M).

The library is overcomplete, and many complete orthog-
onal basis sets can be found by properly selecting different
subsets in the library with an appropriate parameter set {k,
l}.. A complete orthogonal basis set corresponds to a kind
of multiwavelet packet transform scheme, a subset of the li-
brary and a parameter set {k, l}.. Each subset can be viewed
in terms of an M-fold tree structure. Examples of possible
basis sets are shown in the trees in Fig. 4. The tree in Fig. 4a
selects the subset of the library with the parameter set
{1 ≤ l <M, 0 ≤ k < 3} ∪ {0 ≤ l <M, k = 3} and corresponds
to the standard M-band multiwavelet decomposition
scheme [5, 6, 24]. The tree in Fig. 4d selects the subset
with the parameter set {0 ≤ l <Mk− 1, k = 3} and corresponds
to a kind of multiwavelet decomposition scheme that
presents the finest frequency domain partition.

Fig. 5 The decomposition and reconstruction of the M-band multiwavelet packet transform

Fig. 6 Relationship of the transform domain coefficient at different decomposition levels in the M-band multiwavelet packet transform, taking k = 3 as
an example
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For any analyzed dataset, there is a basis set (the best
basis set) that can best represent the spatial and frequency
domain information in the dataset, and the corresponding
“best” multiwavelet packet transform provides the most ef-
fective representation of the dataset (denoted as MWPT at
below). The best basis set is found by using a cost function
searching algorithm that seeks the best subset for some ap-
plication in a set with tree structure [1, 13]. For example, a
searching algorithm that uses information entropy as a cost
function can find the most informative basis subset and
consistently perform effectively in image denoising [1, 13].
Since the overcomplete library of the basis sets generated
by the high-order balanced M-band multiwavelet packet
transform can also be viewed in terms of a tree structure,
we used entropic cost function searching algorithms to find
both the best basis set corresponding to test datasets and
for establishing the searching algorithm.

2.2 Fast algorithm

Defining Dð0Þ
i ¼ Cð0Þ

i ð0≤i < MÞ; a fast algorithm for de-
composition of the M-band multiwavelet packet trans-
form is shown in Eq. (5). Reconstructions are the inverse
process of decompositions, and its fast algorithm is
shown in Eq. (6). Based on the expression, its clear pro-
cedures in Z transform domain are illustrated in Fig. 5,
where Pi(z) is the Z transformation of Pi(n).

D kþ1ð Þ
Mlþi nð Þ ¼

ffiffiffiffiffi
M

p X
m∈ℤ

Pi mð ÞD kð Þ
l Mnþmð Þ ð5Þ

D kð Þ
l mð Þ ¼

ffiffiffiffiffi
M

p XM‐1

i¼0

X
n∈ℤ

Pi nð ÞD kþ1ð Þ
Mlþi Mnþmð Þ

ð6Þ

Using the decomposition algorithm above, one can ob-
tain a complete M-fold tree including information on all

Fig. 7 Illustrative results of (1-level) decomposition by the M-band multiwavelet packet transform of a remote sensing image, with M = 2 (a),
3 (b), and 4 (c)

Fig. 8 a Original noiseless remote sensing test image and b a close-up of (a) regarding the region surrounded by the rectangle in (a). The noisy
images and denoising results relevant to the part are shown in Figs. 9, 10, 11, and 12 for clear comparison
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its nodes DðkÞ
l ð1≤l < MkÞ; as shown in Fig. 6. D kð Þ

l are
multiwavelet domain coefficients containing spatial infor-
mation of the included frequency bands (see Fig. 2d). After
decompositions, we can use the cost function-searching

algorithm to find the best basis set D kð Þ
l

n o
among all the

possible basis sets, which can represent the spatial and fre-
quency domain information of the analyzed dataset more
effectively than all other basis sets. Use of this best basis
set-based multiwavelet packet transform in image process-
ing applications should provide optimal quality results.

