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1. ABSTRACT 
 

By reviewing the results of our analyses based on 
statistical-mechanical theories, we point out that the 
entropic effect arising from the translational motion of 
water molecules is a principal driving force in a variety of 
self-assembling and ordering processes in biological 
systems such as protein folding, molecular recognition, and 

ordered aggregation of protein molecules. The great 
entropic loss for the biomolecules accompanying these 
processes is largely compensated by a great entropic gain 
of the water that is present in the system. The microscopic 
mechanisms of protein folding and denaturation, receptor-
ligand binding, and amyloid-fibril formation are discussed 
in detail. We describe an effort to develop a unique method 
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for predicting the native structure of a protein. The roles of 
NaCl and cosolute molecules are also briefly discussed. 
 
2. INTRODUCTION 
 

A variety of self-assembling and ordering processes 
in biological systems, which occur at molecular levels, are 
sustaining life. Examples of such processes are protein 
folding leading to a unique native (tertiary) structure, 
protein traffic, molecular recognition, aggregation of 
protein molecules forming ordered and often symmetrical 
(quarterly) structure, and lipid-membrane formation. The 
key words representing these processes can be “self-
assembling”, “ordering”, “high selectivity”, “regularity”, 
and “symmetry”. These key words clearly contradict the 
principle of entropy increase, and the processes appear to 
occur at the great expense of the system entropy. 
 

Material tends to become highly functional only 
when it is in contact with or mixed with other material. The 
behavior of a complex system comprising multiple material 
constituents is nonlinear in the sense that it is far from the 
superposition of the behavior of each constituent. In a 
research of the complex systems, considering each 
constituent individually is useless, and it is imperative to 
treat all of the constituents collectively as a system. A 
biological system is a typical example of the complex 
systems. Biopolymers, a great diversity of molecular and 
ionic species, or water is simply material when each of 
them is separately present. However, the complicated 
correlations among these material constituents can lead to 
life. 
 

Above all, water plays critical roles. A larva of the 
sleeping chironomid living in Africa synthesizes trehalose 
when water is lost. Through the glassification of trehalose 
the larva stops the metabolism and freezes its biological 
system, waiting for water supply. There is a record that 
even after seventeen years when the larva was immersed in 
water it returned to life and began to grow. This is a 
striking example showing that life can be converted to 
material and vice versa and that water is indispensable to 
life. 
 

It is widely recognized that water plays crucially 
important roles in the variety of self-assembling and 
ordering processes mentioned above. In the conventional 
view, however, the emphasis is placed only on the 
interaction potentials among the atoms constituting the 
biomolecules-aqueous solution system. For example, the 
attractive interaction between a polar or charged group and 
water is significantly strong or even stronger than the 
water-water attractive interaction with the result that the 
group is hydrophilic and preferentially exposed to water. 
Moreover, most of the water effects are discussed in terms 
of the interaction potentials. The hydrophobicity of a 
nonpolar group is considered to be attributable to the 
asymmetry that the attractive interaction between the group 
and water is much weaker than the water-water attractive 
interaction. To oppose the disturbance in the water-water 
attractive interaction caused by the group, the ordering of 
water molecules occurs in the vicinity of the group, which 

leads to an entropic loss. As a consequence, the exposure of 
the group to water is highly unfavorable. The decrease in 
the quantity of such entropically unstable water through the 
burial of nonpolar groups is an essential factor in the 
biological self-assembly. Though these effects are 
important, there should be another factor which is missing 
in the conventional view. 
 

By employing the law of equipartition of energy, 
we can estimate the root mean square velocity of a water 
molecule at 298 K: Surprisingly enough, the estimated 
value reaches ∼640 m/sec. How energetic the motion of 
water molecules is! Moreover, those water molecules form 
dense liquid: The biomolecules are immersed in such hard 
environments. Of course, the translational motion of a 
water molecule is remarkably constrained by the other 
water molecules and the hydrogen bonds. However, the 
self-diffusion coefficient of water at 298 K and 1 atm is 
2.4×10−5 cm2/sec, and the root mean square displacement 
of water molecules per second is ∼0.07 mm that is 
macroscopic. 
 

In this article, we point out that in contrast to the 
conventional view described above, the entropic effect 
arising from the translational motion of exceptionally small 
water molecules which exist as a dense liquid is critical in 
the self-assembling and ordering processes. These 
processes certainly accompany a great entropic loss when 
the attention is paid only to the biomolecules. Based on the 
results of our detailed analyses using statistical-mechanical 
theories, we introduce an interesting concept: Most of the 
entropic loss is compensated by an entropic gain or a free-
energy gain originating from the translational motion of the 
water molecules which are present in the system (not 
limited to the water molecules near the biomolecules), and 
the processes are driven primarily by this water-entropy 
effect. The water entropy emphasized here is the 
translational entropy (or equivalently, the configurational 
entropy: a measure of the number of accessible 
configurations of the water). 
 
3. ENTROPIC EXCLUDED-VOLUME EFFECT 
 
3.1. Asakura-Oosawa theory 

As shown in Figure 1(a), the presence of a large 
particle in small particles generates a space from which 
centers of the small particles are excluded (the space 
occupied by the large particle itself plus the space shown in 
gray). We assume that the small particles are spheres with 
diameter dS and the large particles are spheres with 
diameter dL: The excluded space is a sphere with diameter 
“dS+dL”. If a pair of large spheres contact each other, the 
two excluded spaces overlap (the overlapped space is 
shadowed in Figure 1(a)), and the total volume available to 
the translational motion of small spheres increases by the 
volume of the overlapped space. This leads to an entropic 
gain and a free-energy gain of the small spheres. Therefore, 
an interaction is induced between the large spheres, which 
drives them to contact each other. Since the interaction is 
induced even when all of the spheres are hard spheres with 
no soft potentials (all the allowed system configurations 
share the same energy and the system behavior becomes
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Figure 1. (a) Contact of large spheres immersed in small 
spheres. (b) Contact of a large sphere and a planar wall 
immersed in small spheres. 
 

 
Figure 2. Entropic interaction ΦWall induced between a 
large sphere and a planar wall immersed in small spheres. 
T�kB�h, dL, and dS denote the absolute temperature, 
Boltzmann constant, surface separation, diameter of the 
large sphere, and diameter of the small spheres, 
respectively. The results calculated using the Asakura-
Oosawa (AO) theory and integral equation theory are 
compared. 
 
purely entropic in origin), it is called the entropic 
interaction. The existence of the entropic interaction was 
first pointed out by Asakura and Oosawa (AO) (1, 2). 
 

The presence of a planar wall in small spheres also 
generates an excluded volume. If a large sphere with 
diameter dL contacts the wall in small spheres with 
diameter dS (dL>>dS) as shown in Figure 1(b), the free 
energy of the small spheres changes by ∆F. Let us estimate 
∆F within the framework of the AO theory (1, 2). The 
formula of the ideal-gas entropy, 

S=kBNSln(V/NS)+C=S(V), (1) 
 
is applied to the small spheres. Here, kB is the Boltzmann 
constant, NS the total number of small spheres in the 
system, V the total volume available to the translational 
motion of small spheres, and C a constant which is 
independent of V. The entropy change occurring upon the 
change “V→V+∆V” (∆V/V<<1) is given by 
 
∆S=S(V+∆V)−S(V)∼kBNS∆V/V. (2) 
 
Expressing the overlapped volume ∆V (shadowed in Figure 
1(b)) in terms of dL and dS and substituting the resultant 
expression into Equation (2) yields 
 
∆F=−T∆S∼−3kBTηS(dL/dS), (3a) 
ηS=π(NS/V)dS

3/6, (3b) 
 
where T is the absolute temperature. The free-energy gain 
becomes larger as the packing fraction of small spheres ηS 
increases and/or dS decreases. It can be shown in a similar 
manner that the free-energy gain occurring when a pair of 
large spheres contact each other is ∼−1.5kBTηS(dL/dS). 
 
3.2. Effect of microstructure of small particles formed 
near large particles or a large particle and a planar wall 

We concentrate on the hard-body model in which 
the small and large particles are hard spheres and the wall 
is a hard wall with no soft potentials. The entropic 
interaction induced between large particles or between a 
large particle and the wall is described within the 
framework of the Asakura-Oosawa (AO) theory (1, 2) in 
Section 3.1. However, the description is valid only when 
the packing fraction of small particles ηS is sufficiently 
low. In cases where ηS is high, due to the microscopic 
structure of small particles formed within the domain 
confined by two large particles or by a large particle and 
the wall, the entropic interaction oscillates (i.e., attractive 
and repulsive regions appear alternately) with the 
periodicity dS (3-8). This effect can be accounted for only 
by employing elaborate statistical-mechanical theories such 
as the integral equation theory with the hypernetted-chain 
(HNC) or reference HNC (RHNC) closure for liquid states 
(9). (The Percus-Yevick (PY) closure gives a pathological 
density profile of small particles, which becomes negative 
near a large particle or the wall, and the entropic interaction 
cannot be calculated. The PY closure gives good results 
only for a hard-sphere mixture with very low size 
asymmetry.) 
 

Figure 2 shows an example of the entropic 
interaction induced between a large sphere and the wall 
immersed in small spheres (the entropic interaction 
between large spheres exhibits qualitatively the same 
behavior). The entropic interaction is described in terms of 
the potential of mean force (PMF) ΦWall(h) where h is the 
distance between the nearest surfaces of the large sphere 
and the wall. Φ Wall(h0) represents the free energy of small 
spheres in the case of h=h0 relative to that in the case of 
h→∞. FWall(h)=−dΦ Wall(h)/dh, which is shown in Figure 3, 
is the entropic force (mean force). FWall(h0) represents the
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Figure 3. Entropic force FWall induced between a large 
sphere and a planar wall immersed in small spheres. 
T�kB�h, dL, and dS denote the absolute temperature, 
Boltzmann constant, surface separation, diameter of the 
large sphere, and diameter of the small spheres, 
respectively. The results calculated using the Asakura-
Oosawa (AO) theory and integral equation theory are 
compared. 
 

 
 
Figure 4. Left: Cartoon illustrating that the net force is 
repulsive at h=dS. Right: Cartoon illustrating that the net 
force is attractive at h=0. h and dS denote the surface 
separation and diameter of the small spheres, respectively. 
 
force induced between the large sphere and the wall 
averaged over all possible configurations of the small 
spheres with h fixed at h0. In Figures 2 and 3, two curves 
calculated using the integral equation theory and the AO 
theory are compared. 
 

As observed in Figure 3, in the AO theory no force 
is induced between a large sphere and the wall as long as 
there is no overlap of the two excluded volumes generated. 
The overlap occurs only for h<dS and a force is induced to 
increase the overlapped volume. The AO force is always 
attractive and its strength increases monotonically with 
decreasing h. By contrast, the exact force is oscillatory and 
longer-ranged. The reason for this is the following. The 
presence of a small sphere also generates an excluded 
volume for the other small spheres. As a consequence, the 
small spheres tend to be driven to contact the large sphere 

and the wall. This effect is often referred to as the packing 
force. A channel or corners can be formed by the large 
sphere and the wall as illustrated in Figure  4. The small 
spheres within the channel shown in the left cartoon and 
those at the corners shown in the right cartoon (those small 
spheres are marked in gray in the figure) contact both of the 
large-sphere and wall surfaces. Hence, contact densities of 
small spheres within the channel and at the corners become 
considerably higher (6, 7). As observed in the right cartoon, 
for h<dS no small spheres can enter the channel. Due to 
these effects, a microstructure (i.e., the inhomogeneity of 
the contact density) of small spheres is formed within the 
confined domain. The thermal pressure acting on the large-
sphere surface due to the small spheres becomes 
inhomogeneous, inducing a force between the large sphere 
and the wall (6, 7). In the left cartoon, for example, the 
channel is closely packed by the small spheres, causing 
higher thermal pressure. It follows that the force acting on 
the left side of large-sphere surface becomes stronger than 
that on the right side, and the net force is repulsive. In the 
right cartoon, on the other hand, in the left side there is a 
domain which no small spheres can enter, leading to zero 
thermal pressure. This effect dominates with the result that 
the force acting on the left side of large-sphere surface 
becomes weaker than that on the right side, and the net 
force is attractive. 
 

As ηS decreases, the entropic interaction and force 
shown in Figures 2 and 3, respectively, become weaker and 
shorter-ranged, and the solid and broken curves approach 
each other. The two curves become completely 
indistinguishable at the limit ηS→0. As described in 
Section 3.4, we consider water as the small spheres. For 
water at ambient temperature and pressure ηS=0.383 that is 
higher than the setting ηS=0.3 in Figures 2 and 3. In such 
cases, the two curves become even more different. 
Hereafter, we concentrate on the cases where ηS is as high 
as that for water. 
 

We note that the two curves in Figure 2 share 
almost the same value of the PMF at contact ΦWall(0). 
ΦWall(0) is the free-energy gain ∆F of small spheres 
occurring when the large sphere contacts the wall. For 
simple cases such as large sphere-planar wall and large 
sphere-large sphere contacts, fortuitous cancellation of 
errors occurs in the calculation of ΦWall(0) using the AO 
theory (6, 7). Equation (1), for example, remains fairly 
accurate up to ηS∼0.4. (The AO theory sometimes fails in 
the estimation of the free-energy gain of small spheres, and 
an example case is described in Section 5.1). Only in the 
solid curve in Figure 2, however, there exists a free-
energy barrier for the large sphere to overcome to 
contact the wall. In general, as the channel becomes 
wider, the repulsive peak observed in the solid curve in 
Figure 3 increases, leading to higher free-energy barrier. 
As discussed in Sections 3.6, 5.1, and 6.2, the height of 
the barrier often plays important roles. In any case, the 
entropic interaction is induced only when h becomes 
sufficiently short (only several times larger than dS) and 
the effect of the microstructure of small spheres comes 
into play. 
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3.3. Effect of attractive potentials between small 
particles, a small particle and a large particle, or a small 
particle and a planar wall 

If small particle-small particle, small particle-large 
particle, and small particle-planar wall potentials have 
attractive parts, the induced interaction between large 
particles or between a large particle and the wall becomes 
somewhat different (10). Regarding the hard-body system 
with no attractive parts as the reference system, we first 
discuss the case where the attractive part is present only 
between small particles (Case 1). Note that the coordination 
number for a small particle (i.e., the number of small 
particles which can contact a small particle) in contact with 
the large-particle or wall surface is roughly a half of that 
for a small particle in the bulk (“bulk” means the position 
which is far from the surface). Since the small particles 
interact though attractive potential, the energetic loss 
becomes larger as the number of small particles in contact 
with the surface increases. Therefore, the number density of 
small particles in the vicinity of the surface is driven to 
decrease, and this energetic effect competes with the 
packing force. The effect makes the induced interaction 
shift in a more attractive direction. For example, the contact 
shown in the right cartoon in Figure 4 is even more 
stabilized. 
 

We then discuss the case where the attractive part is 
absent between small particles but it is present between a 
small particle and a large particle and between a small 
particle and the wall (Case 2). In this case the energetic 
gain becomes larger as the number of small particles in 
contact with the surface increases, leading to an upward 
shift of the induced interaction (i.e., the interaction shifts in 
a more repulsive direction). If the attractive part is quite 
strong, the contact shown in the right cartoon in Figure 4 is 
destabilized. 
 

In a real system, the attractive part is present for all 
of the pairs, small particle-small particle, small particle-
large particle, and small particle-planar wall. The effects in 
Cases 1 and 2 cancel each other to some extent, and if the 
attractive part between small particles is as strong as that 
between a small particle and a large particle and that 
between a small particle and the wall, the induced 
interaction can reasonably be described even by the hard-
body model. We emphasize that the entropically induced 
interaction is omnipresent. It is quite strong if the packing 
fraction of small particles and the size asymmetry of small 
and large particles are high. 
 
3.4. In real systems, what do small particles, large 

particles, and a planar wall, respectively, correspond 
to? 

It is stated in Section 3.2 that the entropic 
interaction is induced between large particles only when 
they approach each other up to distances where the 
microstructure of small particles near the large particles 
becomes significant (i.e., only when the surface separation 
becomes smaller than several times of the diameter of small 
particles). In other words, if the large particles can 
approach each other up to such distances, the effect of the 
translational motion of small particles plays essential roles. 

 
In the original argument made by Asakura and 

Oosawa (1, 2), the large particles and the small particles 
correspond to colloidal particles and polymers, 
respectively, and the solvent is treated as inert background. 
In the crowding concept (11, 12) developed by Minton and 
coworkers later, the large particles and the small particles 
correspond to larger biopolymers and smaller biopolymers 
(or molecules which are significantly smaller than 
biopolymers), respectively, and the solvent is treated in the 
same manner. However, these treatments are not valid 
except in the special system described below. 
 

