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CORRIGENDA.

Vor. VII.
p- 69, end of line 12, omit “ the”.
p. 71, lines 8, 4, 5, 6, 12,13 from bottom, for (1) rezd (—1).
p- 89, last line, for A =8&ec. read A’ =&e.

Vor. VIII.
p. 22, line 26, for r read =.
p. 85, line 2 from bottom, insert  point’* hefore (¢-') &e.
p. 46, line 8 from bottom, for 2dd reud 2dd’.
p- 88, line 8 from bottom, fur 46 read 4.6, and for (3) read (2).
p. 100, line 13, for k read 3.
p. 109, last line, for Hymer's read Hymers’,
p- 110, line 4 from top, for DM. DM read DM, DM’.
p- 110, line 4 from bottom, for CF read MH.
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1496. Prove that a triangular pyramid whose verticesare A, B, C, D,
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and a parallelepiped formed from it as follows, have the same
oentre of gravity ; viz., through any point in each of the oppo-
site edges AB and CD draw straight lines parallel to the other
edge, we thus get two parallel plane faces of the parullele-
piped ; two other parallel faces of it are similarly obtained
from the opposite edges AC and BD; and the tlnrd pair of
faces are obtained from the remaining two opposite edgea AD &7
and BO. ...t e e covees
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f " 0. 3¢ (sin 0 sin #)* 'sin(9-0) =

o [}
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a reentrant quadrilateral is B e
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1843. 1. Three points being taken at random within a circle,
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wholly within the given circle.
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find the chance that the sphere drawn through them will lie
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at random. Find the chance that their anharmonic ratio
(estimated by the quotient of the whole into the middle by
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1911. Given four points, and also the * conic of centres”— viz., the
conic which is the locus of the centres of the several conics
which pass through the four given points; then if a conic
through the four given points has for its centre a given point
on the conic of centres, it is required to find a construction
for the asymptotes of this conio. ...........c.cccvcvviviinnnniininnn.

1917. Bupposing the sarface of a sphere to be made up of an indefinite
number of points, and straight lines to be drawn through
every two of those points, determine the law of density of this
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Of the BPhere. ..........ccccviiiiiiiniiiiiiieiiriueeeniisenserseesnaenes

1927. To find the conic of least eccentricity that can be drawn
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through four given points. ........ccceveeriviiniiiiiiiieeiinienanenns 107
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ing that 4141—1 is exactly divisible by 83. ...........c.ccceeerunees
1959. If the roots of the equation (a,b, ¢, d, ) (v, 1)* =0 are
a, B, 7,8, find the equation whose roots are
(@—B) (a—7) (@=3), &0. .coevirrrenerennnns
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Draw a chord of one oftwo given circles so as to touch and

i1

be cutin a given ratio at its point of contact with the other.... 110

Find what integral value of x renders 3”;;729

ber, or else prove it impossible. ........c.c.oceiiiiiiiiiiiiniiniinn..

=g whole nun.

. Find the whole number x so that 827—29 may be divisible by

BB ittt e e
A point P is given (1) on the base of a triangle, (2) on a
cirole; draw & transversal through another given point Q to
cut (1) or (2) so that the intercept may subtend a given or a
maximam angle at P. ............ccoiviiiiiiiieni e
Form 2% —1 symbols into triads, so that every pair of the
symbols shall appear once in the triads. ...........ccococevvennnnns

Find a curve such that the area f ydz bounded by two ordi-

nates, whose mutual distance is constant, varies directly as
the ordinate midway between them ..........c.....covveeeninn.l,

Prove that the equation of the osculating circle at the extre-
mity of the major axis of the ellipse r++ = 2a is
“re 7’3
B + —_—= b2 U
a+c a—c
Place the numbers 1 to 36 in six rows, six in a row, so that
each row, vertical, lateral, and diagonal, shall make 111.

