Problems concerning parades and poly-Bernoulli numbers

Filip Stappers

August 27, 2024

Abstract

This note records the solution or partial progress made on several open problems related to poly-Bernouilli (pB) numbers, posed by Knuth in [1].

1 Problem 1

Is there a combinatorial proof for the following formula?

$$
C_{m,n} = \sum_{k=0}^{m} \sum_{l=0}^{n} {m \choose k} {n \choose l} B_{k,l} D_{m-k,n-l}
$$

The left part of the formula is the number of parades with $m+1$ girls and n boys starting with a girl. Those are all the parades of the form $\alpha q_1 \beta$. We put the youngest girl g_1 in our parade. For α we choose $m - k$ of the m remaining girls and $n - l$ of the n boys. The remaining k girls, l boys come after the youngest girl and make up $β$. Now $α$ has to be a parade starting with a girl or be empty, because our full parade has to start with a girl. It has to end with a boy or be empty, because otherwise g_1 is preceded by an older girl, which is not valid in a parade. So the number of possible α is $D_{m-k,n-l}$ by equation (17.1) in [1]. For β any valid parade will do, so there are $B_{k,l}$ possibilities. And there are $\binom{m}{k}\binom{n}{l}$ ways to divide the girls and boys between α and β .

Using variations of the above combinatorial argument, we can dedude new identities between $B_{m,n}$, $C_{m,n}$ and $D_{m,n}$. For example, by using g_m , the oldest girl instead of g_1 , we find that

$$
C_{m,n} = \sum_{k=0}^{m} \sum_{l=0}^{n} {m \choose k} {n \choose l} (C_{k-1,l} + [k-l=0]) (C_{m-k,n-l-1} + [m-k=n-l-1=0]))
$$

If we start with b_1 , the youngest boy instead of g_1 , we find (using [17.2] from [1]):

$$
C_{m,n} = \sum_{k=0}^{m+1} \sum_{l=0}^{n-1} {m+1 \choose k} {n-1 \choose l} B_{k,l}(D_{m-k,n-l-1} + D_{m-k,n-l}), n > 0
$$

And if we start with b_n we find

$$
C_{m,n} = \sum_{k=0}^{m+1} \sum_{l=0}^{n-1} {m+1 \choose k} {n-1 \choose l} C_{k-1,l} (C_{m-k,n-l-1}+[m-k+1=n-l-1=0]), n > 0
$$

Many more identities can be derives using similar constructions on other classes from section 17 in [1].

2 Problem 2

All mxn matrices for $m \leq 5$, $n \leq 5$ were enumerated using a computer program. Then for all $\binom{16}{2}$ matrix pairs $\{\phi, \psi\}$ the program counted how many of the $m \times n$ matrices were $\{\phi, \psi\}$ -free. There were 25 pairs that resulted in the pB-numbers. (See table 1).

Bijections for most of these $\{\phi, \psi\}$ -pairs were already discussed in [1]. One slighty new variation are the pairs in the min/max-closed section where one of the matrices is $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. The pair $\left\{ \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}$ corresponds with the 'max-min'-relations, which satisfy the cond

$$
x_i \smile y_j
$$
 and $x_{i'} \smile y_{i'}$ implies $x_{\max\{i,i'\}} \smile y_{\min\{j,j'\}}.$

And similarly, $\left\{ \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}$ corresponds with the 'min-max'-relations, which satisfy

$$
x_i \smile y_j
$$
 and $x_{i'} \smile y_{i'}$ implies $x_{\min\{i,i'\}} \smile y_{\max\{j,j'\}}.$

We can construct bijections to the Γ-free matrices by repeatedly changing 2x2 submatrices of the form $\begin{pmatrix} 1 & * \\ 1 & 1 \end{pmatrix}$ to $\begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix}$ (respectively changing $\begin{pmatrix} 1 & 1 \\ * & 1 \end{pmatrix}$ ∗ 1 \setminus to $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ ∗ 1 $).$

3 Problem 5

Investigate the behaviour of the nonuniformity ratio $\max_{0 \leq r \leq n} P_{m,n}(r) / \min_{0 \leq r \leq n} P_{m,n}(r)$ when m and n are large.