The special system is found in colloidal 
suspensions. The surface of a polystyrene particle has high 
negative charge density. Polystyrene particles immersed in 
pure water cannot approach each other up to a distance 
where the microscopic structure of water molecules near 
the particles comes into play, due to the strongly repulsive 
electrostatic interaction (the interaction is expressed as 
QL

2/(εr) where QL is the total charge of a particle, ε the 
dielectric constant of water, and r the distance between 
centers of two particles). If salt such as NaCl is added, the 
charge of the particle is screened by the counter ions Na+. 
When the salt concentration is sufficiently high, the 
screening effect is strong enough to make the interaction 
between polystyrene particles much shorter-ranged, and the 
interaction at small r is influenced by the microstructure of 
water molecules and ions within the domain confined by 
two particles. However, if the salt concentration is too high 
(the threshold concentration is dependent on the surface 
charge density, but roughly beyond 0.5M), the effect 
arising from particle-counter ion electrostatic interaction 
predominates over the entropically induced interaction. On 
the other hand, at appropriate salt concentrations (∼0.01M 
in the case of NaCl), the interaction between particles 
changes steeply near h=ξ (h is the distance between the 
nearest surfaces of particles and ξ the Debye length). The 
interaction is essentially zero for h>ξ while it is quite 
strong due to the electrostatic repulsion for h<ξ. Moreover, 
ξ is much larger than the molecular diameter of water, and 
the particles cannot approach each other up to a distance 
where the interaction is influenced by the microscopic 
structure of water molecules and ions near the particles. 
Therefore, the presence of the salt solution need not 
explicitly be considered, and the particle interaction can be 
approximated by a hard-sphere potential where the 
effective diameter of the hard spheres is “dP+ξ” (dP is the 
diameter of the polystyrene particles and ξ<<dP). For a 
system comprising two species of particles different in size, 
the smaller particles form small particles and the larger 
particles correspond to large particles, and all of the 
particles are essentially hard spheres. The salt solution can 
be regarded as inert background. If a glass wall with 
negatively charged surface is also present, we can take the 
view that the system consists of large hard spheres and a 
hard wall immersed in small hard spheres. This type of 
system has been of considerable interest because it is best 
suited to the exclusive investigation of the entropic 
interaction in experiments (14-17), and quantitatively good 
agreement between the theoretical result and the
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Figure 5. Contact of solutes immersed in solvent. The layer 
of solvent molecules whose structure differs from the 
structure of bulk solvent is shown in black, though the 
interface between the layer and the bulk is much less 
sharper than this figure shows. 

 
experimental observation has been verified as mentioned in 
Section 3.7. 
 

It seems that the solvent has been regarded as inert 
background in biological systems as a straightforward 
extension of the special system in colloidal suspensions 
described above. However, biopolymers are quite different 
from polystyrene particles in the following respects. A 
biopolymer consists of atoms or groups possessing negative 
and positive charges in various magnitudes. Since the salt 
concentration is relatively higher (∼0.15M), the 
electrostatic interactions between charged groups are 
considerably screened. Moreover, the biopolymer has many 
nonpolar groups. Biopolymers or their portions can 
approach one another up to distances where the 
microstructure of water molecules and ions is of vital 
importance. When the entropic interaction between 
biopolymers or their portions is analyzed, it is not justified 
to treat the solvent as inert background. The primary 
component of the solvent is water: In biological systems, 
biopolymers corresponding to large particles are immersed 
in small particles of water molecules, and the membrane 
corresponds to a wall. As discussed in 7.2, molecular 
species whose sizes are smaller than those of biopolymers 
but larger than the size of water molecules correspond to 
medium-size particles. The major objective of the present 
review is to show the crucial importance of the translational 
motion of water molecules in biological systems. 
 
3.5. Isochoric (constant-volume) and isobaric (constant-
pressure) processes 

In a strict sense the description in Section 3.1 is 
given for the isochoric process in which the system volume 
is kept constant before and after the contact of large 
particles occurs. We raise the following questions: How 
does the behavior change if the contact occurs in the 
isobaric process where the system pressure is kept 
constant?; and how are the effects of attractive parts 
included in the particle-particle potentials? 

 
The free-energy gain of the solvent occurring upon 

the contact of solutes equals 
 
“Solvation free energy of two solutes in contact with each 
other” − 
“Solvation free energy of a single solute”×2. (4) 
 
The solutes and solvent molecules correspond to the large 
particles and small particles, respectively. The solvation 
free energy is the excess chemical potential and the same in 
the isochoric and isobaric processes, whereas the solvation 
energy and entropy are not. 
 

As illustrated in Figure 5, a layer of solvent 
molecules, within which the number density of solvent 
molecules differs from the bulk density, is formed around a 
solute. When two solutes contact each other, the total 
amount of the solute-induced layers (i.e., the total number 
of solvent molecules forming the layers) decreases. This is 
an important point to be emphasized (18). First, we 
consider the hard-body model where all of the solvent 
molecules and solutes are hard spheres. In this model 
system, the layers shown in Figure 5 have a density which 
is higher than the bulk density due to the packing force. If 
the contact of two solutes occurs in the isochoric process, 
the decrease in the excluded volume arising from the 
contact leads directly to the increase in the total volume 
available to the translational motion of solvent molecules: 
The entropic gain of the solvent is equivalent to its free-
energy gain (whenever we refer to a gain or loss of entropy, 
we consider the entropy change multiplied by the absolute 
temperature). One might think that the decrease in the 
system pressure, which corresponds to the decrease in the 
excluded volume, occurs upon the solute contact. However, 
the pressure remains almost unchanged or decreases only 
slightly, because some of the solvent molecules which 
formed the enriched layers are released to the bulk. Even in 
the isobaric process, the system volume remains almost 
unchanged or it is slightly compressed. Due to the work 
done by the external system (the work cannot be neglected 
because the pressure of hard-sphere solvent is very high), 
part of the entropic gain which should occur in the 
isochoric process is converted to a corresponding enthalpic 
gain. The free-energy gain is the same in the isochoric and 
isobaric processes. Thus, the translational motion of solvent 
molecules in the isobaric process is as powerful as in the 
isochoric process as a force which drives the solutes to 
contact. We note that the contact of two solutes which have 
already been inserted into solvent is substantially different 
from the solute insertion into solvent. In the former, the 
pressure change in the isochoric process is much smaller. 
 

Hereafter, we assume that the solvent molecules 
interact through strongly attractive potential like water 
molecules. Based on the results of our analyses (18) using 
the integral equation theory, we discuss the changes of 
excess thermodynamic quantities of the solvent upon the 
solute contact. When the attractive interaction potential for 
the solute-solvent pair is much weaker than that for the 
solvent-solvent pair, the solute is solvophobic. When the 
attractive interaction potential for the solute-solvent pair is 
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much stronger than that for the solvent-solvent pair, the 
solute is solvophilic. The free-energy change is the same in 
the isochoric and isobaric processes, but its distribution to 
the energy and entropy changes in the isobaric process 
differs largely from that in the isochoric process. Since the 
pressure is quite low (∼1 atm) due to the strongly attractive 
solvent-solvent potential, the energy change almost equals 
the enthalpy change in the isobaric process. In what follows 
the solvent can be regarded as water. The solute contact 
generally accompanies an energy change and an entropic 
loss for the solutes themselves, but this effect is not 
included in the changes of excess thermodynamic 
quantities of the solvent. 
 

First, the isochoric process is considered. Let ∆Vex 
be “excluded volume generated by a pair of solutes in 
contact with each other” minus “excluded volume 
generated by a single solute”×2. The total volume available 
to the translational motion of solvent molecules changes by 
−∆Vex that is always positive. 
 
1. Contact of solvophobic solutes in isochoric process: The 
contact accompanies an energy gain (i.e., energy lowering), 
entropic gain (i.e., increase in entropy), and free-energy 
gain (i.e., free-energy lowering) of the solvent. Since the 
solute-solvent contact is energetically unfavorable, the 
solute contact leading to a decrease in the solvent-
accessible surface area gives an energy gain. A depleted 
layer, within which the density of solvent molecules is 
lower than the bulk density, is formed around a solute when 
the solute is highly solvophobic (see Appendix A): The 
total amount of the solute-induced layer decreases upon the 
solute contact (see Figure 5), leading to a lower pressure. 
 
2. Contact of solvophilic solutes in isochoric process: The 
contact accompanies an energy loss, entropic gain, and free-
energy loss of the solvent. The free-energy loss is due to the 
energy loss. An enriched layer, within which the density of 
solvent molecules is higher than the bulk density, is formed 
around a solute. Upon the solute contact some of the solvent 
molecules which formed the enriched, denser layers are 
released to the bulk. This effect dominates and the pressure 
becomes higher upon the solute contact. 
 
In Case (2) if there is a solute-solute energy gain which 
overcomes the free-energy loss of the solvent plus the solute-
solute entropy loss, the excess free energy of the whole system 
becomes lower upon the solute contact. We emphasize that the 
solute contact always gives an entropic gain of the solvent 
regardless of the solute solvophobicity or solvophilicity. The 
entropic gain is a major factor promoting the solute contact. 
 

We then consider the isobaric process. Let ∆VP be 
“partial molar volume of a pair of solutes in contact with 
each other” minus “partial molar volume of a single 
solute”×2. The total volume available to the translational 
motion of solvent molecules changes by “−∆Vex+∆VP”. 
This change is usually positive, but it can be negative when 
the solute solvophobicity is quite high. The temperature is 
assumed to be higher than 277 K. (The behavior in cases 
where the temperature is lower than 277 K is summarized 
in Appendix B with our physical interpretation.) 

3. Contact of solvophobic solutes in isobaric process: When 
Case (1) is regarded as the reference, a system-volume 
compression occurs with the result that the energy gain 
becomes larger while the entropic gain smaller. (When the 
solvent molecules interact through attractive potential, the 
volume compression and expansion usually cause an 
energy gain and loss, respectively.) If the solute 
solvophobicity is quite high, the solvent entropy can 
become lower upon the solute contact. 
 
4. Contact of solvophilic solutes in isobaric process: When 
Case (2) is regarded as the reference, a system-volume 
expansion occurs and both of the energy loss and entropic 
gain become larger. 
 
Even in Case (3) the free-energy lowering is the same as 
that in Case (1), and the translational motion of solvent 
molecules is always a major driving force of the solute 
contact. In Case (3) we can take the view that part of the 
entropic gain occurring in Case (1) is converted to a 
corresponding enthalpic gain. The quantity converted is 
dependent on T as described below. In Section 3.1, the 
expression, “the contact of large particles leads to a lower 
free-energy of small particles”, is more appropriate than the 
expression, “the contact of large particles leads to a higher 
entropy of small particles”, because the former covers both 
of the isochoric and isobaric processes. 
 

Denoting the changes in the free energy, energy in 
the isochoric process, entropy in the isochoric process, 
energy in the isobaric process, entropy in the isobaric 
process, enthalpy, and system volume in the isobaric 
process upon the solute contact by ∆µ, ∆UV, ∆SV, ∆UP, ∆SP, 
∆H, and ∆VP, respectively, we can show the following 
equations (18): 
 
∆H/(kBT)=∆UV/(kBT)+(α*/κT*)∆VP/dS

3, (5a) 
∆H=∆UP+P∆VP∼∆UP, (5b) 
∆SP/kB=∆SV/kB+(α*/κT*)∆VP/dS

3, (6) 
α*=αT, (7a) 
κT*=κTkBT/dS

3, (7b) 
κT>0, (7c) 
∆µ/(kBT)=∆UV/(kBT)−∆SV/kB=∆H/(kBT)−∆SP/kB. (8) 
 
Here, α is the isobaric thermal expansion coefficient, κT the 
isothermal compressibility, P the pressure, and dS the 
diameter of solvent molecules. At P=1 atm, ∆H is almost 
equal to ∆UP. In Case (3) ∆VP<0 and in Case (4) ∆VP>0. 
Water possesses the feature that α is extremely small 
below ∼283 K (below 277 K α<0�at 277 K α=0�and 
above 277 K α>0). Under this condition α*/κT* is 
negligibly small and the energy and entropy changes are 
almost the same in the isochoric and isobaric processes 
unless ∆VP is quite large. Above ∼283 K α*/κT* 
increases monotonically as T becomes higher. (The values 
of α*/κT* for water (dS=0.28 nm) at some representative 
temperatures are as follows: −0.208 at 273 K, 0.052 at 278 
K�0.288 at 283 K�0.894 at 298 K�1.65 at 323 K�2.14 at 
348 K�2.43 at 373 K.) The experimental data measured in 
the isochoric process expresses the effect of the 
translational motion of solvent molecules more explicitly
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Figure 6. Four typical manners of contact of large particles 
immersed in small spheres. The large particles are long 
cylinders or thin discs. The small spheres are omitted here. 
The manner indicated by the red arrow leads to the largest 
reduction of the excluded volume. 
 

 
Figure 7. Some representative manners of approaching for 
large particles. As the large particles, “smaller sphere”, 
“larger sphere”, “long cylinder”, and “thin disc” are 
considered. The small spheres are omitted here. It is 
assumed that the diameter of the smaller sphere is only a 
few times larger than the diameter of the small spheres dS. 
The diameter of cross section of the cylinder and the 
thickness of the disc are also only a few times larger than 
dS. The free-energy barrier is high in the manners shown in 
red, low in those in blue, very low in the sliding shown in 
green, and there is no barrier in the rotation shown in 
yellow. 
 
than in the isobaric process in the sense that the entropic 
gain arising from the solute contact is preserved in its 
original quantity. The real experiments are performed in the 
isobaric process, but if T is sufficiently low, the data is 
close to that which could be obtained in the isochoric 
process. 
 

The so-called enthalpy-entropy compensation (19-
22), which means that the free-energy change is dependent 
on T only moderately though the entropy and enthalpy 
changes are strongly dependent, has been observed in a 
variety of physicochemical processes in aqueous 
environments. According to our theoretical results (18), as 
T becomes higher in Cases (1) and (2), ∆UV/(kBT) 
decreases whereas ∆SV/kB increases. They are somewhat 
compensating regardless of the solute solvophobicity or 
solvophilicity. This result is reasonable because the 
increase in thermal energy leads to a smaller effect of the 
interaction potential but to a larger entropic effect. As T 
becomes higher, ∆VP decreases but beyond ∼283 K 
(α*/κT*)∆VP/dS

3 usually increases, and this effect can be 
dominant: In the case of ∆VP<0, ∆H and ∆SP decrease with 
increasing T, while the opposite is true in the case of ∆VP>0 
(see Equations (5) and (6)). The energy and entropy 
changes for water depend on T more strongly in the 
isobaric process than in the isochoric process, which comes 
from the presence of the term, (α*/κT*)∆VP/dS

3. However, 
this term is cancelled out when the energy change, which is 
almost equal to the enthalpy change, is added to the entropy 
change to obtain the free-energy change. This feature 
enhances the compensation mentioned above for the 
isochoric process. The enthalpy-entropy compensation 
experimentally observed can thus be understood. 
 
3.6. Cases where the asphericity of large particles is 
quite high 

When the shape of large particles is highly 
aspherical (e.g., long cylinders, thin discs, etc.), the 
behavior of the entropic interaction is very interesting. For 
example, among the four contact manners of large particles 
shown in Figure 6, the contact indicated by the red arrow 
maximizes the volume of overlapped space (the space 
shadowed) and the free-energy gain of small spheres. 
Hence, the small spheres force the large particles to contact 
each other in the most regular manner. The effect of the 
translational motion of small spheres drives the large 
particles to form highly ordered structure. 
 

The entropic interaction induced between large 
particles is dependent on their orientations and the distance 
between their centers. Here, we consider the entropic 
interaction for a special trajectory (or a special manner of 
approaching). We describe some of our theoretical results 
(23) with the emphasis on the free-energy barrier in the 
interaction. As illustrated in Figure 7, we consider “smaller 
sphere”, “larger sphere”, “long cylinder”, and “thin disc” as 
the large particles in some representative manners of 
approaching. As described in Section 3.2, the free-energy 
barrier increases as the channel confined between two 
large-particle surfaces becomes wider. It is assumed that 
the diameter of the smaller sphere is only a few times larger 
than the diameter of small spheres dS. The diameter of 
cross section of the cylinder and the thickness of the disc 
are also only a few times larger than dS. Our conclusion is 
as follows: The barriers in the three interactions shown in 
red are high, those in the four interactions shown in blue 
are low, and those in the rotation and the sliding shown in 
yellow and in green, respectively, are zero or negligibly 
low. The reason why there is no barrier in the rotation is
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Figure 8. A possible manner in which long cylinders or 
thin discs reach the most stable contact. 

 
described in detail in our earlier publication (23). It is 
difficult for very large spheres to reach the contact due to 
the high barrier. However, if at least one of the large 
particles has sufficiently high asphericity, as illustrated in 
Figure  8, they are capable of reaching the most stable 
contact by choosing particular manners of approaching. 
This interesting result becomes crucially important in 
Section 6.2. 
 

The effect described in Sections 3.1 through 3.6, 
“regular or orderly contacts or aggregation of large 
particles are driven by the translational motion of small 
spheres”, is referred to as the entropic excluded-volume 
effect or the effect of the translational motion of small 
spheres. The overall shapes and/or the detailed polyatomic 
structures of the large particles are essential in arguing this 
effect. The translational motion of large particles, which is 
also important, favors the dispersion of large particles in 
small spheres. This is the effect of entropy of mixing which 
competes with the excluded-volume effect. If the 
concentration of large particles is low, the former 
dominates. If it becomes sufficiently high, the latter 
becomes substantially larger. 
 