Prove that the sum of the ternary products of the six quan-
tities
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67

68

(a—.b;’ —c)’(c—d)’.‘(d—e;’ge—a;’ a—d)*(d=b)3(b—c)2 (c— o’)se—aﬁ)
(a—0)3(d—d)*(d—e)*(e—c)*(c—a)? | (a—c)? c-d}’éd—b}’(b-:e)’ e—a)3
(a—b)2(b—e)*(e—c)*(c—d)*(d—a)? | (a—c)?(c—b)? b—e)’(e-—d)’(d—ag’

(a—0)*(c—e)*(e—b)2(b—d)*(d—a)?
(a— ) oo
(a—e)?(e=b)3(b—c)*(c—d)*(d—a)?
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is equal to the sum of the ternary products of the comple-
mentary six, viz.,
a—d)3}(d—e) (e~

*(d—e)3(e—b)3(b— c;"éc—a)2 c)3(c-bd

..................

Find the forms of ¢ and y which make the mean value of
¢ (z) from 2 = a—c to @ = a+ ¢ take the form ¢ (a). ¥ (¢)....

Sixty-three school-boys walk out three abreast for thirty-one
days in succession ; it is required to arrange them daily so
that no two of them shall walk twioe abreast. ...........c..c......
A Cartesian oval or ellipse is cut by an awial circle [<.e. a
circle bisected by the axis] in two points whose vectorial
coordinates referred to two of the foci are (r, 7) and (s, &).
Show that if a circle concentrio to the former be drawn

“toucking the curve, the vectorial coordinates of either point

of contact a.re{i (r+3), i(r’+e’)}. S N
1. Prove that if ABCD be a quadrilateral circumseribed
about a circle, and P, Q, R, 8 the points of contact, then AC,
BD, RP, SQ pass through one point.

2(b— a)?

a—b)2(b—e)?(e— :I;’(d— c;’(c—a, 2
ga—b)*(b—d)*w-c)*(o-er(e-a)’
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2. Henoe show that the locus of the intersection of them

lines joining the ends of chords in a circle which pass throngh
& given point is the polar of that point. ...........ccceeequenne

Given a oonio, to find four points such that all the conics
through the four points may have their centres in the given
L T g

If four roots of a quintic be in harmonic progression, prove
that the followmg relation between the invariants holds, viz.,
J3—-27 ,383JK +213.33L =0, (where J, K, L are the funda.
mental invariants as given in Balmon’s Higlwr Algebra, 2nd
edition, pp. 184—187.) ...ttt

. Deacribe & circle whose centre shall be on a given diameter

of a given circle, to cut tha.t circle orthogonally and to touch
another given circle. ............... RN

Find the locus of points such that the chord of contact of
tangents drawn to a given oconic from any one of the points
is of constant length. ..........cccovviiiiiiiiiiniiiiii

1. If two triangles in a plane are similar, but right and left in
poseition ; then the lines drawn from the angular points of one
triangle parallel, perpendicular, or isoclinal to the correspond-
ing sides of the other triangle, meet in a point. Find its locus,
if the first triangle remain fixed, while the second moves in
any manner in the plane.

2. Analytically, we may assume the sums of the corres-
ponding angles to vanish. ..........ccooiiiiiiii

. The circles of curvature at the extremities of a pair of semi-

conjugate diameters of an ellipse are drawn; find (1) the en-
velop of their radical axis,and (2) the curve upoun which their
points of intersection Lie...........ccceivuiiiiiiininiiniiiiininnnns

A is any point within or without & conio, B any pomt on its

polar, CD a fixed straight line. Tangents BC, BD are drawn:

cutting CD in C,D. AD, AC meet BC, BD in E, F'; show
that EF is a fixed straight line and meets CD on the polar
1 3 VN .