Experiments seem to indicate that, for a given n, if m is large enough ($\approx m \ge$ $n/2$, the maximum $P_{m,n}(r)$ is reached when $r = 3$, the minimum is reached when $r = 0$. Can this behaviour be explained?

4 Problem 9

This problem asks to investigate the number of lonesum $l \times m \times n$ tensors $L_{l,m,n}$ and also the weakly lonesome $l \times m \times n$ tensors $\hat{L}_{l,m,n}$.

$\{\psi,\phi\}$	In bijection with
$\boldsymbol{0}$ 1 $\mathbf 1$ θ $\boldsymbol{0}$ 1 O $\mathbf{1}$ $\mathbf{1}$ 1 θ $\boldsymbol{0}$ θ θ	Strongly Γ -free
$\boldsymbol{0}$ 1 0 1 0 0 T ، م $\overline{0}$ $\overline{0}$ $\mathbf{1}$, θ $\mathbf{1}$ $\overline{0}$ 1	
$\mathbf 1$ $\boldsymbol{0}$ 1 θ 0 θ T T $\overline{0}$ $\overline{0}$ $\overline{1}$ $\mathbf{1}$ Ω 1 θ	
1 θ θ 1 0 0 T $\overline{0}$ $\overline{0}$ $\mathbf{1}$ $\mathbf{1}$ θ $\overline{0}$ 1 1	
$\overline{1}$ $\mathbf{1}$ 1 $\overline{0}$ $\overline{0}$ $\boldsymbol{0}$ 0 $\overline{0}$ $\mathbf{1}$ θ $\overline{0}$ 1 $\boldsymbol{0}$ 1	T-free and L-free
1 0 1 $\boldsymbol{0}$ 0 0 1 7, $\overline{0}$, $\overline{1}$ $\mathbf{1}$ $\overline{0}$ 1 θ $\overline{0}$	
$\mathbf 1$ θ 1 0 0 1 0 T $\overline{0}$ $\mathbf{1}$ 1 Ω Ō $\overline{0}$ 1 1	
θ 1 1 0 θ 0 T $\overline{0}$ $\boldsymbol{0}$ $\overline{}$ 1 $\mathbf{1}$ $\overline{0}$ $\overline{0}$ $\mathbf 1$ $\,1\,$	
$\mathbf{1}$ $\mathbf{1}$ $\overline{0}$ $\overline{0}$ $\mathbf{1}$ $\boldsymbol{0}$ 0 ۰, $\mathbf{1}$ 1 θ θ $\overline{0}$ Ω 1	Min/max-closed relations
1 0 1 $\boldsymbol{0}$ θ 1 O $\overline{0}$ $\overline{0}$ $\overline{0}$ 1 $\mathbf 1$ 1 1 0	
$\mathbf{1}$ 0 1 $\boldsymbol{0}$ 0 $\boldsymbol{0}$ T T $\overline{0}$ $\overline{0}$ $\overline{0}$ 1 $\mathbf{1}$ 1 θ 1	
1 θ 1 θ 1 θ U T $\overline{0}$ $\mathbf{1}$ $\overline{0}$, $\overline{1}$ $\mathbf{1}$ $\overline{0}$ $\boldsymbol{0}$ 1	
1 θ 1 $\overline{0}$ $\overline{ }$ $\overline{0}$ 1 θ	Lonesum

Table 1: The 25 pairs $\{\phi, \psi\}$ that result in pB-numbers. The right pair on each line is equal to the left one with the ones and zeros swapped.