3.7. Experimental evidence of entropic excluded-volume 
effect 

Entropically driven phase separations have 
experimentally been observed for the special system in 
colloidal suspensions described in Section 3.4. Continually 
adding larger colloidal particles (corresponding to large 
particles) to smaller colloidal particles (corresponding to 
small particles) in suspension eventually leads to a 
separation into a crystal phase of larger particles (smaller 
particles are in the interstices if the diameter ratio is 
sufficiently small) and a fluid phase comprising mainly of 
smaller particles (14). When a glass wall is also present, the 
continual addition of larger particles results in the 
appearance of the crystal phase of larger particles on the 
wall surface at a concentration of larger particles that is 
significantly lower than in the absence of the wall (14, 15). 
In these experiments, it has been verified that the phase 
diagram is almost independent of the temperature, which 
shows that the potential between colloidal particles and 
between a colloidal particle and the wall can be 
approximated by the hard-body potentials (the Debye 
length is weakly dependent on the temperature but the 
effective diameters of the colloidal particles remain almost 
unchanged because of ξ<<dP; see Section 3.4). 
 

The entropic interaction between larger colloidal 
particles introduced to smaller colloidal particles in 
suspension has also been measured as a function of the 
packing fraction of smaller particles (17). When the 
packing fraction is sufficiently low, the interaction is well 

described by the Asakura-Oosawa (AO) theory (1, 2). As 
the packing fraction increases, however, the transition from 
the monotonic curve to the oscillatory behavior (see 
Section 3.2) occurs, which necessitates the use of more 
elaborate statistical-mechanical theories such as the density 
functional theory (5, 8) and the integral equation theory. 
Regardless of the packing fraction, the theoretically 
calculated curve has been shown to be in quantitatively 
good agreement with the experimental observation. 
 
3.8. Comments on “hydrophobicity” 

A conventional view of the solute hydrophobicity, 
which is widespread in the protein research community, is 
based on the iceberg hypothesis. According to the iceberg 
picture, the structure of water around a nonpolar solute is 
much more ordered than in the bulk by strengthening 
hydrogen bonds or by an increase in the number of 
hydrogen bonds. The ordered structure is energetically 
stable but entropically unstable. The entropic instability 
predominates over the energetic stability with the result that 
the ordered structure is unstable in its free energy. To 
reduce the total amount of water forming the ordered 
structure, nonpolar solutes are driven to contact each other. 
 

Our recent study (24) using the angle-dependent 
integral equation theory (24-32) for molecular liquids has 
suggested different molecular mechanisms of the 
hydrophobic effect. Upon the solute insertion, the 
translational and rotational motions of water molecules are 
restricted. However, the translational restriction contributes 
to the solvation free energy (SFE) much more than the 
rotational restriction. This trend becomes more appreciable 
as the solute size increases. The translational contribution 
can be described even by a model simple fluid in which the 
particles interact through strongly attractive potential like 
water and the particle size is as small as that of water. In 
fact, the presence of the minimum value of the solute 
solubility, which is widely believed to be a unique nature of 
the hydrophobic effect, can be reproduced using the 
simple-fluid model. The contribution from the solute-water 
translational correlation is larger than that from the solute-
water orientational correlation for the solvation energy and 
entropy as well, particularly in the isochoric process. The 
water structure around the solute is not significantly 
different from the bulk water structure. The formation of 
highly ordered structure arising from the enhanced 
hydrogen bonding does not occur, or the enhancement is 
not strong enough to make a significant contribution to the 
SFE or the hydrophobic effect. It is concluded that the 
hydrophobic effect is ascribed to the interplay of the 
exceptionally small molecular size and the strongly 
attractive interaction of water, and not necessarily to its 
hydrogen-bonding properties. 
 

The absence of highly ordered water structure 
around a nonpolar solute is supported by the results of 
computer simulations (19, 33) and neutron scattering 
experiments (19, 34). The new picture of the 
hydrophobicity mentioned above is consistent with the 
great success of the scaled particle theory (35) where water 
is treated as a simple fluid. Soda (36) has pointed out that 
the iceberg hypothesis contradicts the temperature
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Figure 9. Illustration of protein folding. Oxygen, carbon, 
nitrogen, hydrogen, and sulfur atoms are shown in red, 
gray, blue, white, and yellow, respectively. 

 
dependence of the thermodynamic quantities of 
hydrophobic hydration experimentally measured. Thus, 
many of the characteristics of the hydrophobic effect are 
not ascribed to the hydrogen-bonding network, rotational 
motion of molecules, and solute-water orientational 
correlations. The translational motion of water molecules is 
usually much more important, and its effects can be 
elucidated even by a simple fluid suitably modeled. 
 

An important point is that when two large 
hydrophobic solutes contact each other, the total volume 
available to the translational motion of the water molecules 
which are present in the system increases, leading to a free-
energy gain of water. As a notable example, pressure 
denaturation of proteins described in Section 4.8 can be 
elucidated not by the conventional view looking only at the 
water structure in the vicinity of the protein but by this new 
concept. 
 

Here, it is worthwhile to emphasize the usefulness 
of the angle-dependent integral equation theory (24-32). In 
this theory the potential and correlations between 
molecules are explicitly treated as functions of their 
orientations as well as the distance between their centers. 
This is in contrast with the reference interaction site model 
(RISM) and related theories (37-39) in which the potential 
and correlations between molecules are represented by 
those between the interaction sites. In the RISM and related 
theories, the potential and correlations for a pair of 
interaction sites, which are dependent only on the distance 
between centers of the interaction sites, are treated 
separately from those for the other pairs in the closure 
equation (9). This treatment becomes problematic 
especially when the elucidation of the hydrophobic effect is 
undertaken. For example, the RISM and related theories 
give too high a value of the hydration free energy and 
wrong temperature dependence of the solute solubility (24). 
The angle-dependent integral equation theory is superior to 
them. 
 
3.9. Ordering processes entropically driven 

As seen in Equation (1), the entropic excluded-
volume effect becomes larger for smaller dS, higher ηS, and 
larger dL. The molecular size of water is the smallest 
among the ordinary liquids in nature. The effect becomes 
the largest when the small spheres are water molecules. 

Though the molecular size of neon is about the same as that 
of water, it is in gas state at ambient temperature and 
pressure, resulting in a negligibly small effect. 
Cyclohexane is in liquid state but its molecular size is much 
larger than that of water, leading to a much smaller effect. 
 

The biomolecules, which are immersed in water, 
are driven to form a variety of ordered structures and to 
exhibit highly advanced function for reducing the 
restriction for the translational motion of the water 
molecules which are present in the system. Self-assembling 
processes occur in order to increase the water entropy. 
These can be referred to as entropically driven ordering 
processes. As mentioned above, in the isobaric process part 
of the translational-entropy gain of water can be converted 
to a corresponding energy (or enthalpy) gain of water (18). 
In both of the isochoric and isobaric processes, the 
translational motion of water molecules is always a primary 
driving force. We give typical examples in the succeeding 
sections. 
 
4. PROTEIN FOLDING 
 
4.1. What is the major driving force in protein folding? 

A protein, a long polypeptide chain, spontaneously 
folds into a unique native structure in aqueous solution 
under physiological conditions (see Figure 9). A feature 
common to the native structures of proteins is that the 
backbone and side chains are tightly packed and the interior 
contains little space (40). The tight packing in the interior is 
necessary to ensure that the native structure be stable and 
that partially denatured, inactive structures have negligible 
probability at ambient temperature. This means that protein 
folding undergoes a very large loss of the conformational 
entropy (CE) of a protein molecule. Then a question arises: 
“What is the principal factor competing with the CE loss in 
the folding?” 
 

The prevailing view is that the water adjacent to a 
hydrophobic group is unstable especially in terms of the 
rotational entropy and the folding is driven by the release of 
such unfavorable water to the bulk through the burial of 
nonpolar side chains. We note, however, that a protein is 
characterized by the heterogeneity that hydrophobic and 
hydrophilic atoms and groups are rather irregularly 
distributed in the molecule (see Figure 9). Hence, the burial 
of nonpolar side chains is unavoidably accompanied by the 
burial of polar and charged groups. The database shows that 
when proteins fold, 83% of the nonpolar side chains, 82% of 
the peptide groups, 63% of the polar side chains, and 54% of 
the charged side chains are buried in the interior (40). Protein 
folding is in contrast to, for example, the aggregation of 
surfactant molecules as micelles where the nonpolar groups are 
almost completely buried while the charged groups are all 
exposed. The burial of nonpolar groups works much less 
effectively than one might expect. In fact, it has been suggested 
that the exposed area of the hydrophobic surface is not always 
correlated with the conformational stability of a protein (41) 
and that the polar group burial contributes more to the 
stability of the native structure than the nonpolar group 
burial (40). Thus, the burial of nonpolar groups is not 
powerful enough to compete with the CE loss
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Figure 10. Close packing of side chains of a protein in 
aqueous solution. 
 

The intramolecular energy gain is widely believed 
to be an essential factor driving a protein to fold: When a 
protein folds, very large stabilization occurs through a 
number of intramolecular hydrogen bonds formed and 
through van der Waals attractive interactions between 
protein atoms. As described in more detail in Section 4.4, 
however, the folding occurs in aqueous solution and 
accompanies serious dehydration penalty. The dehydration 
means the break of hydrogen bonds between water oxygen 
and protein oxygen or nitrogen (hereafter, this is referred to 
as “hydrogen bonds with water molecules”) and the loss of 
van der Waals attractive interactions between protein atoms 
and water oxygen or hydrogen (or either of the break or the 
loss). It is quite doubtful that the intramolecular energy 
gain, which may accompany even a larger loss of the 
protein-water intermolecular energy, is a powerful driving 
force in the folding. There must be another powerful 
driving force which has been overlooked so far. 
 
4.2. Statistical-mechanical analysis focused on the effect 

of translational motion of water molecules 
We have analyzed the solvation free energy (SFE) 

of a protein molecule using the three-dimensional integral 
equation theory. The details of this theory are described in 
earlier publications (6, 42-44). The protein is modeled as 
fused hard spheres (the diameter of each hard sphere is set 
equal to the sigma-value of the Lennard-Jones potential 
assigned to the corresponding protein atom in AMBER 99) 
and immersed in hard spheres of diameter dS=0.28nm (the 
diameter of water molecules) forming the solvent. Here, the 
SFE is the free-energy change upon the insertion of the 
protein molecule, whose structure is frozen, into a fixed 
point in the solvent. It is largely dependent on the structure. 
(When the solvent is water, it is often referred to as the 
hydration free energy.) Since there are no soft (Coulomb 

and van der Waals) interactions at all in this model system, 
all the allowed system configurations share the same 
energy and the system behavior is purely entropic in origin. 
Our analysis is focused on the effect of the translational 
motion of water molecules (43, 44). The SFE equals the 
negative of the solvation entropy multiplied by the absolute 
temperature. We note that the difference between two 
protein structures in the SFE cannot be calculated using the 
Asakura-Oosawa (AO) theory (1, 2) with sufficient 
accuracy because of the complex polyatomic structure of a 
protein molecule (43, 44). 
 

It has been found for the C-peptide (the number of 
residues N is 13) that the SFE of the alpha-helix is lower 
than that of a random coil by ∼23kBT. That is, if the 
transition from the random coil to the alpha-helix occurs, 
the translational entropy of the solvent increases by ∼23kB, 
which corresponds to the free-energy gain of −14 kcal/mol 
at room temperature. Here, let us look at a real system. The 
free-energy change arising from the intramolecular 
hydrogen bonding in water, CO⋅⋅⋅W + NH⋅⋅⋅W → CO⋅⋅⋅HN 
+ W⋅⋅⋅W (W denotes a water molecule), has been estimated 
to be 0±1 kcal/mol (45). Even if we assume that it is −1 
kcal/mol, the total free-energy gain upon the alpha-helix 
formation of the C-peptide is only −9 kcal/mol because 
nine intramolecular hydrogen bonds are formed. Thus, the 
reduction of the restriction for the translational motion of 
water molecules is much more powerful as a driving force 
in the alpha-helix formation than the intramolecular 
hydrogen bonding. 
 

The above result never suggests that the 
intramolecular hydrogen bonding is unimportant. It is 
imperative for compensating the serious penalty, the loss of 
hydrogen bonds with water molecules. The formation of 
the alpha-helix leads to a great reduction of the excluded 
volume for water molecules due to helical structure made 
by a portion of the backbone and contacts of side chains, 
and at the same time it ensures the intramolecular hydrogen 
bonds. We note that the formation of the helical structure 
by a long cylinder results in a great decrease in the 
excluded volume (7, 44, 46). Likewise, when the beta-
sheet is formed, lateral contacts of portions of the 
backbone (see the lateral contacts of long cylinders 
shown in Figure 6) and contacts of side chains occur with 
ensuring the intramolecular hydrogen bonds. Thus, the 
alpha-helix and the beta-sheet are the most advantageous 
unit structures. It is no wonder that these two secondary 
structures frequently appear in the native structure of a 
protein. 
 

Returning to the results of our model analysis, we 
discuss the folding of protein G (the number of residues N 
is 56). It has been found that the translational entropy of the 
solvent increases by ∼207kB when protein G folds to its 
native structure from a random coil. When the side chains 
with a variety of geometric features are closely packed as 
illustrated in Figure 10, a reduction of the excluded volume 
occurring is much greater than in the contact of spherical 
particles shown in Figure 1(a). It is thus understandable that 
such a large entropic gain, 207kB, is reached upon the 
folding
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Figure 11. (a) Comparison between the conformational-entropy (CE) loss of the protein and the translational-entropy (TE) gain 
of water upon the folding for two peptides and proteins. For the smallest peptide, a compact structure stabilized in vacuum is 
used instead of the native structure. (b) Comparison between the TE gains in two cases: In the case shown in red the solvent 
diameter is equal to the molecular diameter of water, but in the case shown in green it is 1.5 times larger. 
 

A great concern is to check if the translational 
entropy (TE) gain of the solvent upon folding is large 
enough to compete with the CE loss that is quite large. We 
have compared the TE gain of the solvent and the CE loss 
upon the folding from the random-coil state to the native 
state (i.e., a set of folded structures) (43, 44). Figure 11(a) 
shows the results for Met-enkephalin with N=5, the C-
peptide with N=13, protein G with N=56, and barnase with 
N=110. Since Met-enkephalin takes an extended structure 
in aqueous solution, a compact structure stabilized in 
vacuum is used instead of the native structure. The CE of 
the random-coil state is roughly estimated as follows. For 
the backbone, per residue there are two dihedral angles 
which can rotate and each angle has three stable values. 
Therefore, the number of possible combinations is 32=9. 
The contribution from the backbone to the CE is set at 
kBln(9N) for a polypeptide chain with N residues. Based on 
the computer simulation study by Doig and Sternberg (47), 
we regard the contribution from the side chain to the CE as 
1.7kB on an average per residue (1.7NkB for a polypeptide 
chain with N residues). The CE of the native state is 
regarded as zero. 
 

As observed from Figure 11(a), for the small 
peptides with N=5 and N=13 the TE gain is not powerful 
enough to compete with the CE loss, but for the proteins 
the TE gain and the CE loss share almost the same 
magnitude. This result is consistent with the well-known 
experimental evidence that small peptides do not fold and 
only sufficiently large peptides and proteins are foldable. If 
the solvent diameter was made 1.5 times larger than the 
molecular diameter of water with the packing fraction 
unchanged, the TE gain is no longer able to compete with 
the CE loss as observed in Figure 11(b). The exceptionally 
small size of water molecules is crucially important. 
 

We have generated some different structures of 
protein G and compared them with the native structure, 
which has one alpha-helix and one beta-sheet as illustrated 
in Figure 12, in terms of the SFE (43, 44). Our findings are 

as follows. The SFE of a structure with the same alpha-
helix but without the beta-sheet is higher than that of the 
native structure by ∼46kBT. As described above, the 
formation of the alpha-helix should lead to large 
stabilization. Nevertheless, a structure with four α-helices 
is less stable than the native structure in terms of the SFE 
by ∼33kBT. This result is indicative that the non-local 
intramolecular contacts as well as the local structures are 
quite important in the stabilization. A structure which is 
more spherical than the native structure gives the SFE 
which is higher by ∼76kBT. The tight packing specific to 
the amino-acid sequence of protein G gives rise to the 
slight asphericity of the native structure (see Figure 12). 
 

For protein G, we have tested six hundred structures 
which were taken from local-minimum-energy structures in 
the trajectory of an exhaustive computer simulation using the 
all-atom potentials including Coulomb and Lennard-Jones 
(48). There are only several structures whose SFE is lower 
than that of the native structure (this is revisited in Section 4.4). 
We can conclude that the translational motion of solvent 
molecules plays critical roles in stabilizing the native structure. 
In other words, a protein tends to fold into a structure almost 
minimizing the restriction for the translational motion and 
maximizing the solvent entropy. A homopolymer takes 
extended structures when its monomer unit is hydrophilic, 
whereas it favors compact structures when it comprises 
hydrophobic monomers. A heteropolymer, which is 
characterized by its heterogeneity like a protein, does not 
possess a unique structure. A polypeptide chain with an arbitral 
amino-acid sequence does not possess a unique structure, 
either. A number of different structures can be stabilized in 
these examples. By contrast, a protein is capable of folding into 
a unique structure in which secondary structures are included 
and side chains with a variety of geometric features are 
characteristically locked. The amino-acid sequences which 
can realize this type of folding have been selected by 
nature. The geometric features (sizes, overall shapes, and 
details of the polyatomic structures) of side chains are 
prudently arranged in each sequence
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Figure 12. Native structure of protein G (PDB Code: 
2GB1). It possesses one alpha-helix (marked in red) and 
one beta-sheet (marked in yellow). 
 

