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Abstract

This note records the solution or partial progress made on several open
problems related to poly-Bernouilli (pB) numbers, posed by Knuth in [1].

1 Problem 1

Is there a combinatorial proof for the following formula?

Cm,n =

m∑
k=0

n∑
l=0

(
m

k

)(
n

l

)
Bk,lDm−k,n−l

The left part of the formula is the number of parades with m+1 girls and n
boys starting with a girl. Those are all the parades of the form αg1β. We put
the youngest girl g1 in our parade. For α we choose m− k of the m remaining
girls and n − l of the n boys. The remaining k girls, l boys come after the
youngest girl and make up β. Now α has to be a parade starting with a girl or
be empty, because our full parade has to start with a girl. It has to end with a
boy or be empty, because otherwise g1 is preceded by an older girl, which is not
valid in a parade. So the number of possible α is Dm−k,n−l by equation (17.1)
in [1]. For β any valid parade will do, so there are Bk,l possiblilities. And there
are

(
m
k

)(
n
l

)
ways to divide the girls and boys between α and β. ■

Using variations of the above combinatorial argument, we can dedude new
identities between Bm,n, Cm,n and Dm,n. For example, by using gm, the oldest
girl instead of g1, we find that

Cm,n =

m∑
k=0

n∑
l=0

(
m

k

)(
n

l

)
(Ck−1,l+[k = l = 0])(Cm−k,n−l−1+[m−k = n−l−1 = 0]))

If we start with b1, the youngest boy instead of g1, we find (using [17.2] from
[1]):

Cm,n =

m+1∑
k=0

n−1∑
l=0

(
m+ 1

k

)(
n− 1

l

)
Bk,l(Dm−k,n−l−1 +Dm−k,n−l), n > 0
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And if we start with bn we find

Cm,n =

m+1∑
k=0

n−1∑
l=0

(
m+ 1

k

)(
n− 1

l

)
Ck−1,l(Cm−k,n−l−1+[m−k+1 = n−l−1 = 0])), n > 0

Many more identities can be derives using similar constructions on other
classes from section 17 in [1].

2 Problem 2

All mxn matrices for m ≤ 5, n ≤ 5 were enumerated using a computer program.
Then for all

(
16
2

)
matrix pairs {ϕ, ψ} the program counted how many of themxn

matrices were {ϕ, ψ}-free. There were 25 pairs that resulted in the pB-numbers.
(See table 1).

Bijections for most of these {ϕ, ψ}-pairs were already discussed in [1]. One
slighty new variation are the pairs in the min/max-closed section where one of

the matrices is

(
1 0
0 1

)
. The pair

{(
1 1
0 1

)
,

(
1 0
0 1

)}
corresponds with the

’max-min’-relations, which satisfy the condition

xi ⌣ yj and xi′ ⌣ yi′ implies xmax{i,i′} ⌣ ymin{j,j′}.

And similarly,
{(

1 0
1 1

)
,

(
1 0
0 1

)}
corresponds with the ’min-max’-relations,

which satisfy

xi ⌣ yj and xi′ ⌣ yi′ implies xmin{i,i′} ⌣ ymax{j,j′}.

We can construct bijections to the Γ-free matrices by repeatedly changing

2x2 submatrices of the form

(
1 ∗
1 1

)
to

(
1 ∗
0 1

)
(respectively changing

(
1 1
∗ 1

)
to

(
1 0
∗ 1

)
).

3 Problem 5

Investigate the behaviour of the nonuniformity ratio max0≤r≤nPm,n(r)/min0≤r≤nPm,n(r)
when m and n are large.

Experiments seem to indicate that, for a given n, ifm is large enough (≈ m ≥
n/2), the maximum Pm,n(r) is reached when r = 3, the minimum is reached
when r = 0. Can this behaviour be explained?