Through the angular points of the triangle of reference ABC,
draw B’C’, C’A’, A’B’ respectively perpendicular to BC, CA,
AB, and find the trilinear equation of the circle drawn round
the triangle A'B/C/ ..........ccooeiiiiiiiiiiiiiii e

A tetrahedron is thrown into the air and a small shot fired
through it; show. that the chance of one of the faces (which
is marked) bemg perforated, is 2F =8, where F is the area
of the marked face and S the whole surfa.oe of the tetrahe-
| Oy SO PR

A point is taken at random in each side of a triangle ABC,

so forming a second trianglée DEK; determine the locus of
those points within ABC which have a given probability p of
being enclosed within the triangle DEF.................cocuvennnn

Show that the four straight lines represented by the equations
u=0, v=0, W®+2muv+m =0, will form a harmonic pencil
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If three points be taken at random on the surface of & sphere,
find the chance (1) that some one of the angles of the triangle
they determine will be greater than the sum of the other two,
22) that the area will exceed a great circle of the sphere, and

8) that the area will exceed & given &rea .............cciveeerens

g_l'a) If P, Q be two points taken at random within the trumgle
C, what is the chance that the points A, B, P, Q may form
8 convex quadrangle P.............. PPN RPN
1. If ABC is a self-conjugate triangle of a oonio, to which DP,
DQ are tangents at P and Q, then any conic through ABCD
cutg PQ harmonically.

2. Hence, if DM, DM’ are the perpendiculars on the axes,
DM, DM’ bisect the angles PMQ, PM/Q. ....ccccovvvvirnancnnnnes

. Find the average (1) of the areas of all the circles which can

be drawn within the circumference of a given circle, and (2)
of the volumes of all the spheres which can be drawn within
the surface of a given sphere; ‘also find the probability (3)
that any one of the circles taken at random from (1) will
exceed a given circle, and (4) that any one of the spheres

taken at random from (2) will exceed a given sphere. .........

If the side AD of a square be divided harmonically in B and
C, and squares be placed on AB, BC, CD, falling mthout the
square on AD, prove that the ciroles round the four squares
pass through a common pomt. ....... cetsrcsconasssnsrassorsacene e

. 8il'on désigne par a, b, ¢, o, v, c’ les odtéad’un hexagone inscrit

dans un cercle; par A }a dmgonale qui n’a aucnne extrémité
commune avec les cétés opposés a et a’; par B, O les deux
autres diagonales analognes; on aura les deux équations
suivantes :—
B:Ca+ B%'c—Ba’ (a?-b3—¢?) +a%'c’=CBa’ + C%'c
—Ca (a2 —b%3—c%) +a%'d,
BiCa’ + B®bc—Ba (a3~ b2~ ¢°) + a’be=CBa + Cbe
-~ 02 (a*—b2—c?) + a'%bo,
qui permettent d’établir mne équation entre les cotés de
Thexagone et une des grandes diagonales. (J’appelle grande
diagonale toute diagonale qui joint deux sommets opposés.)...

Proofs are required of the following generalization of a well-
known theorem :—If from any .point on & conic lines be drawn
to meet the three sides of any inscribed triangle, parallel to
the diameters bxsectmg those sides respectively, the three
points of intersection will be in the same straight line..........

If a body of homogeneoul ﬂupd be thoroughly shaken and
allowed to come to rest again, the chance that no particle of
the fluid now occupies its ‘originsl position is €1, where ¢ is
the base of Napierian Iogarithms. ........cccovviireiiinieiniennnas e
If from the middles of the arcs which subtend the three sides
of an inscribed triangle, three sets of perpendiculars he drawn
to the three sides of the triangle, and their feet joined, a new
triangle will be formed ; tg rove that the sum of the segments
of the perpendiculars of e original triangle, between their
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point of intersection and the sides of the new triangle, is
equal to the excess of the diameter of the ciroumscribing circle
above the radius of the inscribed circle. ........ esereerancaniinnns 62
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2406, Show that L** DY
r(2n+2)
B B -1 B
emg{intr_m Bays n(n—=1) Buys
® {,,,.,.1 1'n+2+ 1.2 n+3