 
Figure 13. Discrepancy between the solvation free energy 
calculated using the three-dimensional integral equation 
theory with the hypernetted-chain (HNC) approximation 
and that using the morphometric approach (see Equation 
(10)). 600 structures of protein G are considered. 
 
4.3. Morphometric approach to solvation 
thermodynamics of a protein 

The solvation free energy (SFE) of a protein with a 
fixed structure is the key quantity in analyzing the solvent 
effects on the structural stability. However, the calculation 
of this quantity is a nontrivial task. The usual computer 
simulations can be applied only to small solutes. The three-
dimensional version (6, 42) of the integral equation theory, 
which is employed in Section 4.2, is applicable to a large, 
complex solute molecule like a protein. However, it suffers 
a large computer memory and a long computation time 
required, and matters become quite serious when the SFE 
needs to be calculated for a number of different structures. 
We have developed a method based on morphometric 
thermodynamics (49) that allows us to calculate the SFE 
with sufficient accuracy in a computation time which is 
about four orders of magnitude shorter (50). 

In the morphometric approach, the SFE µ is 
expressed using only four geometrical measures of a 
complex solute molecule like a protein with a fixed 
structure and corresponding thermodynamical coefficients. 
The expression is 
 
µ/(kBT)=C1V+C2A+C3X+C4Y, (9) 
 
where V, A, X, and Y are the volume excluded by the 
protein, the surface area accessible to the solvent, and the 
integrated mean and Gaussian curvatures of the accessible 
surface, respectively. As the solute size becomes 
increasingly larger (i.e., at the large solute limit), the four 
coefficients (C1, C2, C3, and C4) multiplied by kBT approach 
the pressure of the solvent, the surface tension of the 
solvent at a planar wall, and two bending rigidities which 
account for the curvature effects, respectively. The idea of 
the morphometric form expressed by Equation (9) is that it 
separates the geometric properties of the solute molecule 
and the four coefficients. This separation allows us to 
determine the four coefficients in simple geometries. They 
are determined from calculations of µ/(kBT) for spherical 
solutes with various diameters followed by the application 
of the least square fitting. In principle the coefficients can 
be determined via any route: for example, the angle-
dependent integral equation theory (24-32) combined the 
multipolar water model (25, 26) and a computer simulation 
using the SPC/E model (51) for water. The features of the 
model and theory are reflected in the coefficients. The 
value of µ/(kBT) for a fixed structure of a protein is 
obtained only if the four geometric measures are calculated. 
 

As the first step, we have calculated the SFE µ for 
the six hundred structures of protein G considered in 
Section 4.2 using the morphometric approach. As in 
Section 4.2, the protein is modeled as fused hard spheres 
and the solvent comprises hard spheres. The four 
coefficients are determined by employing the radial 
symmetric integral equation theory (9). Denoting the values 
of µ calculated using the three-dimensional integral 
equation theory and the morphometric approach by µI and 
µM, respectively, we define the discrepancy D(%) by 
 
D=100(µI−µM)/µI. (10) 
 
Figure 13 shows D plotted against the gyration radius Rg. 
The values of D are within ±0.7%. The computation time 
required in the morphometric approach is about four orders 
of magnitude shorter than in the integral equation theory. 
The computer memory required is also made far smaller. 
The calculation can readily be done even on a small 
personal computer. The computation time required per 
structure of protein G is less than 0.1 sec on the Itanium 
workstation. Even a very large protein or a protein 
aggregate can be handled without difficulty. This is a 
remarkable progress. 
 

The morphometric form expressed by Equation (9) 
can be applied not only to the SFE but also to any 
thermodynamic quantity of solvation. We now consider the 
case where a hard-sphere solute is inserted into a model 
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water in the isochoric process (52). The angle-dependent 
integral equation theory, which is combined with the 
multipolar model of water, is employed. At ambient 
temperature and pressure, in the morphometric form 
applied to µ/(kBT), C1>0, C2>0, and C1<<C2. When the 
form is applied to U/(kBT) and S/kB, both of the values of 
C1 are large and negative, but their absolute values are 
roughly the same with the result that C1 for 
µ/(kBT)=U/(kBT)−S/kB takes a very small, positive value. 
For the hard-sphere solvent, on the other hand, the 
solvation energy is zero: U/(kBT)=0. In the form applied to 
µ/(kBT)=−S/kB, C1 takes a large, positive value but C2 is 
negative. For µ/(kBT) and U/(kBT), there is a great 
difference between water and hard-sphere solvent in terms 
of the properties of C1 and C2. However, the behavior of C1 
and C2 in the form applied to S/kB for water is qualitatively 
similar to that for hard-sphere solvent. This is why the 
effect of water entropy can roughly be analyzed by 
employing the hard-sphere model for water. Interestingly 
enough, when the form is applied to µ/(kBT) for water at 
very high pressures, C1 takes a large, positive value and C2 
is negative. That is, at very high pressures water behaves 
like hard-sphere solvent, probably because the elevated 
number density leads to the break of a number of hydrogen 
bonds and/or to the dominance of the repulsive parts of 
water-water potentials. 
 
4.4. Energetics of protein folding 

The function that plays the key role in analyzing the 
structural change of a protein, which we denote by W, is the 
sum of the protein intramolecular energy EI and the 
hydration free energy µ: W=EI+µ. The hydration free 
energy is the same in the isobaric and isochoric processes. 
Therefore, we are free to choose the process and in the 
following we consider a structural change in the isochoric 
process. The hydration free energy consists of the hydration 
energy EH and the hydration entropy S: µ=EH−TS (T is the 
absolute temperature). The principal components of EH are 
the energy gain of water arising from the compression of 
water caused by the protein insertion (component 1) and 
the protein-water interaction energy (component 2). Let ∆Q 
be the change in Q upon a structural change of a protein. 
We have the following equation: 
 
∆W=∆EI+∆µ=∆EI+∆EH−T∆S. (11) 
 
Component 2 makes a dominant contribution to ∆EH. When 
a protein changes its structure to a more compact one, for 
example, there is a gain in EI (e.g., EI becomes lower and 
∆EI<0) due to the formation of intramolecular hydrogen 
bonds and van der Waals attractive interactions. At the 
same time, however, such a structural change accompanies 
the loss of protein-water interaction energy and EH (∆EH>0) 
becomes higher because the water-accessible surface area 
decreases. In general, the signs of ∆EI and ∆EH are opposite 
but their absolute values are comparable in magnitude. 
 

We have proposed the concept that ∆EI and ∆EH are 
largely compensating (i.e., their magnitudes are not far 
from each other and their signs are opposite) (53). It has 
been verified by us for the native structure and a set of 

random coils of protein G using the three-dimensional 
reference interaction site model (3D-RISM) theory 
combined with the realistic all-atom model for the protein-
water system (54). By “realistic” we mean that the atom-
atom potential consists of Coulomb plus Lennard-Jones. 
According to our results, ∆EI upon folding is quite large but 
greatly cancelled by almost equally large ∆EH: 
(∆EI+∆EH)/∆EI upon folding is only ∼0.060. “∆EI+∆EH” 
alone is not likely to be capable of competing with the 
conformational entropy loss. Thanks to the presence of the 
primary component of ∆W, −T∆S, ∆W can surpass the 
conformational entropy loss. (As argued in Sections 4.5 and 
4.6, in general “∆EI+∆EH” takes a positive value.) 
 

A great advantage of considering the structural 
change of a protein in terms of the hydration entropy S in 
the isochoric process is as follows. S is governed by the 
excluded-volume effect originating from the translational 
motion of water molecules and not greatly dependent on 
the protein-water interaction. We have considered the 
native structures of a total of eight peptides and proteins 
and calculated S using the 3D-RISM theory combined with 
the all-atom potentials (55). Even when the protein-water 
electrostatic potentials, which are quite strong, are shut off 
and only the Lennard-Jones potentials are retained, S 
decreases only by less than 5%. Further, an approximate 
value of S can be obtained even by employing a simplified 
model where the protein comprises a set of fused hard 
spheres and hard spheres form the solvent, as long as the 
solvent diameter and packing fraction are set at those of 
water. Suppose that we are to select the structure 
minimizing S from among a number of structures. If the 
structures are fairly different from one another, the 
selection can successfully be made by the simplified model 
described above. In a more sophisticated analysis treated in 
Section 4.6, however, the protein can still be modeled by 
fused hard spheres but a realistic molecular model must be 
adopted for water. 
 

Hereafter, we calculate S using the morphometric 
approach (50). For the six hundred structures considered in 
Sections 4.2 and 4.3, we have calculated S and examined 
Λ=−S−(−S)Native (the subscript “Native” denotes the value 
of the native structure). −S is positive and a smaller value 
of −S implies a higher entropy of the solvent. Three models 
are tested for the solvent (53). In model 1, the solvent is 
treated as hard spheres with diameter d=0.28 nm. In this 
model S=−µ/T. In model 2, spheres forming the solvent 
interact through strongly attractive pair potential u(r) given 
by 
 
u(r)=∞  for  r<d, (12a) 
u(r)=−ε(d/r)6  for  r≥d. (12b) 
 
The value of ε/(kBT) is chosen to be 1.8 for T=298 K. 
Model 3 is a much more realistic model of water. A solvent 
molecule is a hard sphere with diameter d in which a point 
dipole and a point quadrupole of tetrahedral symmetry are 
embedded (25, 26). The angle dependent integral equation 
theory (24-32) is employed to calculate the four 
coefficients in the morphometric form. In the theory the
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Figure 14. F=−S−(−S)Native plotted against gyration radius 
Rg. S is the hydration entropy in the isochoric process. The 
solvent is formed by hard spheres. 
 

 
 
Figure 15. F=−S−(−S)Native plotted against gyration radius 
Rg. S is the hydration entropy in the isochoric process. The 
solvent is water represented by the multipolar model. 
 
effects of the molecular polarizability are taken into 
account at a mean-field level. 
 

Figures 14 and 15 show the plot of Λ for models 1 
and 3, respectively, against the radius of gyration Rg. There 
is a general trend that Λ becomes smaller as Rg decreases. 
In model 1, there are several structures giving negative Λ. 
In models 2 and 3, on the other hand, there are no structure 
with negative Λ. That is, the solvent entropy takes the 
maximum value when the protein is in its native structure. 
It is interesting to note that the relative values of the solvent 
entropy among different structures are magnified when the 
solvent-solvent attractive interaction is incorporated. It can 

thus be suggested that the native structure can be 
characterized as the structure almost maximizing the 
entropy of water. The solvent-solvent attractive interaction 
has been shown to be important in evaluating the entropy. 
However, the details of water molecules such as the 
rotational motion appear to be insignificant and the 
structural stability of a protein can be analyzed using model 
2. The above result is indicative that −T∆S in Equation (11) 
plays a critical role in the structural stability of a protein as 
long as a suitable model is employed for water. 
 

We note that if the four coefficients in the 
morphometric form are calculated using the RISM and 
related theories (37-39), even with a realistic water model 
such as the SPC/E (51) the difference between protein 
structures in S is considerably underestimated, and what is 
worse, several structures giving negative Λ appear (56). 
 

Considering protein folding in the isochoric 
process, we can reach the following picture: A protein in 
aqueous solution under physiological conditions folds into 
the structure achieving the highest possible entropy of 
water under the requirement that as many intramolecular 
hydrogen bonds as possible be formed to compensate the 
dehydration penalty. In such a structure, many secondary 
structures are formed and the backbone and side chains 
with a variety of geometric features are closely packed, 
which leads to the uniqueness of the native structure and its 
high stability. 
 
4.5. Relevance to experimental observations 

Protein folding and aggregation are much more 
complicated than the contact of simple solutes treated in 
Section 3.5. There are two major points to be newly 
considered in these phenomena. Firstly, though the contact 
of hydrophobic groups may be dominant, the contacts of 
hydrophilic groups and those of hydrophobic and 
hydrophilic groups also take place (see Section 4.1). The 
effects of the system-volume compression and expansion 
are cancelled out to some extent in the isobaric process, and 
the behavior differs from that in the isochoric process much 
less than in cases of the contact of simple solutes (18). For 
example, protein folding in the isobaric process does not 
accompany the lowering of the water entropy mentioned 
for Case (3) in Section 3.5. Secondly, the gain of the 
protein intramolecular and protein-protein intermolecular 
energies and the loss of the conformational and 
translational entropies of protein molecules are included in 
the changes in the thermodynamic quantities 
experimentally observed. Moreover, the loss in the 
conformational entropy becomes larger with increasing 
temperature (see Section 4.9). Despite these differences, 
some of the theoretical results described in Section 3.5 can 
also be applied to protein folding and aggregation. 
 

Here, we discuss protein folding. The experiments 
are usually performed for protein unfolding in the isobaric 
process. When the numerical data of the change in a 
thermodynamic quantity is simply multiplied by −1, the 
resultant value represents the data for protein folding 
discussed here. Since the enthalpy-entropy compensation 
occurs in the contacts of all groups, it is also observed for 
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protein folding (19). Judging from the results described in 
Section 3.5, we can conclude that the dehydration of a 
hydrophobic group upon the folding makes a negative 
contribution to the system-volume change while that of a 
hydrophilic group makes a positive contribution. The 
contribution from the dehydration of a hydrophobic group 
to the water-entropy change becomes smaller with 
increasing temperature whereas that of a hydrophilic group 
becomes larger. This argument is in qualitative accord with 
the result reported by Privalov et al. (57) who analyzed the 
experimental observations. 
 

Since the burial of hydrophobic groups is dominant 
as compared to that of hydrophilic groups in protein 
folding, the system volume should decrease (∆VP<0). (We 
note that the system-volume decrease is much smaller than 
the decrease in the excluded volume generated by the 
protein upon the folding.) It follows that beyond 277 K part 
of the gain of the translational entropy of water, which 
should occur in the isochoric process, is converted to a 
corresponding enthalpic gain (see Section 6.2). If 
(α*/κT*)∆VP/dS

3 is a monotonically increasing function 
of the temperature T beyond ∼283 K as described in 
Section 3.5, as T increases the quantity converted becomes 
larger and eventually the observed entropy change (the sum 
of the water-entropy change and the negative 
conformational-entropy change) and enthalpy change (the 
sum of the water-enthalpy change and the negative 
intramolecular-energy change) become negative. The 
entropy and enthalpy changes decrease monotonically with 
increasing temperature. This interpretation does not 
contradict the experimental observations for protein folding 
(58-60). The temperature derivative of the enthalpy change 
is the change in the specific heat. The behavior that the 
enthalpy change decreases with increasing temperature is 
consistent with the experimental evidence that the change 
in the specific heat upon the folding is negative. The 
experimentally observed negative entropy change never 
denies the effect of the translational motion of water 
molecules as a driving force in protein folding. The 
experimentally observed negative enthalpy change is not 
necessarily indicative that the intramolecular-energy gain 
drives the protein to fold. 
 

As discussed in Section 3.5, at 277 K the changes in 
thermodynamic quantities (entropy and enthalpy) of water 
upon protein folding in the isobaric process are the same as 
those in the isochoric process (at 1 atm the change in 
energy is almost equal to that in enthalpy). The 
conformational-entropy loss and intramolecular-energy 
gain are included in the experimentally measured entropy 
change and enthalpy change (these changes are both 
negative), respectively. According to the experimental 
results, the entropy and enthalpy changes are usually both 
positive at 277K (58-60). Even at 298 K there are 
significantly many proteins for which the changes are both 
positive (19). Very recently, Terazima (61) and coworkers 
have found using novel experimental techniques that the 
enthalpy change upon the folding of apoplastocyanin takes 
a very large, positive value in the temperature range 
288−303 K (it exceeds 200 kcal/mol at 298 K). The entropy 
change, which must be positive, is even larger. A feature of 

the apoplastocyanin folding revealed in the experiment is 
that the system-volume change is almost zero: The folding 
takes place under constant-volume and constant-pressure 
conditions. The entropic gain, which arises from the 
reduction of the translational restriction for water 
molecules in the system, is completely reflected in the 
experimental data. The conversion of part of the entropic 
gain to a corresponding enthalpic gain does not occur. 
Their finding clearly indicates that the folding is driven by 
the water-entropy effect. 
 
4.6. Construction of a novel method for predicting the 
native structure 

Protein folding is the most fundamental and 
universal example of the biological self-assembly. The 
prediction of the native structure of a protein from its 
amino-acid sequence, which is one of the most enthusiastic 
subjects in modern science and technology, is an extremely 
difficult problem which has remained unresolved for these 
fifty years. It appears that a breakthrough is not likely to be 
obtained unless a unique concept, which is totally different 
from the conventional approaches, is employed. Many of 
the researchers employ the all-atom model for the protein-
water system with the Coulomb plus Lennard-Jones 
potentials and explore the structural space using a computer 
(usually molecular dynamics) simulation. However, the 
huge amount of computational effort required has been a 
major stumbling block. Water is often treated as dielectric 
continuum, but the critical roles of water as a molecular 
ensemble cannot be taken into consideration. An even more 
serious problem is that the result obtained is strongly 
dependent on the force parameters employed (62). Hence, 
the techniques based on bioinformatics have been the most 
popular. The amino-acid sequence data base constructed for 
proteins whose native structures are known is investigated 
using the bioinformatics techniques and a set of candidate 
structures are generated. However, it is always a hard task 
to select the best structure. Further, such techniques suffer 
the drawback that the water effects are not taken into 
consideration and uncovering the folding mechanism is not 
undertaken. Here, we describe our novel method that has 
recently been developed (63). 
 