For the $2 \times 2 \times n$ weakly lonesum tensors, we only have to make sure that $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ don't occur together in the same tensor. Let's call $s_n(U)$ the number of tensors of size $2 \times 2 \times n$ that don't contain A and B, $s_n(A)$ the ones that contain A and $s_n(B)$ the ones that contain B. This gives the following recurrences:

$$
s_0(U) = 1, s_0(A) = s_0(B) = 0
$$

$$
s_{n+1}(U) = 14s_n(U)
$$

$$
s_{n+1}(A) = s_n(U) + 15s_n(A)
$$

$$
s_{n+1}(B) = s_n(U) + 15s_n(B)
$$

$$
f_n = 1 + 15s_n(A) + 15s_n(B) + 16s_n(U)
$$

Solving these recurrences gives the generating function:

$$
\hat{G}_{22n}(z) = \frac{13z - 1}{(1 - 15z)(1 - 14z)}
$$

This results in the following formula:

$$
\hat{L}_{2,2,n} = 2 \times 15^n - 14^n
$$

Using a similar method, we can also find the generating function and explicit formula for the $2 \times 2 \times n$ lonesum tensors:

$$
G_{22n}(z) = \frac{1 - 21z^2 - 28z^3}{(1 - 5z)(1 - 4z)(1 - 3z)(1 - 2z)}
$$

$$
L_{2,2,n} = 8 \times 5^n - 4 \times 4^n - 4 \times 3^n + 2^n
$$

5 Problem 10

.

.

.

This problem asks to investigate the number of max-closed $l \times m \times n$ tensors. We will compute the generating function for the $2 \times 2 \times n$ case.

If we start with a $2 \times 2 \times 1$ tensor and try to extend it to size $2 \times 2 \times 2$, there are 14 possible $2 \times 2 \times 1$ tensors that can occur to the right as a successor. Let's write abcd for the tensor $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Let's represent the successors $S(t)$ by a bit string of length 14, with the bit positions corresponding to the tensors as follows:

1111, 1101, 1100, 1011, 1010, 1001, 1000, 0111, 0101, 0100, 0011, 0010, 0001, 0000

There are only 7 possibilities, shown in table 2.

Tensor t	Possible successors $S(t)$	Count $c(t)$
$*000$	11 1111 1111 1111	14
$*001$	11 0101 0110 1011	
$*010$	10 0110 0110 1111	
$*011$	10 0100 0110 1011	
$*100$	11 1000 0111 1011	9
$*101$	11 0000 0110 1011	
$*111$	10 0000 0110 1011	

Table 2: List of possible successors for each $2 \times 2 \times 1$ tensor.

If we have a tensor $t_1 t_2 ... t_{n-1}$ made of $2 \times 2 \times 1$ tensors t_i , we can extend it with a tensor t_n where $t_n \in \bigcap$ $\bigcap_{i=1...n-1} S(t_i).$

Let call $s_n(t)$ the number of max-closed $2 \times 2 \times n$ tensors that have the set $S(t)$ as a successor. Then we can setup recurrences for the $s_n(t)$, and based on those count the number of $2 \times 2 \times n$ tensors f_n .

$$
s_0(*000) = 1, s_0(t) = 0, t \neq *000
$$

\n
$$
s_{n+1}(*000) = 2s_n(*000)
$$

\n
$$
s_{n+1}(*001) = 2s_n(*000) + 3s_n(*001)
$$

\n
$$
s_{n+1}(*010) = 2s_n(*000) + 3s_n(*010)
$$

\n
$$
s_{n+1}(*011) = 2s_n(*000) + 2s_n(*001) + 3s_n(*010) + 4s_n(*011)
$$

\n
$$
s_{n+1}(*100) = 2s_n(*000) + 3s_n(*100)
$$

\n
$$
s_{n+1}(*101) = 2s_n(*000) + 2s_n(*001) + 3s_n(*100) + 4s_n(*101)
$$

\n
$$
s_{n+1}(*111) = 2s_n(*000) + 2s_n(*001) + 3s_n(*010) + 3s_n(*011) + 3s_n(*100) + 3s_n(*101) + 6s_n(*111)
$$