2 B n+3 B
2),. =4f(@"t 1) __Tnts M35y Tads a0
.( ) {( )(n+1)(n+2) 1( )~(n+2)(n+3) }
where B is the Representative of Bernoulli’s numbers...... e 20
2416. Find the pointin a plane the sum of the squares of whose dis-
tances from any number of given lines in the plane shall be
the minimum. ............ooevviniiiiiiiiiiiiienne [N 75
2417. Denoting the roots of the cubic equation 2®+pr+g =0 by
@, B, 7, it is required to form the equation the roots of which
8T a+ By, BHYa, Y +aB ....ieiiiiiiiiiii . 28
2418. Ifthe vertices of a pentagon be A, B, C, D, E ; and ifa, 8,0,d, ¢
be the areas of the triangles EAB, ABC, BCD, CDE, DEA ;
show that the area P of the pentagon is given by the equation
PP—(a+b+c+d)P+(ab+bctcdt+detea) =0. ... 109
2426. If F, denote the fraction .

l+as+at.. +a™
_a_a._a-_li-”i__p prove that, in general, if # is not = 1,

~&.}

a+aP+...+
1..F >"*1 _L)’, LE LA 1Y g
1)..F,> ol Vo s @) Fp>5-— e+ {() ol F,
increases With 7. ......ccceiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieneniiiineneens 58

2429. An ellipse (A) and hyperbola (B) have the same transverse and
conjugate diameters ; prove that the polar of any point on (B)
with reference to (A) touches(B). .......cccceeierrs curvrvenennas 97

2438. Two parabolas turned in opposite directions have the same
axis and coincident vertices ; if from the vertex as centre, with
a diameter a mean proportional between the parameters of the
curves, a circle be described, prove that the polar of any point
on one with reference to the circle touches the other. ......... 98.

2444, Upon any three chords (AB, AC, AD) of a circle as diameters
circles are drawn, cutting one another again in E, F, G;
prove that EFG is a straight line...........coceevees Ceerraeeeaes 48

2447. If inthe development of sin™!. 2, viz.,
2! 1 28 1.8 at

1t2°3%2.4°% 4
every number which ocours is increased by unity, prove that
the result, i.e., o . o, .
2 2.4
el - S
23’3 3386
is equal to% (BIN1E)? . 59
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2452,
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Prove that if P, Q be two points chosen at random inside &
tetrahedron ABCD, the chanoce is an even one of ABCPQ form-
ing the angles of & convew 8OLA. ........c..cceiiiiiiiiiiiiiiiniiii

If @ be a cube root of unity, express the roots of the equation

aa + bzt +§{b’ +w(ac—b9)}z+£§{a,’d+3(a—l)(ab—b’)} =0,

2460.

2466.

2471,

2472,

2473.

in terms of a, B, v, the roots of az?+ 3bz2 + 3cx +d=0. .........

Find the conic which is the locus of a point such that the
lines joining it to a pair of conjugate foci are harmonicals to
the conie. The circular points at infinity being considered as
conjugate foci, the three conics thus obtained and the conio
in question have four points in common. .............ccoeeiiiinniae
If four points A, B, C, D be either in the same plane or not,
and if the three rectangles AB.CD, AC.DB, AD.BC be
taken ; the sum of any two of them is greater than the
third, except when the points lie on the circumference of a
L) L= P STt

Let a given surface, having a convex boundary of any form
whatever, bereferred to its centre of gravity and the principal
axes of rotation situated in its plane; and, corresponding to
an abscissa z, lety, y’ be the respective distances of the boun-
dary above and below the axis ; then if 4, k& denote the radii
of gyration round the axes, and M the total area, we shall

e v P
= ’L. = _+—.
M= [23dz - B 3= i

3 2dap + 2dx
Let also Asfzﬂdzy_’il', B=/zd.r”f-" 2 1\y['fz/

and C = }A +3B; then

1. If three points be taken at random, on the given surface,
the average area of the triangle connecting them, in parts of
KK+ C