In general, unlike the 600 structures of protein G 
treated in Sections 4.2−4.4, the structural stability of a 
protein cannot be argued simply in terms of the hydration 
entropy. This is particularly true for the structures 
generated by a bioinformatics technique which may include 
rather improbable (in terms of the intramolecular energy) 
structures. Hence, we consider a new free-energy function 
F which is crucially important in arguing the structural 
transition of a protein: 
 
F=(−TS+ξ)/(kBT0), T0=298 K. (13) 
 
The hydration entropy S is calculated using the multipolar 
model (25, 26) for water and the angle-dependent integral 
equation theory (24-32) combined with the morphometric 
approach (50). ξ corresponds to the sum of the hydration 
energy (not free energy) and the intramolecular energy 
when the fully extended structure is chosen as the standard 
one with ξ=0. ξ is the total dehydration penalty
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Figure 16. Seven proteins considered to test our energy 
function for discriminating the native fold from misfolded 
decoys. The alpha-helix is marked in red and the beta-sheet 
is marked in yellow. 
 
accompanying a transition to a more compact structure. 
Compared to the fully extended structure which possesses 
the maximum number of hydrogen bonds with water 
molecules and no intramolecular hydrogen bonds, in a 
more compact structure some donors and acceptors (e.g., N 
and O, respectively) are buried in the interior after the 
break of hydrogen bonds with water molecules 
(CO⋅⋅⋅W�NH⋅⋅⋅W, etc.). There is no problem if the 
intramolecular hydrogen bonds (CO⋅⋅⋅HN, etc.) are formed. 
However, it is not always formed, leading to the 
dehydration penalty. 
 

Hereafter, T is set at T0. We consider the 
dehydration arising from the break of hydrogen bonds with 
water molecules alone by assuming that the gain of van der 
Waals attractive interactions between protein atoms is 
completely cancelled by the loss of van der Waals 
attractive interactions between protein atoms and water 
oxygen or hydrogen. According to the results from the 
computer simulation performed by Brooks et al. (64) for 
hydrogen-bond formation between two formamide 
molecules, the free-energy gain in the formation of 
CO⋅⋅⋅HN in a nonpolar liquid is about −8.4 kcal/mol at 298 
K that is ∼−14kBT0 while that in water is only −0.5kBT0. 
Since the value, −0.5kBT0, is variable depending on the 

amide species and more or less uncertain (64, 65), we 
regard it as zero. The process considered by Brooks et al. 
does not quite correspond to the transition to a more 
compact structure for a protein. For example, what they 
calculate is not the energy gain we need but the free-energy 
gain. Pending further studies on the formation of CO⋅⋅⋅HN, 
we adopt the following method by choosing the fully 
extended structure as the standard one. When a donor and 
an acceptor are buried in the interior (it is assumed to have 
a nonpolar-liquid environment) after the break of hydrogen 
bonds with water molecules, if they form an intramolecular 
hydrogen bond, we impose no penalty. On the other hand, 
when a donor or an acceptor is buried with no 
intramolecular hydrogen bond formed, we impose the 
penalty of 7kBT0 (this is one half of 14kBT0). 
 

We have to determine if each of the donors and 
acceptors is buried or not. The water-accessible surface 
area is calculated for each of them. If it is zero, the donor or 
acceptor is considered buried. That is, the dehydration 
penalty of 7kBT0 is imposed only when the donor or 
acceptor is completely buried. We examine all donors and 
acceptors for backbone-backbone, backbone-side chain, 
and side chain-side chain intramolecular hydrogen bonds 
and calculate ξ. −S and ξ, which are both positive, are 
functions of the protein structure, temperature, pressure, 
and so on. 
 

In the protein research community, “decoy” sets 
(66) are prepared for a number of proteins so that people 
can check the power of their energy function. Each decoy 
set comprises the data of nearly one thousand misfolded 
structures. Most of them were generated using 
bioinformatics and related techniques. Structures which 
are similar to the native fold are included in the data set. 
The power of the energy function can be evaluated by 
checking if the native fold gives the lowest value of the 
energy function and it can thus be selected from among the 
decoy and native folds. If there is even one structure 
whose energy function is lower than that of the native fold, 
the energy function fails. In this sense, the introduction of 
ξ into Equation (13) is essential. 
 

We have tested F given by Equation (13) as the 
energy function for decoy sets of seven proteins and 
succeeded in identifying the native fold as the structure 
with the lowest value of F (63). The seven proteins chosen 
are vitamin-B-dependent calcium binding protein (3icb), 
the amino terminal domain of 434 repressor (1r69), 434 
Cro protein (2cro), the C-terminal domain of ribosomal 
protein (1ctf), scorpion neurotoxin (1sn3), trypsin inhibitor 
(4pti), and rubredoxin (4rxn). The numbers of residues of 
these proteins are in the range 54-76. The native folds of 
the seven proteins exhibit a great variation with alpha-helix 
and/or beta-sheet structures as shown in Figure 16. The 
decoy databases corresponding to these proteins contain 
627-687 structures. In order to remove serious overlaps of 
protein atoms, the native and decoy structures are 
minimized either in vacuum in terms of the CHARMM 
energy (67, 68) or in water modeled as a dielectric 
continuum in terms of the CHARMM/GB energy (68). The 
computer programs, CHARMM (69) and MMSTB (70), are
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Figure 17. Relation between Y and X (see Equations 14-
16). The data for all the seven proteins considered are 
collected. The three lines drawn represent X=0, Y=0, and 
X+Y=0, respectively. 
 
used for the minimization. The CHARMM energy is the 
intramolecular potential energy of a protein, and in the 
CHARMM/GB energy water effects are additionally taken 
into consideration. After the minimization, each structure is 
switched to a set of fused hard spheres (the diameter of 
each protein atom is set at the distance where the Lennard-
Jones potential energy equals the thermal energy kBT): Now 
there are no serious overlaps of protein atoms. It has been 
verified that the structures before and after the 
minimization are almost indistinguishable in sight when 
they are drawn on a computer screen. It has been found that 
our energy function takes the lowest value for the native 
structure for all the seven proteins considered. The result is 
successful for both of the two minimization techniques 
employed. Thus, the native fold can be discriminated from 
the misfolded decoys with 100% accuracy. Moreover, the 
result is rather insensitive to the hard-sphere diameters of 
the protein atoms chosen and the value 7kBT0: It is 
successful in the sense that the energy function becomes 
the lowest for the native structure, even when the diameters 
are simply set at the sigma values of the Lennard-Jones 
parameters or 90% of the sigma values, for example, and 
the value of the dehydration penalty is changed from 7kBT0 
to 6kBT0 or 8kBT0. 
 

Here we define X and Y as 
 
X=ξ/(kBT0)−{ξ/(kBT0)}Native, (14) 
Y=−TS/(kBT0)−{−TS/(kBT0)}Native, (15) 
X+Y=F−FNative, (16) 
 
where the subscript “Native” denotes the value for the 
native structure. The plot of Y against X is shown in Figure 
17 where the data for all the seven proteins considered are 

collected. X and Y share almost the same magnitude and 
these two factors are both important. On the whole, X and Y 
are anticorrelated for the following reason. When a protein 
takes a more compact structure, for example, the hydration 
entropy usually becomes lower. At the same time the burial 
of “CO” and “NH” occurs, but it is not always possible to 
completely make up for the break of hydrogen bonds with 
water molecules, giving rise to a larger value of ξ. There 
are significantly many structures giving Y<0. There are 
even more structures with X<0. However, there is no 
structure causing X+Y<0. The structures giving higher 
entropy of water than the native structure can certainly be 
constructed. However, such structures suffer serious total 
dehydration penalty. The structures undergoing only less 
total dehydration penalty than the native structure can also 
be constructed readily, but such structures give rise to 
seriously lower entropy of water. The native structure is 
optimized in terms of the sum of the two important factors 
(63). This holds true only for polypeptide chains with the 
amino-acid sequences selected by nature and for the folding 
in aqueous solution under physiological conditions. When 
the effect of the conformational entropy is added to F, it 
may be possible for us to deduce if a polypeptide chain 
with an artificial amino-acid sequence is foldable or to 
investigate the molecular mechanism of protein 
denaturation. 
 

We consider the structural change of a protein in 
the isochoric process and concentrate on the total 
dehydration penalty ξ and the hydration entropy S. The 
calculation of ξ can be made with very high speed. The 
calculation of S, which is usually much more demanding, is 
also performed quite rapidly in the following prudent 
manner despite the use of a realistic molecular model for 
water. The simple protein model, a set of fused hard 
spheres, is acceptable when S is considered in the isochoric 
process. Since only the geometric feature of each protein 
structure is crucial, our morphometric approach becomes 
very powerful. In the approach no large computer memory 
is required and the calculation of F is finished in about 0.1 
sec for one structure on the Itanium workstation. Another 
great advantage is that we can avoid the use of the protein 
force parameters which are more or less uncertain. 
 

Our method thus developed is best suited to 
selecting the most stable structure from among the 
candidate structures. The number of the candidate 
structures is allowed to be huge, because in our method the 
energy function is calculated with minor computational 
effort. In the next stage, we intend to test our energy 
function for more databases of decoy structures (up to now, 
we have tested it for a total of fifteen proteins and always 
succeeded in selecting the native fold). Further, it may be 
possible to develop a practical tool for predicting the native 
structure of a protein from its amino-acid sequence, by 
combining our method with the bioinformatics techniques 
which can generate a variety of candidate structures. Our 
method is capable of handling much larger proteins than 
those considered above and can also be extended to 
analyses of the protein-protein interaction and protein 
aggregation. The application to the drug design is also 
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possible. In future studies, we intend to improve the 
method for calculating the total dehydration penalty. 
 
4.7. Partial molar volume of a protein 

There seem to be two misunderstandings about the 
partial molar volume (PMV) in the protein research 
community: The PMV is not clearly distinguished from the 
excluded volume (EV); and a less compact structure of a 
protein always has smaller PMV. 
 

The PMV, which is denoted by VM here, is the 
change of the system volume occurring upon the solute 
insertion in the isobaric process. Thermodynamically, the 
PMV is the pressure derivative of the solvation free energy 
expressed as 
 
VM=(∂µ/∂P)T. (17) 
 
The PMV is the key quantity in the argument of pressure 
denaturation of a protein (see Section 9.3). 
 

Kirkwood and Buff (71) have derived the equation 
expressing the PMV in terms of the reduced solvent density 
profile near a spherical solute. Extending the equation to a 
polyatomic solute like a protein yields 
 
VM=∫ ∫ ∫ {1−g(x, y, z)}dxdydz, (18) 
 
where g(x, y, z) is the three-dimensional profile of the 
reduced solvent density. When the solvent is water and the 
solute is a protein, the ideal term is negligibly small and 
independent of the protein structure. Therefore, the ideal 
term is not included in Equation (18). The number of water 
molecules within the infinitesimal volume dxdydz is ρSg(x, 
y, z)dxdydz where ρS is the number density in bulk water. 
At distances which are sufficiently far from the protein 
surface, g→1. No overlap of an atom in the protein and a 
water molecule is allowed, and at positions where such an 
overlap occurs g=0. It is convenient to decompose the 
integration in Equation (18) into the integrations over the 
regions within which g=0 (region 1) and g≠0 (region 2), 
respectively. The integration over region 1 yields the EV 
generated by the protein. The EV is denoted by V here. The 
integration over region 2 is determined by the number 
density of water near the protein surface. The thickness of 
the surface-induced layer within which the number density 
of water differs from ρS is usually a few times of the 
molecular diameter of water. The integration over region 2 
can be approximated by −ζA where ζ is a parameter 
representing the average number density of water within 
the layer and A is the water-accessible surface area (ASA). 
It follows that the PMV is approximately given by (72, 73) 
 
VM=V−ζA. (19) 
 
ζ is dependent on the properties of the protein surface, 
temperature, and pressure. First, we consider a protein 
immersed in water at ambient temperature and pressure. A 
hydrophilic group in the protein makes a large, positive 
contribution to ζ because g>>1 on an average near it. By 
contrast, near a group which is hydrophobic enough to 

overcome the packing force, g∼1 or g<1 (see Appendix A) 
on an average, with the result that the group makes a small, 
negative contribution to ζ. Since hydrophilic and 
hydrophobic groups are almost irregularly distributed on 
the protein surface, the overall value of ζ becomes positive, 
and VM is smaller than V. V and A vary greatly from 
structure to structure. If we compare two different 
structures, for example, it is rather frequent that one of 
them is larger in terms of V while the other is larger in 
terms of VM. 
 

How does the system volume change upon a 
structural transition of a protein? In general, when a protein 
is denatured, both of V and A becomes larger. Denoting the 
native structure and the denatured state by subscripts “1” 
and “2”, respectively, we obtain 
 
VM2−VM1=V2−V1−(ζ2A2−ζ1A1), V2>V1, A2>A1. (20) 
 
The PMV of the denatured state represents the average 
value of the PMV for an ensemble of denatured structures. 
Since a protein is characterized by the heterogeneity that 
hydrophilic and hydrophobic groups are rather irregularly 
distributed in the molecule, both of the total ASA for the 
hydrophilic groups and that for the hydrophobic groups 
increase upon the denaturation. On the whole, the increase 
for the hydrophobic groups should be larger. However, the 
surface properties on an average do not change greatly 
upon the denaturation, and we can employ the 
approximation ζ2=ζ1=ζ(>0). Equation (20) can then be 
rewritten as 
 
VM2−VM1=V2−V1−ζ(A2−A1), V2>V1, A2>A1. (21) 
 
The sign of “VM2−VM1” is determined by the complicated 
interplay of ζ�“V2−V1”, and “A2−A1”. 
 

In the experiments, a protein is usually denatured 
by the addition of acid, and the PMV difference between 
the native structure and the denatured state is determined 
by measuring the system-volume change upon the 
denaturation. The protein surface in the presence of acid 
(under low-pH conditions) has many groups with large, 
positive charges. The net charge takes a large, positive 
value and the surface is highly hydrophilic. Due to the high 
hydrophilicity (or the electrostatic repulsions between 
positively charged groups) a set of rather extended 
structures with large ASA are stabilized. ζ takes a very 
large, positive value. “−ζ(A2−A1)<<0” predominates over 
“V2−V1>0” with the result that the PMV is much smaller for 
the acid-denatured state than for the native structure: The 
system volume decreases to a great extent upon the 
denaturation. (In a strict sense, the solvent conditions 
before and after the acid addition are different. For this 
reason, Equation (20) with ζ2>>ζ1 may be more 
appropriate. “−(ζ2A2−ζ1A1)<<0” predominates over 
“V2−V1>0” with the result that the PMV is much smaller for 
the acid-denatured state, leading to the same conclusion.) 
 

It is quite dangerous to generalize the above 
experimental result and conclude that a less compact (a 
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more extended) structure always has smaller PMV. The 
result is not applicable to the heat- and pressure-denatured 
states (the denaturation in the absence of acid). Take the 
pressure-denatured state, for example. The PMV is smaller 
for the state than for the native structure. However, it is 
erroneous to consider that the structures in the state are 
rather extended like those in the acid-denatured state. (The 
pressure-denatured state is discussed in detail in Section 
4.8.) When a protein folds in aqueous solution under 
physiological conditions, unless the burial of hydrophilic 
groups predominates over that of hydrophobic groups, the 
system volume should decrease. This seems to be valid 
from the argument described in Section 4.5 as well. As 
stated in Section 4.8, however, the PMV of the native 
structure is never the smallest. A protein is denatured by 
applying an extremely high pressure, but the structures in 
the denatured state are far from the random coils. 
 

We emphasize that the PMV is remarkably 
influenced by the solvent environment. As a striking 
example, the PMV of a small solute molecule is positive in 
water at ambient temperature and pressure, whereas in 
water with medium densities in the supercritical state it 
takes an abnormally large, negative value. (This is ascribed 
to the formation of a layer around the solute within which 
the water density is much higher than in the bulk (74).) 
 

Some researchers claim that the EV of the native 
structure is larger than that of an extended structure due to 
the small void spaces in the interior of the former, but this 
claim is wrong. In the lower picture in Figure 10, for 
example, even when the three side chains are not closely 
packed and make a small space which water molecules 
cannot enter, there is certainly an overlap of the excluded 
volumes (the space shadowed has a finite volume). The 
total excluded volume in the lower picture is smaller than 
that in the upper picture. We have compared the EV-values 
of the native structure and a number of random coils using 
an elaborate calculation method (75) (of course, the void 
spaces in the interior of the native structure are taken into 
consideration) and verified that the EV of the native 
structure is always much smaller. The EV of a fully 
extended structure is even much larger than that of a 
random coil. 
 