4 Problem 9

This problem asks to investigate the number of lonesum l×m×n tensors Ll,m,n

and also the weakly lonesome l ×m× n tensors L̂l,m,n.
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{ψ, ϕ} In bijection with{(
0 0
0 0

)
,

(
0 0
0 1

)}
,
{(

1 1
1 1

)
,

(
1 1
1 0

)}
Strongly Γ-free{(

0 0
0 0

)
,

(
0 0
1 0

)}
,
{(

1 1
1 1

)
,

(
1 1
0 1

)}
{(

0 0
0 0

)
,

(
0 1
0 0

)}
,
{(

1 1
1 1

)
,

(
1 0
1 1

)}
{(

0 0
0 0

)
,

(
1 0
0 0

)}
,
{(

1 1
1 1

)
,

(
0 1
1 1

)}
{(

0 0
0 1

)
,

(
0 0
1 0

)}
,
{(

1 1
1 0

)
,

(
1 1
0 1

)}
Γ-free and L-free{(

0 0
0 1

)
,

(
0 1
0 0

)}
,
{(

1 1
1 0

)
,

(
1 0
1 1

)}
{(

0 0
1 0

)
,

(
1 0
0 0

)}
,
{(

1 1
0 1

)
,

(
0 1
1 1

)}
{(

0 1
0 0

)
,

(
1 0
0 0

)}
,
{(

1 0
1 1

)
,

(
0 1
1 1

)}
{(

0 0
0 1

)
,

(
1 0
0 1

)}
,
{(

1 1
1 0

)
,

(
0 1
1 0

)}
Min/max-closed relations{(

0 0
1 0

)
,

(
0 1
1 0

)}
,
{(

1 1
0 1

)
,

(
1 0
0 1

)}
{(

0 1
0 0

)
,

(
0 1
1 0

)}
,
{(

1 0
1 1

)
,

(
1 0
0 1

)}
{(

1 0
0 0

)
,

(
1 0
0 1

)}
,
{(

0 1
1 1

)
,

(
0 1
1 0

)}
{(

0 1
1 0

)
,

(
1 0
0 1

)}
Lonesum

Table 1: The 25 pairs {ϕ, ψ} that result in pB-numbers. The right pair on each
line is equal to the left one with the ones and zeros swapped.
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For the 2 × 2 × n weakly lonesum tensors, we only have to make sure that

A =

(
1 0
0 1

)
and B =

(
0 1
1 0

)
don’t occur together in the same tensor. Let’s

call sn(U) the number of tensors of size 2× 2× n that don’t contain A and B,
sn(A) the ones that contain A and sn(B) the ones that contain B. This gives
the following recurrences:

s0(U) = 1, s0(A) = s0(B) = 0

sn+1(U) = 14sn(U)

sn+1(A) = sn(U) + 15sn(A)

sn+1(B) = sn(U) + 15sn(B)

fn = 1 + 15sn(A) + 15sn(B) + 16sn(U)

Solving these recurrences gives the generating function:

Ĝ22n(z) =
13z − 1

(1− 15z)(1− 14z)

.
This results in the following formula:

L̂2,2,n = 2× 15n − 14n

Using a similar method, we can also find the generating function and explicit
formula for the 2× 2× n lonesum tensors:

G22n(z) =
1− 21z2 − 28z3

(1− 5z)(1− 4z)(1− 3z)(1− 2z)
.

L2,2,n = 8× 5n − 4× 4n − 4× 3n + 2n

5 Problem 10

This problem asks to investigate the number of max-closed l ×m × n tensors.
We will compute the generating function for the 2× 2× n case.

If we start with a 2×2×1 tensor and try to extend it to size 2×2×2, there
are 14 possible 2×2×1 tensors that can occur to the right as a successor. Let’s

write abcd for the tensor

(
a b
c d

)
. Let’s represent the successors S(t) by a bit

string of length 14, with the bit positions corresponding to the tensors as follows:

1111, 1101, 1100, 1011, 1010, 1001, 1000, 0111, 0101, 0100, 0011, 0010, 0001, 0000

.
There are only 7 possibilities, shown in table 2.
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Tensor t Possible successors S(t) Count c(t)
∗000 11 1111 1111 1111 14
∗001 11 0101 0110 1011 9
∗010 10 0110 0110 1111 9
∗011 10 0100 0110 1011 7
∗100 11 1000 0111 1011 9
∗101 11 0000 0110 1011 7
∗111 10 0000 0110 1011 6

Table 2: List of possible successors for each 2× 2× 1 tensor.