Information on the root node D 0ð Þ
0 in the tree illustrated

in Fig. 6 can be obtained by r-dimensional vectorization of
the analyzed datasets. Using the balanced or high-order
balanced M-band multiwavelet system, this vectorization
procedure can be simplified as an r-fold downsampling
process, demonstrated as follows. Defining the analyzed
signal as S = [s1, s2,… sN − 1]

T,S should be periodically

extended until N = ⌈N/r⌉ × r if N mod r ≠ 0. Then, the
extended S should be vectorized as an r × (N/r) matrix,

i.e., D 0ð Þ
0 ¼ D 0ð Þ

0 0ð Þ;D 0ð Þ
0 1ð Þ;…;D 0ð Þ

0 r−1ð Þ
h iT

; where D 0ð Þ
0

jð Þ ¼ s0�rþj; s1�rþj;…; s N=r−1ð Þ�rþj

� �
and 0 ≤ j < r. After

establishing D 0ð Þ
0 with the vectorization process, D kð Þ

l at
each level can be calculated by repeatedly performing
the decomposition process in Eq. (5). Figure 7 shows
illustrative results of decomposition by the M-band
multiwavelet packet transform of a remote sensing
image. As can be seen, numbers of transform domain
coefficients in different cases of M are the same as all
the transforms are orthogonal.
As shown in Fig. 5, the fast algorithm of the proposed

high-order balanced M-band MWPT mainly consists of
convolutions and subsampling processes and is very
similar to the Mallat algorithm generally used in classical
wavelet transforms.

Fig. 9 Close-ups of the same part of the noisy image (a) and relevant denoising results obtained by different methods (b–e), when mixing the
original image in Fig. 8a with pattern A noise. The part covered is that shown in Fig. 8, the same below
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3 MWPT-based remote sensing image denoising
3.1 Denoising algorithm
Many previously proposed wavelet transform-based
denoising approaches can be introduced to MWPT-
based remote sensing image denoising, notably the
wavelet shrinkage method proposed by Donoho [2]
and widely advocated in later studies [6, 10, 19, 22].
We applied this simple denoising scheme (rather than
more complex shrinkage schemes) to compare the
denoising performance of our transform and other
traditional wavelet transforms. First, we applied the
proposed MWPT for multiscale decomposition of
noisy images then used soft thresholding to shrink the
transform domain coefficients [2]. The threshold (uni-

versally) used was T ¼ σ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� ln Nð Þp

, where N is
the number of pixels in the original image, and σ is
the variance of an additive noise, which may be un-
known. If so, we used a robust median estimator σ̂ of
σ, computed from the multiwavelet coefficients of
high-pass subband at scale k = 1 as shown in Eq. (7).

Finally, the proposed MWPT was applied for recon-
struction using the shrunk coefficients.

σ̂ ¼ median D 1ð Þ
l

���
���

n oh i
=0:6745; 1≤l < M ð7Þ

3.2 Denoising performance comparison
Extensive simulations were carried out using both syn-
thetic and real noisy remote sensing images to investigate
the performance of the proposed high-order balanced
MWPT-based denoising method. The high-order balanced
M-band multiwavelet systems constructed in [26] were
used here to construct our transform (i.e., MWPT with
M > 2 and ρ > 0). We compared the denoising perform-
ance of our transform with those of the MWPT schemes
proposed in recently relevant works, including the 2-band
MWPT proposed by Liu et al. [16] (MWPT with M= 2
and ρ = 0), the balanced 2-band MWPT proposed by He
et al. [23] (MWPT with M= 2 and ρ > 0), and the M-band
MWT proposed by Ren et al. [25]. Using the algorithms in

Fig. 10 Close-ups of the same part of the noisy image (a) and relevant denoising results (b–e), when mixing the original image in Fig. 8a with
pattern B noise
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Section 2, the M-band MWT was developed into M-band
MWPT (MWPT with M > 2 and ρ = 0) here for a fair
comparison. The denoising strategies applied in these ap-
proaches are the same as those described in Section 3.1,
apart from minor differences in the transforms per se.

3.2.1 Synthetic noisy data-based analysis
Various remote sensing images were used as original
noiseless images for generating the synthetic noisy im-
ages. One of the test images is shown in Fig. 8a. This
image, collected from the panchromatic band of the
SPOT-5 satellite, covers an area in Yantai, China. As seen,
it includes rich textures and edges. Figure 8b displays a
close-up of the image and shows the details of its textures.
To test the denoising performance to different pat-

terns of noise attack, four kinds of noise are mixed with
the original images as follows.