Last, we comment on how to calculate the PMV of 
a protein. As mentioned above, a dense layer is formed near 
a hydrophilic group while a depleted layer is formed near a 
hydrophobic group. The 3D-RISM theory (54, 55) is 
capable of accounting for the polyatomic structure of a 
protein. For water molecules, however, it suffers the 
problems caused by the site-site treatment described in 
Section 3.8. Our calculation results have shown that the 
3D-RISM theory gives a remarkably dense layer even near 
a hydrophobic group (56). It follows that the whole surface 
of the protein becomes unrealistically hydrophilic, causing 
too large a value of ζ. This shortcoming does not become 
serious for the absolute value of the PMV of a protein 
structure because the PMV is not far from the EV. For a 
difference between two structures in the PMV, however, 
the 3D-RISM theory becomes problematic: There is a 
tendency that the PMV of a more extended structure is 

relatively smaller. It seems that this inappropriate 
prediction of the 3D-RISM theory has enhanced the 
misunderstanding in regard to the PMV arising from the 
experimental studies on the acid-induced denaturation. 
When the protein is modeled as a fused hard spheres and 
water is taken to be hard spheres, the water density near a 
hydrophilic group is underestimated while that near a 
hydrophobic group is overestimated, leading to a fortuitous 
cancellation of errors (72, 73) and a better result (56). 
 
4.8. Molecular mechanism of pressure denaturation of a 
protein: physical similarity to crystal nucleation known 
for a single-component system of hard spheres 

A protein folds into a unique native structure and 
becomes functional in aqueous solution under physiological 
conditions. However, the native structure is unfolded by 
various perturbations such as the addition of chemical 
substances, the change in the temperature or pH, and the 
application of a high pressure. Investigating those processes 
will provide physical insights into the folding/unfolding 
transition of proteins. Above all, the pressure-induced 
unfolding is one of the most interesting subjects. Recent 
experimental studies have indicated that the ensemble of 
unfolding pathways for pressure denaturation is inherently 
different from those for heat or chemical denaturation (76, 
77). This implies that a specific viewpoint is necessary for 
uncovering the mechanism of pressure denaturation. One 
might think that the native structure with a very small 
excluded volume, in which the backbone and side chains 
are closely packed with little space in the interior (40), is 
further stabilized through the entropic effect by applying a 
higher pressure. However, the behavior of the entropic 
effect is not that simple. 
 

Let us consider a pressure-denatured state and 
the native state of a protein immersed in aqueous solution. 
The pressure-denatured state and the native state, 
respectively, represent an ensemble of unfolded structures 
stabilized at high pressures and that of uniquely folded 
structures stabilized at low pressures. The free energy of 
the protein-aqueous solution system is lower for the native 
state at low pressures while it is lower for the denatured 
state at high pressures. The difference between the two 
states in the conformational entropy is independent of the 
pressure or smaller at high pressures due to the constraint 
caused by denser water, and the conformational-entropy 
effect cannot be a driving force in pressure denaturation. 
Hereafter, we consider several representative structures in 
the denatured state and refer to them simply as “denatured 
structures”. Within the framework of classical mechanics, 
the intramolecular energy for any structure remains 
unchanged against a pressure change. It follows that the 
change in the hydration free energy is the key to pressure 
denaturation. For the denaturation to occur, “µ of a 
denatured structure minus µ of the native structure”, which 
is positive at low pressures, must decrease to a significant 
extent as the pressure P increases and eventually become 
negative. Therefore, the partial molar volume (PMV) (see 
Equation (14)) of the denatured structure is to be smaller 
than that of the native structure. 
 

The hydration free energy consists of the
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Figure 18. A swelling structure featuring pressure-induced 
denaturation (left) and the native structure (right) of protein 
G. 
 
energetic and entropic components. According to the 
experimental results (76-82), nonpolar side chains are more 
separated in a denatured structure with water molecules 
penetrating its hydrophobic core. When the penetration 
occurs, the break of hydrogen bonds of water is 
unavoidable, leading to a loss in terms of the hydration 
energy. There must be an even larger gain in terms of the 
hydration entropy, an increase in the water entropy in the 
system. We have made a statistical-thermodynamic analysis 
(72, 73) focused on the effect of the translational motion of 
water molecules by employing the three-dimensional 
integral equation theory (6, 42) combined with hard-body 
models (µ=−TS where S is the hydration entropy). Some of 
the important results are summarized below. 
 
1. The excluded volume (EV) and water-accessible surface 
area (ASA) are two essential parameters for a protein 
structure. A structure possessing smaller PMV than the 
native structure features moderate compactness, 
correspondingly small EV, but very large ASA, which can 
readily be understood from Equation (19). Such a structure 
is characterized by the cleft and/or swelling and water 
penetration into the interior. This result is in good accord 
with the experimental observations (76-82). 
 
2. At low pressures the water entropy is almost maximized 
when a protein takes the native structure, whereas at high 
pressures the water entropy becomes higher when the 
transition to the structure mentioned in (1) occurs. (In the 
isobaric process, the system volume slightly decreases and 
part of the entropic gain upon the transition considered in 
the isochoric process is converted to a corresponding 
enthalpic gain, but the free-energy gain is the same. See 
Section 3.5.) 
 
3. As described in (1), a structure, which is only moderately 
less compact than the native structure but has much larger 
ASA, turns more stable than the native one at an elevated 
pressure. In another solvent whose molecular size is 1.5 
times larger than that of water, however, the inversion of 
the stability does not occur any longer. It has been inferred 
from experimental results (83) that water is crucial for 

pressure denaturation. Our theoretical analysis has 
supported this inference with the physical interpretation 
that the exceptionally small molecular size of water is 
responsible for the crucial importance of water in pressure 
denaturation. 
 
4. A random coil features very large ASA but too large EV 
with the result that it has larger PMV than the native 
structure. It becomes relatively more destabilized with 
rising pressure, irrespective of the molecular size of the 
solvent. 
 
5. A fully extended structure, which is unrealistic, has even 
larger PMV than the random-coil state. 
 
6. The inequality for the PMV, “pressure-denatured 
structure < native structure < random coil < fully extended 
structure”, holds at both low and high pressures. 
 

The entropically induced denaturation can be 
interpreted as follows. The presence of a water molecule 
generates an excluded volume for the other water molecules. 
This water crowding becomes serious when the pressure is 
highly increased. For water as well as for the hard-sphere 
solvent, in the morphometric form of Equation (9) applied to 
−S/kB at high pressures, C1>0, C2<0, and their absolute values 
are very large. Structures not only with large ASA but also 
with small EV are stabilized. Due to the serious crowing, the 
so-called packing force becomes remarkably strong. Structures 
with much larger ASA but with sufficiently small EV, which is 
characterized by the penetration of water molecules into the 
interior and the contact of many water molecules on the 
surface, is more favored. This relaxes the restriction for the 
translational motion of the water molecules which are well 
outside the protein while that of the water molecules in the 
interior and on the surface is largely restricted. The former 
effect arises at a sufficiently high pressure: The total entropy of 
water becomes all the higher when the protein is denatured in 
the manner described above. The entropic effect discussed so 
far is a major cause of the solute hydrophobicity. At a higher 
pressure the hydrophobicity is strengthened in the sense that 
the water crowding is serious and the hydration free energy 
becomes higher. The previously suggested concept (82, 84), 
the weakening of the hydrophobic interaction between 
nonpolar side chains is responsible for pressure denaturation, is 
inconsistent with our view. 
 

The structure of protein G shown on the left side 
of Figure 18, which has smaller PMV than the native 
structure shown on the right side, has the swelling and well 
captures the characteristics of pressure-denatured 
structures. The penetration of water molecules into the 
protein interior can be verified by investigating the reduced 
solvent-density profile g(x, y, z). Figure 19 shows g(x, y, z) 
along an example line for the structure featuring the 
swelling. At the separations which are sufficiently far from 
the protein surface, g is unity. Near the surface, g is 
oscillatory and takes a rather large value at contact. In the 
region where no solvent molecule can be present, g is zero. 
The penetration of water molecules into a narrow, confined 
space in the interior is characterized by very sharp peaks of 
g. The figure certainly indicates this type of penetration. 
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Figure 19. Reduced density profile of water indicating 
water penetration into the protein interior. Here, d denotes 
the diameter of water molecules (d=dS). The very sharp 
peaks of the profile are indicated by the red arrows. 
 

Very recently, we have made a further analysis (52) 
using the angle-dependent integral equation theory (24-32) 
combined with the morphometric approach (50) in which 
the multipolar model (25, 26) is adopted for water. The 
hydration entropy of a protein with a fixed structure is 
decomposed into 
 
i. the component arising only from the excluded volume 
which is calculated using the Asakura-Oosawa theory (1, 
2), 
 
ii. the protein-water pair correlation component (24, 32, 52) 
(hydration entropy at the pair correlation level) other than 
component (i), 
and 
 
iii. the protein-water-water triplet and higher-order 
correlation components (24, 32, 52) (hydration entropy at 
the triplet and higher-order correlation levels). 
 
Only the water molecules near the protein contribute to 
component (ii), while all the water molecules in the system 
contribute to components (i) and (iii). Component (iii) also 
contains the information on the water structure near the 
protein. The translational and rotational motions of water 
molecules are restricted upon the protein insertion. 
Components (ii) and (iii) are further decomposed into 
contributions from the translational and rotational 
restrictions. The pair correlation component represents how 
the motion of each of water molecules is restricted upon the 
protein insertion. The motion of a water molecule is 
influenced by the motions of the other water molecules, and 
component (iii) represents how the details of the influence 
are changed upon the protein insertion. The hydration 
entropy and its components are strongly dependent on the 
protein structure. First, it has been verified that the swelling 

structure considered in our earlier work (72, 73), which has 
only moderately less compact than the native structure but 
has a much larger ASA, turns more stable than the native 
structure at an elevated pressure. The most important 
finding is that at high pressures the denaturation 
accompanies a loss of the translational and rotational 
entropies at the pair correlation level and a much larger 
gain of the translational entropy at the triplet and higher-
order correlation levels. This implies the following: The 
translational and rotational motions of water molecules 
penetrating the protein interior and contacting the protein 
surface are largely restricted; but the penetration and the 
contact lead to a great reduction of the translational 
restriction for the water molecules that are sufficiently far 
from the protein. The entropy of the whole water in the 
system increases upon pressure denaturation. If we consider 
component (i) only, the conclusion is that the native 
structure is increasingly more stabilized as the pressure 
becomes higher. The conventional concept, which looks 
only at the water structure in the vicinity of the protein, is 
not capable of elucidating the molecular mechanism of 
pressure denaturation. (Appendix C gives some information 
on the first coefficient in the morphometric form of the 
components considered for the hydration entropy.) 
 

As described in Section 4.3, at high pressures water 
takes on the characteristics of hard spheres. In Equation (9) 
applied to the hydration free energy, C2 is positive at low 
pressures but turns negative at high pressures. From this 
standpoint, a structure with smaller ASA is more favored at 
low pressures while that with larger ASA is more favored 
at high pressures. On the other hand, a structure with 
smaller EV is always favored irrespective of the pressure. 
These are quite consistent with the result described above, 
“at high pressures structures like the swelling structure are 
stabilized”.  It is interesting to note that when the 
multipolar model (not the hard-sphere model) is employed 
for water, the inequality for the PMV at high pressures is 
“pressure-denatured structure < native structure < random 
coil < fully extended structure” that is the same as the 
inequality in the hard-sphere model. At low pressures, 
however, it is “native structure < pressure-denatured 
structure < random coil < fully extended structure” (this 
does not alter our conclusions on the molecular mechanism 
of pressure denaturation). 
 

By the way, in a single-component system of hard 
spheres, part of the hard spheres forms crystal nuclei when 
the packing fraction becomes quite high. This phenomenon 
related to the Alder transition (85-87) is counterintuitive 
because the fluid phase should be entropically more stable 
than the crystal phase. The crystal nucleation could be 
interpreted as follows: The translational motion of the hard 
spheres in the crystal nuclei (and that of the hard spheres 
which are in contact with the crystal nuclei) is largely 
restricted while the translational restriction for the other 
hard spheres is greatly reduced, leading to an overall 
entropic gain. Pressure denaturation of proteins is 
physically similar to the crystal nucleation in the following 
two respects: (1) The denaturation and the nucleation are 
both entropically driven; and (2) if the attention is paid only 
to the water molecules penetrating into the protein interior 
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or to the hard spheres forming the crystal nuclei, the 
entropy appears to decrease and the basic physics can never 
be understood. (If the packing fraction exceeds a threshold 
value, due to the extreme crowding, the fluid phase in 
which each hard sphere tries to move arbitrarily becomes 
less stable than the crystal phase. The system entropy is 
higher when the hard spheres are regularly arranged and 
each hard sphere moves within its surrounding space. As a 
result, the whole system is crystallized, leading to the Alder 
transition.) 
 
4.9. Heat and cold denaturations of a protein 

We briefly refer to heat and cold denaturations (88, 
89) of a protein. It has been verified by experiments (90) 
that the loss of the conformational entropy (CE) upon 
protein folding increases to a great extent as the 
temperature becomes higher. The CE is closely related to 
the torsion energy of a protein molecule. The dihedral angle 
giving high torsion energy is not allowed at a low 
temperature. As the temperature increases, the allowed 
range of the dihedral angle becomes increasingly wider, 
leading to larger CE of an unfolded conformation. The CE 
of the native structure does not become significantly larger 
due to its conformational constraints. It follows that the CE 
loss upon the folding becomes larger with increasing 
temperature. The CE loss multiplied by the absolute 
temperature further increases as the temperature becomes 
higher, and this effect should be a major cause of heat 
denaturation. 
 

It has recently been found that yeast frataxin (89) 
exhibits cold denaturation above 273 K in the absence of 
chemical denaturants and cryosolvents. It is interesting that 
the cold-denatured structures are completely unfolded like 
the heat-denatured structures. Cold denaturation is 
characterized by a significantly large entropic loss and en 
even larger enthalpic gain. The change in the specific heat 
is positive. We are now pursuing the molecular mechanism 
of cold denaturation using the angle-dependent integral 
equation theory (24-32) combined with the morphometric 
approach (50). The preliminary results (91) are summarized 
below. 
 

The temperature dependence of the hydrophobicity 
of nonpolar groups provides an important clue to the 
molecular mechanism. We have analyzed the components 
of the thermodynamic quantities of hydration which are 
determined by the excluded volume (EV) and by the water-
accessible surface area (ASA) and the surface curvature 
(SC), respectively. When the temperature is lowered, the 
ordered structure with enhanced hydrogen bonds of water 
molecules is formed near nonpolar groups. The 
enhancement is not strong but becomes significant for 
unfolded structures with large ASA. At lower temperatures, 
those structures are relatively more destabilized in terms of 
the ASA- and SC-dependent component of the hydration 
entropy but stabilized in terms of the ASA- and SC-
dependent component of the hydration energy. The 
temperature dependence of the changes of water entropy 
and energy upon the denaturation are governed by the 
ASA- and SC-dependent components. The change in the 
specific heat upon cold denaturation is also governed by 

these components. At low temperatures, the hydrogen 
bonding of water near nonpolar groups is enhanced. For 
unfolded structures, larger part of the heat added is 
consumed for the break of the hydrogen bonds, giving rise 
to a positive change in the specific heat. 
 

As for the free-energy change of water upon the 
denaturation, which is more important, it exhibits different 
behavior. At lower temperatures, both the native structure 
and unfolded structures are less hydrophobic in the sense 
that µ/(kBT) (µ is the hydration free energy) is significantly 
reduced (it should be noted that µ is even more reduced). 
However, the reduction is greater for a structure with larger 
EV. This feature is ascribed to the effect of the EV-
dependent component of the hydration entropy (the EV-
dependent component of the hydration energy has the 
opposite effect that is considerably smaller): The 
translational-entropy effect arising from the water in the 
whole system, by which the native structure is stabilized 
relative to the unfolded structures, is considerably less 
powerful when the temperature is lowered, leading to cold 
denaturation. As mentioned above, due to the structuring of 
water near the protein surface at lower temperatures, 
unfolded structures with large ASA are relatively more 
destabilized in terms of the water entropy but stabilized in 
terms of the water energy. In terms of the free energy, 
however, the destabilization and the stabilization are almost 
cancelled out. 
 

It is also shown that polar and charged groups 
become more hydrophilic as well as nonpolar groups 
become less hydrophobic, which should make a significant 
contribution to cold denaturation. 
 
5. MOLECULAR RECOGNITION BETWEEN 

GUEST LIGANDS AND HOST ENZYMES 
 
5.1. Statistical-mechanical analysis focused on the effect 

of translational motion of water molecules 
A host enzyme binds a particular guest ligand with 

extremely high selectivity, which is often referred to as the 
lock-key interaction. Elucidating the mechanism of this 
“molecular recognition” is of great interest not only from 
the scientific viewpoint but also for various applications 
such as designs of drugs and bio-sensors. 
 

We have performed an analysis on the lock-key 
interaction (6, 7, 92) using the three-dimensional integral 
equation theory (6, 42) combined with a hard-body model. 
The analysis is focused on the effect of the translational 
motion of water molecules. Solute 1 and solute 2 illustrated 
in Figure 20 are considered. Solute 1 is a big hard cube 
with a hemispherical cavity with diameter d1=5dS and the 
length of a step edge is L=10dS. Solute 2 is a big hard 
sphere with diameter d2. The two solutes are immersed in 
small hard spheres with diameter dS forming the solvent. 
We test several different diameters of the big sphere that 
are smaller than (d2=3dS and 4dS), equal to (d2=5dS), and 
larger than (d2=6dS) the diameter of the cavity, 
respectively. A great advantage of the three-dimensional 
integral equation theory is that the spatial distribution of the 
potential of mean force Φ12(x, y, z) is obtained only in a
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Figure 20. Models of “lock” and “key”. A big hard cube with a hemispherical cavity (lock) with diameter d1=5dS and a big hard 
sphere (key) with diameter d2. The length of a step edge of the cube is L=10dS. The two big bodies are immersed in small hard 
spheres with diameter dS forming the solvent (the small spheres are not shown here). 
 