If we have a tensor t1t2...tn−1 made of 2× 2× 1 tensors ti, we can extend it
with a tensor tn where tn ∈

⋂
i=1...n−1

S(ti).

Let call sn(t) the number of max-closed 2× 2× n tensors that have the set
S(t) as a successor. Then we can setup recurrences for the sn(t), and based on
those count the number of 2× 2× n tensors fn.

s0(∗000) = 1, s0(t) = 0, t ̸= ∗000

sn+1(∗000) = 2sn(∗000)

sn+1(∗001) = 2sn(∗000) + 3sn(∗001)

sn+1(∗010) = 2sn(∗000) + 3sn(∗010)

sn+1(∗011) = 2sn(∗000) + 2sn(∗001) + 3sn(∗010) + 4sn(∗011)

sn+1(∗100) = 2sn(∗000) + 3sn(∗100)

sn+1(∗101) = 2sn(∗000) + 2sn(∗001) + 3sn(∗100) + 4sn(∗101)

sn+1(∗111) = 2sn(∗000)+2sn(∗001)+3sn(∗010)+3sn(∗011)+3sn(∗100)+3sn(∗101)+6sn(∗111)

fn = 1 +
∑
t

sn−1(t)c(t)

Solving these recurrences gives the generating function

F22n(z) =
(1− z)(1− 8z2)

(1− 6z)(1− 4z)(1− 3z)(1− 2z)

.
From this generating function, we can find a general formula for f22n:

f22n = 35× 6n−1 − 24× 4n−1 + 2× 3n−1 + 2n−1

Using a similar method, it is possible to find Flmn and flmn, for a few other
l ×m× n:

F23n(z) =
(1− z)(1 + 2z − 309z2 + 2846z3 − 9208z4 + 8516z5 + 3408z6)

(1− 10z)(1− 8z)(1− 7z)(1− 6z)(1− 5z)(1− 4z)(1− 3z)(1− 2z)
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.

f23n(z) = 1547156×10n−1−203

30
×8n−44×7n+

105

8
×6n+32×5n−1+7×4n−74

35
×3n−13

48
×2n

.

F24n(z) = (1− z)

1 + 42z − 4211z2 + 108914z3 − 1291187z4 + 6343786z5

+13861607z6 − 344488734z7 + 1832401390z8

− 4550005128z9 + 5074183440z10 − 1696749984z11

(1− 15z)(1− 13z)(1− 12z)(1− 11z)(1− 10z)(1− 9z)

(1− 8z)(1− 7z)(1− 6z)(1− 5z)(1− 4z)(1− 3z)(1− 2z)

.
From the above, we can conjecture that F2mn has the form

(1− z)(some polynomial in z of order
(
m+2
2

)
− 4)∏

k=1,...,(m+2
2 )−2,(m+2

2 ) 1− kz

.

F33n(z) = (1−z)

1 + 90z − 10157z2 + 347670z3 − 5577997z4 + 34044314z5

+272507281z6 − 7049450706z7 + 62690000360z8 − 307963368792z9

+ 869031680800z10 − 1285812875072z11 + 701635229056z12 − 111688739328z13

(1− 20z)(1− 17z)(1− 14z)(1− 13z)(1− 12z)(1− 11z)(1− 10z)

(1− 9z)(1− 8z)(1− 7z)(1− 6z)(1− 5z)(1− 4z)(1− 3z)(1− 2z)

.

6 Future work

Here are some additional open problems (some of which may be answered in a
future version of this note):

1. Are there any other interesting numbers and corresponding bijections hid-
ing in the 120− 25 = 95 pairs of matrices that don’t give pB-numbers in
Problem 2?

We can compute the number Xm,n of {ϕ, ψ}-free matrices for all 95 pairs {ϕ, ψ},
and then group them in classes with the same Xm,n for all m and n. Then there
are (1, 5, 2, 1) classes of size (1, 4, 8, 16) where Xm,n = Xn,m, and (2, 6, 2, 0)
classes where Xm,n ̸= Xn,m.

The symmetric class of size 16 seems a good starting point for further inves-
tigations.

2. Is there an algorithm to generate all parades of m girls and n boys by
swapping 2 persons at each step?
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