Pattern A: multiplicative noise. Multiplicative noise is
added to the original noiseless image I with the

equation J = I + V × I, where V is uniformly distributed
random noise with zero mean and variance 0.1.
Pattern B: salt and pepper noise. Salt and pepper noise
is added to the original noiseless image I with the noise
density equals to 0.2.
Pattern C: Gaussian white noise. Gaussian white noise
is added to the original noiseless image I with zero
mean and variance 5.
Pattern D: Poisson noise. Poisson noise is generated
from the image itself instead of adding artificial noise to
the original noiseless image I.

Results obtained with all the test images are similar.
Thus, results obtained using the image in Fig. 8a are
presented here to illustrate the denoising performance of
the test methods. In the following figures, we display the
denoising results of MWPT-based methods with typical
cases of (M,ρ), including those with (M,ρ) equal to
(2,0), (4,0), (2,3), and (4,2) (as proposed in [16, 23, 25]
and this work).

Fig. 11 Close-ups of the same part of the noisy image (a) and relevant denoising results (b–e), when mixing the original image in Fig. 8a with
pattern C noise
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A. Visual quality analysis

As it is difficult to distinguish differences among the
denoising images obtained using the tested methods at
entire-image scale, we will consider the enlarged parts of
the images obtained for the four noise patterns shown in

Figs. 9, 10, 11, and 12. In each case, the part covered is
that shown in Fig. 8.
Figure 9 shows comparative close-ups when the ori-

ginal image is subjected to pattern A noise. As displayed
in Fig. 9a, the image to be denoised is seriously contami-
nated by the multiplicative noise, compared with the

Fig. 12 Close-ups of the same part of the noisy image (a) and relevant denoising results (b–e), when mixing the original image in Fig. 8a with
pattern D noise

Table 1 Denoising indicator results obtained by applying all the test methods to denoise the above used image corrupted by
different noise patterns

Noise patterns Indicators Noisy image Method of Liu et al. Method of Ren et al. Method of He et al. Method of our proposed method

Pattern A PSNR 22.877 23.086 23.512 23.872 24.489

SSIM 0.609 0.682 0.694 0.708 0.711

Pattern B PSNR 15.651 18.466 19.043 19.630 21.632

SSIM 0.427 0.523 0.552 0.547 0.602

Pattern C PSNR 34.203 35.094 35.581 35.922 36.580

SSIM 0.892 0.926 0.949 0.938 0.972

Pattern D PSNR 28.476 29.754 30.741 30.293 31.602

SSIM 0.751 0.802 0.817 0.836 0.852
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noiseless counterpart in Fig. 8b. Figure 9b, c shows that
although the methods of Liu et al. and Ren et al. reduce
the noise, both blur some of the edges in Fig. 9a (e.g.,
those in the area arrowed). The method of He et al. pre-
serves edges relatively well but at the same time intro-
duces “artifacts” (especially where arrowed), as shown in
Fig. 9d. By contrast, the proposed method with high M
and ρ (i.e., (4,2)) desirably suppresses the noise, while
well preserving the edges and textures in the noisy
image, as shown in Fig. 9e.
Figure 10 shows the results for images contaminated

by pattern B noise. It can be seen that all of the methods
effectively suppress the salt and pepper noise shown in
Fig. 10a. However, our proposed method more desirably
retains some fine structures in the noisy image, in com-
parison with the other test methods.
The results for images contaminated by pattern C

noise are shown in Fig. 11. The method of Liu et al. sup-
presses the Gaussian white noise in the smooth area well,
but some edges and textures are somewhat oversmoothed
(e.g., where arrowed). The method of Ren et al. also

undesirably preserves some edges, as shown in Fig. 11c.
Figure 11d shows that the method of He et al. retains
edge information well but adds some “artifacts” (e.g.,
in the arrowed area). In contrast, our method both re-
duces the noise and preserves the edges in the noisy
image well (see Fig. 11e).
The proposed method also shows desirable perform-

ance in suppressing Poisson noise. As shown in Fig. 12,
there are clear differences in results provided by the
tested methods, although they all improve the quality
of the noisy image displayed in Fig. 12a well. Fig-
ure 12b shows that the method of Liu et al. blurs some
edges in Fig. 12a. The method of Ren et al. desirably
reduces the noise but somewhat oversmooths some
edges and textures (e.g., those arrowed). The method
of He et al. retains the fine structures well but intro-
duces some “artifacts,” while as shown in Fig. 12e, our
method with high M and ρ provides slightly better
results.