 

 
 
Figure 21. (a) Lock-key interaction represented by entropic interaction between the two big bodies along the x-axis Φ12(x, 0, 0). 
T, kB, and dS denote the absolute temperature, Boltzmann constant, and diameter of the small spheres, respectively. Four different 
values are tested for the diameter of the big sphere d2. (b) Lock-key force defined by F12(x, 0, 0)=−∂Φ12(x, 0, 0)/∂x. 
 
single calculation. This advantage is not shared by the 
computer simulation. By analyzing Φ12(x, 0, 0), we can 
obtain information on the lock-key interaction. The 
hemispherical cavity and the big sphere correspond to the 
lock (active site of a host enzyme) and the key (guest 
ligand), respectively. 
 

The potential of mean force Φ12(x, 0, 0) calculated 
is shown in Figure 21(a). Stabilization occurs when the key 
is at contact with the lock: The stabilization free energy 
(the free-energy gain of the solvent) for the key that exactly 
fits in the lock (d2=5dS) is far larger than for the other keys. 
For d2=5dS, the volume of the excluded-region overlap 
occurring when the big sphere touches the cavity surface is 
estimated to be ∼5.7 times larger than that in the case where 
the big sphere touches a flat surface. Nevertheless, the 
stabilization free energy in the former is ∼20 times larger 
than in the latter, which implies a complete failure of the 

Asakura-Oosawa theory (1,2) (the physical origin of this 
failure is described in earlier publications (6, 7)). An even 
more important result is that there are high free-energy 
barriers for the keys smaller than the lock to overcome 
before getting in contact with the lock. The mean force 
F12(x, 0, 0)=−∂Φ12(x, 0, 0)/∂x is shown in Figure 21(b). The 
force curve between one of the smaller keys with d2=3dS 
and 4dS and the lock has a strongly repulsive peak at 
surface separations almost equal to and slightly larger than 
dS, leading to the high free-energy barrier. As the key size 
reduces, the repulsive force becomes stronger. At surface 
separations almost equal to and slightly larger than dS, 
small spheres, which are densely packed within the domain 
confined between the two surfaces, remain. The thermal 
pressure due to the remaining small spheres acts as a 
repulsive component of the induced force. The remaining 
small spheres must be removed before the key touches the 
lock surface. In reality, they are removed by the interplay of 
the conformational fluctuation of the lock and the three-
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Figure 22. (a) Lateral contacts of long cylindrical units. (b) 
Double-helical structure formed by the twisting of two 
cylindrical units, which is observed in real experiments. 
 
dimensional motion of the key. These dynamic aspects are 
not taken into account in the present analysis. However, 
when the key is too small, the removal becomes very 
difficult to achieve because the key is strongly repelled by 
the remaining small spheres. 
 

It is remarkable that very high size and shape 
selectivity in the lock-key interaction arises from the purely 
entropic effect due to the translational motion of water 
molecules. 
 

One might think that the real water molecules (not 
hard spheres) do not enter the channel between the lock and 
key surfaces. This is true if the surfaces are both highly 
hydrophobic. In usual cases, however, the surfaces consist 
of hydrophobic and hydrophilic groups. As a result, the 
behavior of water molecules is more like that of hard 
spheres. The concept, “when two extended hydrophobic 
surfaces approach each other, the water confined between 
the surfaces eventually vaporizes”, is not applicable to this 
case. 
 
5.2. Relevance to experimental observations 

There is a large amount of experimental data on 
changes in thermodynamic quantities upon the binding of a 
receptor and a ligand. Despite the large loss of the 
conformational entropies of the receptor and the ligand, 
there are many examples showing that the enthalpy and 
entropy changes are both positive even at room temperature 
(93, 94). This manifests that the entropic effect originating 
from the translational motion of the water molecules which 
are present in the system is a major driving force in the 
binding process. 
 
6. FORMATION OF ORDERED STRUCTURE BY 

AGGREGATION OF PROTEIN MOLECULES 
 
6.1. Regularity and symmetry of aggregates 

Aggregates (quarterly structures) of protein 
molecules as well as single protein molecules play essential 
roles in biological systems. These aggregates feature 
“regularity” and “symmetry”. We believe that the 
translational motion of water molecules is a principal 
driving force in the formation of the aggregates. For 
example, DNA and a microfilament of actin possess the 
double-helical structure. The formation of the double-
helical structure leads to a great reduction of the excluded 
volume for water molecules. It is generally believed that 
the double-helical structure of DNA is formed by the 

intramolecular hydrogen bonds between bases. However, 
the intramolecular hydrogen bonding in aqueous solution 
accompanies the serious dehydration penalty and can give 
rise to an overall energy loss. 
 
6.2. Molecular mechanism of amyloid-fibril formation 

When misfolding or denaturation of a protein 
occurs for some reason, the misfolded or denatured proteins 
often form fibril-like aggregates called “amyloid fibrils”. 
Though the amyloid-fibril formation is a typical example 
having pathological influences on life, its molecular 
mechanism should be the same as that of the formation of 
functional, indispensable aggregates of proteins. The 
entropic effect arising from the translational motion of 
water molecules plays crucial roles in the formation of 
these aggregates. 
 

The characteristics of the amyloid-fibril formation 
(95-105) which are common to many of the experimental 
observations are as follows: (i) the aggregation does not 
occur unless the proteins are denatured; (ii) it takes a rather 
long time for sufficiently large aggregates acting as nuclei 
to be formed, but the succeeding growth of the nuclei is 
rapid; (iii) though the structures of the fibrils can be 
variable, the most common and fundamental feature is the 
stacking of extended, thin beta-sheets; and (iv) when a 
foreign fibril-like matter is introduced, it acts as a nucleus. 
According to an experimental result, a number of β-strands 
form extended, thin beta-sheets through intramolecular 
hydrogen bonds, the beta-sheets stack together to form a 
larger-scale unit, and the units stack together regularly on a 
wall surface (95). It has been reported that extended, thin 
cross beta-sheets form a cylindrical unit by stacking 
together (96), and the units contact one another laterally as 
illustrated in Figure 22(a) or twist together to form a 
double-helical structure as shown in Figure 22(b) (97). 
 

We have carried out a statistical-mechanical 
analysis (106-108) focused on the effect of the translational 
motion of water molecules and obtained the following 
results: 
 
(1) Nearly spherical proteins with the native structure are 
stable as separate molecules due to high free-energy 
barriers in the entropic interactions between protein 
molecules. However, proteins with high asphericity in their 
overall shapes can readily aggregate. 
(2) When proteins aggregate, the assurance of protein-
protein hydrogen bonding is crucially important to 
compensate the dehydration penalty. There can be two 
typical types of protein aggregation which allows as many 
protein-protein hydrogen bonds as possible: lateral contacts 
of α-helices with long cylindrical shapes and stacking of 
extended, thin beta-sheets. The latter is more stable because 
the restriction for the translational motion of water 
molecules is reduced to a greater extent. 
(3) As an important matter, the most stable structure of an 
isolated protein (i.e., the native structure) is totally different 
from the structure of a protein in the most stable aggregate. 
 

The result of (1) can readily be understood from the 
argument described in Section 3.6 and Figure 8. It is
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Figure 23. What will happen if a big rigid disc (its shape is 
not changeable) is introduced to big soft spheres (their 
shapes are changeable) immersed in small spheres? Even 
the introduction of the single big rigid disc is capable of 
changing a number of big soft spheres into discs with the 
same shape, and a cylindrical aggregate can continue to 
elongate with the diameter unchanged. 
 
consistent with the experimental evidence (i) that the 
denaturation of proteins (i.e., the collapse of a nearly 
spherical shape) is the initiator of the amyloid-fibril 
formation. It is also closely related to the fact that a protein 
molecule needs to be isolated from the other molecules 
through the protection by shaperonin until the molecule 
accomplishes the folding to its native structure with a 
nearly spherical shape. The result of (2) does not contradict 
the experimental evidence (iii). Even after proteins are 
denatured, it will take a long time for them to reach the 
stage of the beta-sheet stacking. This is because an 
aggregate which is not large enough is broken due to the 
effect of the conformational and translational entropies of 
protein molecules. Once a sufficiently large aggregate, 
which is stabilized by the entropic excluded-volume effect, 
is formed, it will work as a nucleus. The experimental 
evidence (ii) can thus be understood. It appears that the 
patterns illustrated in Figure 22 can be explained only by 
the entropic effect. When this effect is dominant, once a 
fundamental unit which is stable enough is introduced to 
the system, its growth pattern is determined by the 
geometric feature of the unit. This is relevant to the 
experimental evidence (iv). 
 
6.3. Flexibility and adaptability of protein structure 

Suppose a big rigid disc is introduced to big soft 
spheres immersed in small spheres as shown in Figure 23. 
The shapes of the soft spheres can be changed while the 
shape of the rigid disc cannot. When a big sphere is 
isolated, the spherical shape persists because it generates 
the least excluded volume for the small spheres. However, 
the big sphere can touch the edge of a big disc because 
there is no high free-energy barrier for this type of 

touching. When this occurs, the big sphere moves into the 
flat surface of the disc, changing the shape into the same 
disc (see configuration 6 in Figure 23). Here, the free 
energy of the small spheres in configuration I (I=1, ..., 8) is 
denoted by FI and the difference, FJ−FI , is expressed by 
∆FIJ . It can be shown within the framework of the 
Asakura-Oosawa theory (1, 2) that ∆F46 is approximated by 
(106) 
 
∆F46=−(3−2/a)ηS(dL/dS)2kBT, (22a) 
a=dD/dL, (22b) 
a>1, (22c) 
 
where dL is the diameter of a big sphere (dL>>dS), the upper 
and lower surfaces of a big rigid disc is assumed to be 
circles, and dD is the diameter of the circles (dD>>dS). The 
volumes of the big sphere and the big rigid disc are 
assumed to be equal. In configuration 7 or configuration 8 
the big sphere has changed into a big disc with diameter 
xdD whose volume is equal to that of the rigid disc. ∆F76 
and ∆F86 are approximately given by the following (106): 
 
∆F76=−12ηS(dD/dS)(lD/dS){(1−x)/x}kBT, (23a) 
x<1, (23b) 
 
∆F86=−3ηS[(dD/dS)2(x2−1)/2−4(dD/dS)(lD/dS){(x−1)/x}]kBT, 
(24a) 
x>1. (24b) 
 
Here, lD is the height of the big rigid disc. From these 
equations one sees that for large dD/dS the free energy of 
the small spheres in configuration 7 or in configuration 8 is 
much higher than that in configuration 6: configurations 7 
and 8 are not likely to occur. ∆F14 is approximated by (106) 
 
∆F14=−3ηS(dL/dS)kBT. (25) 
 
The free-energy change ∆F16 is governed by ∆F46 because 
∆F46>>∆F14 for large dL/dS. 
 

The whole process illustrated in Figure 23 is driven 
to attain almost the largest decrease in the excluded volume 
for the small spheres and occurs sequentially. If N spheres 
are changed into discs to be incorporated in the cylindrical 
aggregate formed, the free-energy change reaches ∼N∆F46 
that can be surprisingly large: In the case of dL/dS=5, a=2, 
and N=10, for example, N∆F46 reaches −190kBT when the 
small spheres are water molecules. Thus, even the presence 
of a single big rigid disc is capable of changing a number of 
big spheres into discs with the same shape, and the 
cylindrical aggregate continues to elongate with the 
diameter unchanged. 
 

The interesting behavior illustrated in Figure 23, 
which arises from the effect of the translational motion of 
water molecules, might be related to the fact that even a 
single prion with a pathological structure successively 
changes prions with the native structure to those with the 
same pathological structure. This is an example having ill 
influences on life. To change the subject to the aggregate 
which is indispensable to life, the protein structure
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Figure 24. (a) Ordered structure formed by a convex 
surface and big particles with different sizes. (b) Ordered 
structure formed by a concave surface and big particles 
with different sizes. 
 
possesses the flexibility and adaptability in the sense that a 
protein molecule can be integrated into a functional system 
by changing its own molecular structure in a suitable way. 
This can also be relevant to the behavior described in the 
last paragraph. 
 

Though water plays critical roles in sustaining life, 
they can possibly cause serious problems such as the 
amyloid-fibril formation. Presumably, water also plays 
central roles in giving rise to aging and disease, which 
clearly conflicts with the title of this review article. 
 
6.4. Relevance to experimental observations 

In usual experiments for the amyloid-fibril 
formation, the proteins are first unfolded by the addition of 
acid. The acid-unfolded proteins do not aggregate, 
however, due to the electrostatic repulsion between groups 
with positive charges. When salts are added, the charges 
are screened by counter ions with negative charges, with 
the result that the entropic interaction effectively drives the 
proteins to aggregate. According to the experimental results 
reported by Goto et al. (108), when the salt concentration is 
sufficiently low, nuclei added to the system grows to form 
the amyloid fibrils. When the salt concentration is too high, 
the proteins form irregular aggregates. This is because, as 
shown by us (109), an attractive force acts between groups 
with charges in the same sign due to the salt effect. Thus, 
when a force other than the entropic force dominates, 
irregular aggregation occurs but “regularity” or “ordering” 
is not exhibited. 
 

Goto et al. (110) has reported the changes in 
thermodynamic quantities upon the amyloif-fibril 
formation. Below 286 K the enthalpy and entropy changes 
are both positive, which indicates that the fibril formation is 
entropically driven. It is remarkable that the entropy change 
is positive despite the large loss of the conformational and 
translational entropies of protein molecules. The large loss 
is overcome by an even larger entropy gain of the water 
that is present in the system. 
 

Very recently, it has been reported that the 
amyloid-fibril formation accompanies a large increase in 
the system volume (111). We can deduce the following: (1) 
In the fibril formation the contact of hydrophilic groups is 
dominant as compared to that of hydrophobic groups and 

that of hydrophilic and hydrophobic groups; and (2) as 
argued in Section 3.5 the protein-protein intermolecular 
energy gain should be quite large though the entropic 
excluded-volume effect is still essential. In the experiment, 
however, the amyloid-fibril formation occurs under a low-
pH condition after the addition of acid and salts. As 
discussed in Section 4.7 in detail, it is possible that this 
type of experiment does not simulate the fibril formation in 
aqueous solution under physiological conditions. 
 

We believe that the fibril formation leads to a 
system-volume decrease in aqueous solution under 
physiological conditions as long as the contact of 
hydrophobic groups dominates. At very high pressures, 
however, the dissolution of the fibrils results in a system-
volume decrease. This is because water takes on 
characteristics of hard spheres (see Sections 4.3 and 4.8) 
and high density layers of water molecules are formed near 
both hydrophilic and hydrophobic groups: A state with a 
much larger water accessible surface area (ASA) has a 
smaller volume. From the standpoint of the free energy, a 
state with smaller ASA is more favored at low pressures 
while a state with larger ASA is more favored at very high 
pressures. 
 

In any case, the process of the fibril formation is 
remarkably affected by the solvent specifications such as 
the pressure, temperature, and pH. It is quite dangerous to 
generalize the experimental results obtained under a 
particular solvent condition. The effects of the solvent 
specifications are complicated and to be investigated 
further. We emphasize that regardless of the decrease or 
increase in the system volume, the excluded volume for 
water molecules always decrease upon the fibril formation. 
 
7. OTHER ORDERING PROCESSES IN 
BIOLOGICAL SYSTEMS 
 
7.1. Specificity in associations between lipids and 
proteins 

The free-energy gain of the small spheres occurring 
when a big sphere contacts a surface is remarkably 
dependent on the surface curvature if ηS is sufficiently high 
and dL/dS is large enough. It can be shown that the free-
energy gain follows the order, “a concave surface with 
larger curvature > a concave surface with smaller curvature 
> a flat surface > a convex surface with smaller curvature > 
a convex surface with larger curvature” (7). Moreover, the 
differences are magnified as dL becomes larger. 
 

The above result suggests the following. Suppose a 
surface with changing curvature and big spheres with a size 
distribution are immersed in small spheres. If the surface is 
convex, a bigger sphere preferentially contacts the surface 
portion with a smaller curvature. The biggest sphere 
contacts the surface portion with the smallest curvature, 
and there is almost no chance for a smaller big sphere to 
contact that portion. The second biggest sphere then 
contacts the portion with the second smallest curvature. 
Thus, the ordered structure depicted in Figure 24(a) is 
entropically formed. A similar discussion can be made for a 
concave surface for which a bigger sphere preferentially
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Figure 25. Control of movement of big particles by 
entropic force field generated by passive microstructure of 
wall surface. The big particles tend to be moved in a 
specific direction so that the overlap of the excluded 
volumes shadowed can be increased. 
 
contacts the surface portion with a larger curvature, and a 
probable ordered structure is shown in Figure 24(b). In (a) or 
(b) of the figure, the free energy of the small particles increases 
significantly if any two of the big spheres are exchanged. Thus, 
in contacts of big spheres with surfaces, great specificity 
between the surface curvature and the big-sphere size is 
provided (7). 
 