M3

the total area, ‘is (A)= ; and the averagesquare of the

area, expressed in parts of the square of the total area, is
(ay=2.27
2. If four points be taken at random, the probability that the

quadrilateral shall be reentrant =4 (A).
8. Iffive points be taken at random on the surface, the pro-

bability of

a convex pentagon =1—10(A)+10(A%),

one reentrant point =  10(A)—20 (A%,

two reentrant points = 10
Through four points on a circle to draw a conic, such that an
axis may pass through the centre of the circle. ..................

Show (1) how to plant 81 trees so as to form 800 rows of 3 trees

- in a row, and (2) how to plant 10 trees so as to form 10 rows

of three treesin & YoW.........v.cvvveiiienieererniennuniieneennneenins
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2276.

2276,

2286

2303,

2312.

28.7.

UNSOLVED QUESTIONS.
-~

¥nsolbed Ruestions.

(Proposed by the Rev. J. BLIsSARD.)—Required to show that if

Sf(@)= ';L:" - c""l(.’;l) + 2 (’i-:) ::'3) — &c., then ¢y, ¢, C5...

. 1 1 1 1
that — + — N
can be so determined atl + ol 2"”1&0 +(”_l)m+1my
be equated to any ome of the m functions, viz., f (mn), f(mn—1),
S (mn—2),.... f(mn—m+1), which fuuctions therefore are all of
equal value.

(Proposed by T. CorTERILL, M.A.)—If tangents to a cubic at the
points ABCD meet in a point T on the curve, & conic through
T A B C will cut the cubic again in points collinear with D, the inter-
section of the tangents to the cubic at these points is on the conic,
and is collinear with the intersection of the tapgents to the conic at
the same points and T.

(Proposed by Messrs. HERMITE and SYLvesTER.)—(1.) Prove that
the Jacobian of two binary quantics caunot have a less number of
real linear factors than the difference between the number of such in
the two quantics themselves separately taken.

(2.) Prove that if ¢,y are three binary quantics, the number of
real linear factors in F' cannot exceed the number of such in

. d_,d
(92+99) (s 5~ L) F-
(3.) From g) deduce (1), and obtain RoLLE’S theorem as a parti-
case of the latter. ~ .

posed by C. TAYLOR, M.A.)—(1.) Interpret the tangential equa-
tion pgr = 0. (2) Represent by u tangential equation a pair of
straight lines regarded as a limit of a conic.

by W. K. CLIFFORD, B.A.)—A circle is drawn so that its
radical axis with respect to the focus S of a parabola is u tangent to
the bola ; if a tangent to the circle cut the parabola in A, B, and
if SC, bisecting the angle ANB, cut AB in C, the locus' of Cisa
straight line. ’

(Proposed by Professor CAYLEY.)— Trace the curve defined by the
equ;timns given in the eolution of Qucst. 2110. (Reprint, Yol. VIIL.,
p- 17.)

(Proposed by the late G. C. Dx MogaaxN, M.A.J—If pg, Py, Ps -..q0 G1r 0
P,
«+ - be whole numbers, such that q—-" has a limit finite or 0, the scries
”»

Po_ Py _Pi_ . isan incommensurable quantity.

9o N 9eN9s

(Proposed by W. 8. BurNsIDE. M.A.)—1. Construct a triangle of

given species, having its vertices on tbree concentric circles.
2. The triangle being equilateral, what relation exists betweon

the radii when only one such triangle can be so coustructed ?
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2887,

2842,

2871.

2376.