B. Quantitative analysis

Fig. 13 Original test noisy image (a) and the denoising images obtained by using all the test methods (b–e). The part surrounded by the
rectangle in a is enlarged in Fig. 14 for clear comparison

Wang et al. EURASIP Journal on Advances in Signal Processing  (2016) 2016:10 Page 10 of 14



In order to analyze the tested methods’ denoising ef-
fects quantitatively, we calculated peak signal-to-noise
ratio (PSNR) and structural similarity (SSIM) values to
assess from pixel- and structure-level fidelity aspects, re-
spectively. SSIM is an image quality assessment index
based on the human vision system and indicates degrees
to which structural information in noisy image has been
retained [27]. It is given by:

SSIM x; yð Þ ¼
2μxμy þ C1

� 	
2σxy þ C2

 �

μ2x þ μ2y þ C1

� 	
σ2x þ σ2y þ C2

� 	 ð8Þ

where μx and μy represent the average gray values of the
noiseless reference image x and the denoising image y,
respectively, σx and σy represent the variances of x and y,
respectively, and σxy represents the covariance between x

Fig. 14 Close-ups of the same part of the noisy image (a) and relevant denoising results (b–e). The area covered is that shown in Fig. 13a. The
districts surrounded by red (regions 1 and 2) and yellow (regions 3 and 4) rectangles are selected as homogeneous and heterogeneous regions for
ENL calculation, respectively

Table 2 ENL values obtained by all the test methods, using the data in Fig. 14

Region patterns Regions Size ENL of original image and denoising results

Original image Method of
He et al.

Method of
He et al.

Method of
He et al.

Method of our
proposed method

Homogeneous region Region 1 (lawn) 48 × 48 5.656 11.218 15.581 16.495 18.436

Region 2 (roadbed) 24 × 48 4.941 9.481 8.490 10.572 12.683

Heterogeneous region Region 3 (plane) 32 × 36 9.077 14.540 18.572 16.054 15.328

Region 4 (building) 32 × 24 5.467 9.159 9.462 11.428 10.570
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and y. The symbols C1 and C2 are two constants which
are used to prevent unstable results when either μ2x þ μ2y
or σ2x þ σ2y very close to zero.
Table 1 presents PSNR and SSIM values obtained by

applying all the test methods to denoise the above used
image corrupted by different noise patterns. For every
pattern, our proposed method consistently provides
better results (higher PSNR and SSIM values) than the
other test methods.

3.2.2 Real noisy data-based analysis
Synthetic aperture radar (SAR) images are inherently af-
fected by multiplicative speckle noise, which generally
affects the basic textures of SAR imagery [28]. Hence,
we also chose real noisy SAR images without adding
artificial noise to evaluate the performance of the pro-
posed method. One of the test images was shown in
Fig. 13a, covering an area of Beijing Airport, China,
collected by airborne radars and provided by Chinese
Academy of Science. As shown, it covers many ground
objects and rich textures.
Figure 13b–e displays the denoising results obtained

by applying all the test methods to the image shown in
Fig. 13a. As can be seen, all the methods effectively re-
duce the speckle noise in the original image, especially
in the smooth area (e.g., the surface of the runway).
Figure 14 shows close-ups of the same part of the
image obtained using each method for clear comparison.
All of the MWPT-based methods clearly suppress speckle
well, but those with low M or ρ oversmooth images and
thus blur many features (e.g., in the arrowed area). By
contrast, the proposed 2-order balanced 4-band MWPT-
based method preserves more structural details in the
original image.

Since noise-free reference images were not available,
equivalent number of looks (ENL) values of homogeneous
regions were calculated. ENL is often applied to
characterize the smoothing effect of denoising methods,
given by:

ENL xð Þ ¼ μ2x=σx ð9Þ

where the average μx and variance σx are carried out
over a target region x [3, 4, 28]. For a homogeneous region
in a denoising image, the ENL value will simply reflect the
degree to which the denoising method suppressed the
noise in the region. However, for a heterogeneous region,
the ENL value should not be too high, otherwise the
method may oversmooth structural information regarding
the region.
ENL values were calculated for two homogeneous

regions (1 and 2 in Fig. 14a) and two heterogeneous
regions (3 and 4) shown in Fig. 14b–e. The results,
listed in Table 2, clearly show that the proposed
method provides the highest ENL value for each
homogeneous region and modest values for each
heterogeneous region, demonstrating its superiority
for both noise suppression and texture preservation.
The results of the quantitative evaluation are also
consistent with the visual assessment presented
above.