In biological systems, the surface and big spheres 
correspond to a membrane and proteins (a different protein 
species has a different size), respectively, immersed in water 
molecules acting as small spheres. The membrane contains 
multiple species of lipids and the regions with different 
curvatures have different local compositions of lipids. The 
great specificity between the surface curvature and the big-
sphere size, which arises from the entropic excluded-volume 
effect, may lead to the specificity in associations between 
lipids and proteins. (In the case of a hard wall, a big particle 
only contacts the wall surface. If the wall is soft like the 
membrane, the big particle is driven to be buried within the 
membrane by the excluded-volume effect.)  
 
7.2. Can the motion of biomolecules be controlled? 

The illustration shown in Figure 25 indicates that the 
big-particle motion can be controlled using passive surface 
microstructures creating localized entropic force fields that 
repel or trap the particles and induce their drift in a 
predetermined direction (7, 16). The big particles tend to be 
moved in a specific direction so that the overlap of the 
excluded volumes shadowed can be increased. For example, a 
big particle can be repelled from a step edge, trapped at the 
corner for a while, and moved from a convex portion to a 
concave one on the surface with changing curvature. 
 

Even in a simple system described above, a highly 
advanced control of the big-particle motion could be made. In 
biological systems, the geometric features of the membrane 
(surface) and proteins (big particles) are much more complex, 
and a highly sophisticated control would be made possible. It is 
interesting to ask the following questions: What kind of 
controls are realized in biological systems?; and for what 
purposes are those controls made? Further studies are 
necessary to answer these questions. 
 
8. EFFECTS OF SALTS AND COSOLUTE 
MOLECULES 
 
8.1. Crucial importance of salts 

The only factor which can possibly predominate 
over the entropic interaction is the electrostatic interaction. 

Between groups with significantly large charges of the 
same sign in pure water, for example, a strong electrostatic 
repulsion suppresses the entropic interaction. When salts 
are added, however, the charges are screened by the 
counter ions. The entropic interaction can play important 
roles in biological systems because NaCl is present. By a 
model analysis (112) we have recently shown the 
following: Even between highly charged macroparticles the 
entropic interaction becomes essential when the NaCl 
concentration exceeds ∼0.1M (the NaCl concentration in 
biological systems is ∼0.15M). 
 

We have performed a statistical-mechanical 
analysis (109) of the salt effects on the solubility and 
structural stability of proteins. A striking result is that like-
charged groups are driven to become closer together by the 
salt addition: The interaction between groups with charges 
in the same sign can be attractive when the salt 
concentration is quite high. This is related to the issue 
considered in Section 6.4. We then discuss the relevance to 
the salt effects experimentally observed for two typical 
examples. The first example is the conformational 
transition and the solubility decrease caused by the salt 
addition for peptides and proteins with many positively 
charged groups in the side chains, and the second one is the 
salt-induced B-Z transition of DNA with many negatively 
charged phosphates. In the first example, the ability of salt 
to cause the conformational transition is strongly dependent 
on anion species and follows the order I−>Br−>Cl−. In the 
second example, the ability of salt to cause the structural 
transition is strongly dependent on cation species and 
follows the order Na+>K+>Rb+>Cs+. The ability becomes 
higher as the anionic size increases in the first example, 
whereas in the second one it becomes higher as the cationic 
size decreases. We have succeeded in providing physical 
interpretations of these experimental observations (109). 
 
8.2. Effects of adding medium-size particles 

We have found by a statistical-mechanical analysis 
(113) that the entropic interaction between big particles 
immersed in small particles is greatly influenced by the 
addition of medium-size particles even in a very small 
amount. The medium-size particles correspond to cosolute 
molecules which are larger than water molecules but 
smaller than biopolymers. It is interesting that the strength 
and range of the interaction is quite variable depending on 
the size and concentration of the medium-size particles 
(113, 114). It is probable that this property is also being 
utilized in the control of the behavior of biopolymers in 
biological systems. 
 

Let us introduce an experimental result related to 
the effect of the medium-size particles. The amyloid fibrils 
are first stabilized by adding a small amount of 
trifluoroethanol (TFE) to aqueous solution. However, a 
further addition destabilizes the fibrils and make them 
dissolve (115). A similar behavior has been observed for 
the stability of the native structure of a protein (116). These 
initially puzzling results have been elucidated by our 
analysis (114) concerning the effect of the concentration of 
medium-size particles on the entropic interaction between 
big particles immersed in small particles. In the analysis, 
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the small, medium-size, and big particles correspond to 
water molecules, TFE molecules, and proteins or portions 
of a protein molecule, respectively. 
 
8.3. Surface-induced phase transition and long-range 
surface force 

There exists another phenomenon arising from a 
complex correlation between water and hydrophobic 
molecules. There are lots of confined spaces (i.e., spaces 
confined by a surface or between two surfaces) in 
biological systems. The behavior of a fluid in a confined 
space is totally different from that of bulk fluid. Let us 
consider hydrophobic surfaces immersed in aqueous 
solution containing hydrophobic molecules at extremely 
low concentration. The hydrophobic molecules are highly 
enriched near the surfaces. We have shown by a statistical-
mechanical analysis that even under the condition where 
the bulk is thermodynamically stable as a single phase, two 
types of surface-induced phase transitions (117-120) (thin-
thick transition and bridging transition) can occur and give 
rise to a long-range, attractive surface force. In the bridging 
transition, for example, the space confined between 
hydrophobic surfaces is abruptly filled by hydrophobic 
molecules once the surface separation becomes as small as 
a threshold value. The attractive surface force then becomes 
quite strong, making the two surfaces stick together. In 
future studies, the roles of the surface-induced phase 
transitions in biological systems are to be investigated. 
 
9. PERSPECTIVE 
 

The variety of self-assembling and ordering 
processes occurring in biological systems accompany a 
large loss of the conformational and translational entropies 
of biomolecules. However, most of the loss is compensated 
by the entropic gain or the free-energy gain originating 
from the translational motion of the water molecules which 
are present in the system. The water entropy emphasized 
here is the translational entropy (or equivalently, the 
configurational entropy: a measure of the number of 
accessible configurations of the water). The entropy of the 
whole system including water molecules does not 
necessarily decrease: Even when it decreases, the energy 
gain required to overcome the entropic loss is much smaller 
in the presence of water. Many of the recently reported 
experimental data have shown that even in the isobaric 
process the enthalpy and entropy changes upon protein 
folding (61), amyloid-fibril formation (110), receptor-
ligand binding (molecular recognition) (93, 94), and virus 
association (121), are both positive. This indicates that 
these processes are entropically driven: The primary 
driving force is the translational motion of water molecules. 
 

In particular, Terazima and coworkers (61) have 
recently shown by novel experimental techniques that the 
folding of apoplastocyanin (apoPC) accompanies a very 
large enthalpic loss. It follows that an even larger entropic 
gain occurs in stabilizing the folded structure. We have 
theoretically calculated the water-entropy gain upon the 
folding of apoPC (122). It is demonstrated that the 
calculated value is in quantitatively good accord with the 
value estimated from the experimental data by accounting 

for the conformational-entropy loss. According to a prevailing 
view, the water adjacent to a hydrophobic group is unstable 
especially in terms of the rotational entropy and the folding is 
driven primarily by the release of such unfavorable water to 
the bulk through the burial of nonpolar side chains. We have 
shown, however, that the resultant entropic gain is too small to 
elucidate the experimental result. The great entropic gain 
observed is ascribed to the reduction of the restriction for the 
translational motion of water molecules in the whole system. 
 

Thanks to the hydrogen bonding, water can exist in 
liquid (dense fluid) state at ambient temperature and pressure 
despite its exceptionally small molecular size. The entropic 
excluded volume effect, which stems from the translational 
motion of solvent molecules, is the largest for water among 
ordinary liquids in nature. This is an important answer to the 
question: Why is water indispensable to life? The roles of 
water can never be understood only by distinguishing the 
hydrophobic groups from the hydrophilic ones. The lattice 
model and the continuum model for water are not capable of 
accounting for the entropic effect. If the effect is considered 
more seriously, breakthrough will be attained for a number of 
problems related to biological systems. 
 

The entropic effect arises not only from the water 
structure near a protein but also from the whole water in the 
system. In computer simulation for a protein immersed in 
water, for taking the entropic effect into account, the number of 
water molecules surrounding the protein is to be large enough. 
Moreover, they must be allowed to move for a sufficiently 
long time. These requirements could readily be met in the 
usual molecular dynamics (MD) simulations if the protein 
structure is fixed. In simulating the folding process, however, 
the time scale is to be sufficiently long so that the root mean 
square displacement of water molecules can be comparable 
with the protein size. The practical simulation time of 
10−8−10−6 sec could be too short. In a real system, it takes at 
least 10−3 sec for a small protein to fold. Another notable 
example is the simulation of pressure denaturation of a protein 
considered in Section 4.8. Paliwal et al. (81) have studied the 
pressure-induced denaturation by an MD simulation. They 
initiated the simulation by inserting water molecules into the 
protein interior and applying a high pressure afterward. This is 
because the water penetration cannot occur in the practical 
simulation time. This is why the statistical-mechanical 
methods such as the integral equation methods we have 
employed are quite important (much more powerful than 
the MD simulations in many studies). 
 

When two Japanese one-yen coins whose surfaces 
are contaminated and become hydrophobic are floated on 
water, they contact each other due to the capillary force 
which is attractive and becomes stronger with decreasing 
surface separation. When one more one-yen coin is floated, 
the three coins contact one another so that the three centers 
form a regular triangle. It may look as if the one-yen coins 
themselves had the ability of making the self-arrangement, 
but this is not the case. The water plays the leading part. 
Even if one investigated the one-yen coins alone very 
carefully (e.g., if one analyzed the surface of the one-yen 
coin) to uncover the mechanism of the self-arrangement, 
nothing would become clear. 
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As described so far, statistical mechanics and 

thermodynamics with the emphasis on water can be very 
powerful tools in the investigation of biological systems 
and life. In future studies, we intend to extend the angle-
dependent integral equation theory (24-32) to analyses on 
the hydration thermodynamics of a protein with the all-
atom potentials. The resulting theory, which is the three-
dimensional version, is not combined with the 
morphometric approach and the protein is explicitly treated. 
It is not suited for the prediction of the native structure of a 
protein because of a heavy computational burden, but it 
will be quite useful in detailed analyses on not only the 
changes of hydration thermodynamic quantities upon 
protein folding and unfolding but also their microscopic 
mechanisms. It is free from the drawback of the 3D-RISM 
theory (54, 55) that wrong predictions are obtained when 
the solute molecule is highly hydrophobic or the 
hydrophobic effect plays important roles (56). 
 

Last, the simple free-energy function given by 
Equation (13), which is described in Section 4.6, has shed 
light on the development of a powerful method for 
predicting the native structure of a protein from its amino-
acid sequence. No large computer memory is required in 
calculating the function and the computation time is only 
∼0.1 sec for one structure on the Itanium workstation. We 
are going to combine the function with the bioinformatics 
techniques to develop a practical tool for predicting the 
native structure. It is capable of handling large proteins and 
can also be extended to analyses of the protein-protein 
interaction and protein aggregation. The application to the 
drug design is also possible. 
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11. APPENDIX A: SOLVENT DENSITY PROFILE 

NEAR A SOLVOPHOBIC SOLUTE 
 

If the solute is modeled as a hard sphere in the 
presence of no attractive interaction with solvent 
molecules, a depleted layer within which the average 

solvent density is lower than the bulk solvent density is 
formed near the solute. Even when the reduced density 
profile g(r), the density profile divided by the bulk density, 
is larger than 1 in the immediate vicinity of the solute, the 
average density of the layer can be smaller than the bulk 
density. For small solutes, however, the incorporation of 
the solute-solvent van der Waals attractive interaction leads 
to the different result that the average density of the layer is 
higher than the bulk density. Therefore, the partial molar 
volume (PMV) of methane, for example, is considerably 
smaller than its excluded volume (EV). 
 

The average solvent density of the solute-induced 
layer is largely dependent on the solute size (31). Hereafter, 
we discuss the case where the solvent is water. When a 
small hydrophobic solute intrudes into water, the water 
structure neighboring the solute can reorganize by forming 
the clathrate-like geometry without sacrificing the 
intermolecular hydrogen bonds. When a large hydrophobic 
solute intrudes into water, however, it is impossible to 
maintain the hydrogen bonds in a similar way and the loss 
of the bonds is unavoidable. To keep the loss of the 
hydrogen bonds as small as possible, the average water 
density of the solute-induced layer is made significantly 
low even in the presence of the solute-water van der Waals 
attractive interaction. As a result, the PMV of a large, 
nonpolar solute can be larger than its EV. We treat such 
large solutes in Section 3.5. 
 

As for a protein, many of the nonpolar groups in the 
side chains are considerably larger than methane. 
Moreover, several groups are often close together, forming 
hydrophobic portions with rather extended surfaces. 
Therefore, nonpolar groups in a protein correspond to the 
large solute mentioned above rather than to the small 
solute like methane. The discussion in Section 4.7 is based 
on this probability. 
 
12. APPENDIX B: CONTACT OF SOLUTES 
IMMERSED IN WATER IN ISOBARIC PROCESS 
BELOW 277 K 
 

As the temperature T becomes higher, more hydrogen 
bonds are broken. This effect (Effect 1) makes the number 
density of water higher. At the same time, however, the 
effective volume occupied by a water molecule increases due 
to the more energetic thermal motion of water molecules. This 
effect (Effect 2) makes the number density lower. A peculiar 
behavior of water is that its number density takes the 
maximum value at 277 K and the isobaric thermal expansion 
coefficient α is negative below 277 K. Below 277 K, as T 
becomes higher Effect 1 dominates. In other words, the 
number of hydrogen bonds decreases when the number density 
becomes higher, and the former increases when the latter 
becomes lower. Above 277 K, however, Effect 2 dominates: 
The number of hydrogen bonds decreases when the number 
density becomes lower, and the former increases when the 
latter becomes higher. 
 

Below 277 K, due to the peculiar behavior of water 
mentioned above, the statements in Cases (3) and (4) are to 
be modified: 
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3. Contact of solvophobic solutes in isobaric process: When 
Case (1) is regarded as the reference, a system-volume 
compression occurs and the number density becomes 
higher. Since the number of hydrogen bonds decreases, the 
energy gain becomes smaller. Due to the reduction of the 
constraint by the hydrogen bonds, the entropic gain 
becomes larger. 
 
4. Contact of solvophilic solutes in isobaric process: When 
Case (2) is regarded as the reference, a system-volume 
expansion occurs and the number density becomes lower.  
Since the number of hydrogen bonds increases, the energy 
loss becomes smaller. Due to the enhancement of the 
constraint by the hydrogen bonds, the entropic gain 
becomes smaller. 
 
In Case (3) the compression leads to the entropic gain and 
in Case (4) the expansion causes the entropic loss. This 
initially surprising behavior, which is deduced from 
Equations (5) and (6) with negative α, can thus be 
understood. 
 
13. APPENDIX C. THE FIRST COEFFICIENT IN 
THE MORPHOMETRIC FORM FOR VARIOUS 
COMPONENTS OF HYDRATION ENTROPY 
 

Let “SAO+SPC” be the solute-water pair correlation 
component of the hydration entropy in the isochoric 
process. SAO is the term that is dependent only on the 
excluded volume and SPC is the sum of the other terms (24, 
52). SAO is calculated using the Asakura-Oosawa theory (1, 
2). The sum of the solute-water-water triplet and higher-
order correlation components (24, 52) is denoted by SHC. 
The contributions from the translational and rotational 
restrictions to SPC and SHC are represented by the subscripts 
“t” and “r”, respectively. We then discuss the first 
coefficient C1 in the case where the morphometric form of 
Equation (9) is applied to SAO, SPCt, SPCr, SHCt, or SHCr (these 
are scaled by kB). The important results are the following: 
C1=0 for SPCt, SPCr, and SHCr; C1 for SHCt >> C1 for SAO. 
SPCt, SPCr, and SHCr are dependent only on the area and 
curvature of the water-accessible surface. Therefore, they 
are determined by the water structure near the solute. 
However, SHCt has a term which depends on the excluded 
volume (EV). This implies that SHCt is influenced by all the 
water molecules that are present in the system. (In SHCt, the 
first EV-dependent term and the other three terms in the 
morphometric form are interdependent (52).) 
 

In the isobaric process, the contributions from the 
rotational restriction remain unchanged (24) but those from 
the translational restriction are different. For example, there 
is no term which is dependent on the EV in the solute-water 
pair correlation component of the hydration entropy, 
because the system volume expands by the partial molar 
volume of the solute (24, 32, 52, 123). However, there is 
still an EV-dependent term in the sum of the solute-water-
water triplet and higher-order correlation components. 
Therefore, by contrast to the conventional view, the 
hydration entropy cannot be scaled by the water-accessible 
surface area even in the isobaric process. 
 

The gain or loss of the translational entropy of 
water upon the structural change of a protein must be 
considered in terms of all the water molecules that are 
present in the system. This is in contrast with the gain or 
loss of the rotational entropy which originates only from 
the water molecules near the protein surface. 
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