\n
$$
s_{n+1}(*111) = 2s_n(*000) + 2s_n(*001) + 3s_n(*010) + 3s_n(*011) + 3s_n(*100) + 3s_n(*101) + 6s_n(*111)
$$

$$
f_n = 1 + \sum_{t} s_{n-1}(t)c(t)
$$

Solving these recurrences gives the generating function

.

$$
F_{22n}(z) = \frac{(1-z)(1-8z^2)}{(1-6z)(1-4z)(1-3z)(1-2z)}
$$

From this generating function, we can find a general formula for f_{22n} :

$$
f_{22n} = 35 \times 6^{n-1} - 24 \times 4^{n-1} + 2 \times 3^{n-1} + 2^{n-1}
$$

Using a similar method, it is possible to find F_{lmn} and f_{lmn} , for a few other $l \times m \times n$:

$$
F_{23n}(z) = \frac{(1-z)(1+2z-309z^2+2846z^3-9208z^4+8516z^5+3408z^6)}{(1-10z)(1-8z)(1-7z)(1-6z)(1-5z)(1-4z)(1-3z)(1-2z)}
$$

$$
f_{23n}(z)=1547156\times10^{n-1}-\frac{203}{30}\times8^n-44\times7^n+\frac{105}{8}\times6^n+32\times5^{n-1}+7\times4^n-\frac{74}{35}\times3^n-\frac{13}{48}\times2^n
$$

$$
1 + 42z - 4211z^{2} + 108914z^{3} - 1291187z^{4} + 6343786z^{5}
$$

+13861607z⁶ - 344488734z⁷ + 1832401390z⁸
- 4550005128z⁹ + 5074183440z¹⁰ - 1696749984z¹¹
- 1696749984z¹¹
(1-15z)(1-13z)(1-12z)(1-11z)(1-10z)(1-9z)
(1-8z)(1-7z)(1-6z)(1-5z)(1-4z)(1-3z)(1-2z)

From the above, we can conjecture that F_{2mn} has the form

$$
\frac{(1-z)(\text{some polynomial in }z \text{ of order}\binom{m+2}{2}-4)}{\prod_{k=1,\dots,\binom{m+2}{2}-2,\binom{m+2}{2}}1-kz}
$$

$$
1+90z-10157z^2+347670z^3-5577997z^4+34044314z^5+272507281z^6-7049450706z^7+62690000360z^8-307963368792z^9+869031680800z^{10}-1285812875072z^{11}+701635229056z^{12}-111688739328z^{13}(1-20z)(1-17z)(1-14z)(1-13z)(1-12z)(1-11z)(1-10z)(1-9z)(1-8z)(1-7z)(1-6z)(1-5z)(1-4z)(1-3z)(1-2z)
$$

6 Future work

.

.

.

.

.

Here are some additional open problems (some of which may be answered in a future version of this note):

1. Are there any other interesting numbers and corresponding bijections hiding in the $120 - 25 = 95$ pairs of matrices that don't give pB-numbers in Problem 2?

We can compute the number $X_{m,n}$ of $\{\phi, \psi\}$ -free matrices for all 95 pairs $\{\phi, \psi\}$, and then group them in classes with the same $X_{m,n}$ for all m and n. Then there are $(1, 5, 2, 1)$ classes of size $(1, 4, 8, 16)$ where $X_{m,n} = X_{n,m}$, and $(2, 6, 2, 0)$ classes where $X_{m,n} \neq X_{n,m}$.

The symmetric class of size 16 seems a good starting point for further investigations.

2. Is there an algorithm to generate all parades of m girls and n boys by swapping 2 persons at each step?

References

- [1] Donald E. Knuth, Parades and poly-Bernoulli numbers, retrieved from https://www-cs-faculty.stanford.edu/~knuth/papers/ poly-Bernoulli.pdf.
- [2] Donald E. Knuth, Sorting and Searching; Volume 3 of The Art of Computer Programming.
- [3] https://oeis.org, The On-Line Encyclopedia of Integer Sequencer \mathbb{R} , N. J. Sloane.