3.3 Influence of the M, ρ, and k
The impacts of the band number M, the balanced order
ρ, and the decomposition level k on denoising per-
formance when using the MWPT-based method can
be summarized in more detail as follows.

Table 3 PSNR and SSIM values obtained by MWPT-based methods with different M and ρ parameters, when using the test image in
Fig. 8a and mixing Gaussian white noise with σ = 10

Methods PSNR SSIM

ρ = 0 ρ = 1 ρ = 2 ρ = 3 ρ = 0 ρ = 1 ρ = 2 ρ = 3

MWPT with M = 2 31.308 32.342 33.051 33.074 0.815 0.828 0.850 0.856

MWPT with M = 3 32.159 33.065 33.552 33.537 0.820 0.846 0.871 0.860

MWPT with M = 4 32.638 33.365 33.682 33.640 0.824 0.862 0.889 0.862

Table 4 PSNR and SSIM values obtained by MWPT-based methods with different M, ρ, and k parameters, when using the test image
in Fig. 8a and mixing Gaussian white noise with σ = 10

Methods PSNR SSIM

k = 1 k = 2 k = 3 k = 4 k = 5 k = 1 k = 2 k = 3 k = 4 k = 5

MWPT with (M,ρ) = (2,3) 29.862 31.658 32.981 33.072 32.685 0.751 0.795 0.830 0.856 0.848

MWPT with (M,ρ) = (3,2) 31.954 33.273 33.545 33.433 32.076 0.786 0.849 0.871 0.862 0.824

MWPT with (M,ρ) = (4,2) 32.729 33.480 33.683 33.248 31.716 0.801 0.866 0.889 0.854 0.790
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(1)For every M value between 2 and 4, as the balanced
order ρ rises within an appropriate range, the PSNR
and SSIM provided by the MWPT-based method
increase, as illustrated in Table 3 for the dataset
considered above. These results clearly confirm the
superiority of the high-order balanced M-band
MWPT for preserving image features.

(2)As M rises from 2 to 4, the results of the MWPT-
based method improve at each balanced order ρ.
Table 3 shows the improvement when applied to
the dataset in Fig. 8a. This further corroborates the
advantages of M-band over 2-band multiwavelet
systems.

(3)The MWPT-based method provides optimal results
(at a given ρ and M) when the decomposition level k
is appropriate (3 or 4 in 3-band cases, and 2 or 3 in
4-band cases). This is illustrated by the PSNR and
SSIM values in Table 4 for the images in Fig. 8a,
showing that for several typical M and ρ cases,
3-band and 4-band MWPTs provide optimal indicator
values when k = 3.

3.4 Computational complexity analysis
As the proposed transform is orthogonal, it adds little
complexity and the computational costs of the proposed
method are similar to those of methods based on trad-
itional multiwavelets (e.g., GHM multiwavelet). Moreover,
the appropriate decomposition levels for M > 2 cases are al-
ways less than that for the M= 2 case reported in Section
3.2, which further reduces the computational complexity of
the proposed M-band MWPT-based method. These asser-
tions were verified by the average computational times—in
a MATLAB environment using a workstation with an
Intel(R) CoreTM i5 CPU (3.2 GHz) and 4 Gb RAM—for the
denoising cases reported in Section 3.2. Computation times
of the denoising methods based on high-order balanced
M-band MWPT are slightly longer than those of other
MWPT-based methods but still reasonable (Table 5).

4 Conclusions
This work shows that using an appropriate higher bal-
anced order or band number improves the denoising
performance of multiwavelet packet transform-based
methods at little additional computational cost. The
high-order balanced M-band multiwavelet packet trans-
form is also an effective scheme for other image process-
ing tasks, such as texture analysis and edge extraction.
This is because with an appropriate higher balanced order,

the transform scheme provides more effective sparse image
representation, a higher band number provides more flex-
ible spatial-frequency domain partitioning, and the most
suitable basis set for an analyzed signal can be selected for
the multiwavelet packet transform scheme. We used a
simple denoising strategy to evaluate the performance
of the proposed transform scheme. To further improve
its performance, other approaches that are more suitable
for an M-band multiwavelet system should also be applied
(e.g., taking into account the different frequency behaviors
of the wavelets in a multiwavelet system in fusion rule
selection).
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