2381.

oo

UNSOLVED QUESTIONS. xiii

(Proposed by Professor SYLv=sTER.)—By the form probability of a
group, understand the probability of a group of a given number of
points satisfying a prescribed condition of form. N

Let ABCD be any quadrilateral ; ¢ the form probability of a group
of points limited to the area ABCD; p, g; r, & the corresponding pro-
babilities when one of the group is restricted to the lines AB, BC,
CD, DA respectively. Show that if four forces act along the suc-
cessive sides of ABCD, regarded as a rigid figure, with intensities pro-
portional to ¢—p, p—g, ¢—1r, p—8& respectively, they will keep the
quadrilateral at rest.

(Proposed by the Rev. R. TowxNsexp, F.R.8.)—Construct the mini-

mum triangle of given species whose three sides shall touch three

given circles.

(Proposed by Professor CAYLEY.)—Consider a triangle ABC, and a
int P; and let AP meet BC in M, and BP meet AC in N (if, to

gz the ideas, P is within ABC, then M, N are in the sides BC, AC

respectively, and the triangles APN, BPM areregarded as positive).

1. Find the locus of the point P, such that tlie ratio

(A APN + A BPM) : A ABC may have a'given value.

2. Drawing from each point P,-at right angles to the plane of the
triangle, an ordinate PQ of a length proportional to the foregoing
ratio(A APN + A BPM) : A ABC, trace the surface which is the locus
of the point Q,—a surface which has, it is clear; the loci in (1) for its
contour lines; and

8. Find the volume of the iortion standing on ABC as base.

4. Deduce the solution of the following case of the four-point pro.
blem ; viz., taking the points P, Q at random within the triangle
ABC, what is the chance that the points A, B, P, Q may form a
convex quadrangle? [For solutions of part (%) see Reprint,
Vol. VIII., pp. 36, 74.]

Proposed by the Rev. W. Rouzrm, M.A.)—Being given a system
((>f confocal s{)heﬁml conics, it which the d)imnee tween the ¥wi is
§w, prove that the family of curves cutting them under an angle of
45° is algebraic, and determine ite equution.

(Proposed by W, 8, BurxNsIDE, M.A.)—1. Determine the degree of
the locus represented by the equation

@B T 2B e n-2 7 e B-2% csC=1,

P o Y PP 2n

where a, B, are the distances of uny point from the vertices of the

triangle ABC, and p, p,, 7, the perpendiculars of the sume triangle.
2. Show that the curve given by the above equation is the same as

tlut7 r)eferrsd to by Pr  CaAYLEYin Quest. 2110. (Reprint, Vol. 1.,

p. 17.

(Proposed by Professor CREMONA.)—Deux droites qui divisent hor.

moniquement les trois diagonaks d’un quadrilat rencontr nt

7\1 guutre points harmoniques toute conique inscrite duus le quadri-

utere.

. (Proposed by the late G. C. Dn MouaA¥, MA)—

Prove that f +® ;’¢ (z-— g)da'-o,abein‘ anything positive ; and
. -®
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UNSOLVED QUESTIONS.

f+wi¢(z+§)dz-2f+“?dz, a being infinitely small and
-®

2891.

2893.

2399.

2408.

positive, and ¢ being such a function that the subject of integration is
finite for all finite values of z, however small ¢ may be. In the

second case, if 2% be infinite when z = 0, the integral on the right
x -

must be replaced by 2/+° % {w—¢ (-z)} dz.
-®

(Proposed by Professor SYLVESTER.)—Let u points be given on a cabic
curve. Through them draw any curve (simple or compound) of de-
gree v; the remaining 3v—pu (say u’) points may be termed a first
residuum to the given ones. Through these u’ points draw any
curve of degree » ; the remaining 8»"—u’ points may be termed a
residuum of the second order to the given ones ; and in this way we
may form at pleasure a series of residua of the third, fourth, and of
any higher order, If u is of the form 8i—1, a residuum of the first
or any odd order; and if u is of the form 8i+1, a residuam of the
second or any even order in such series, may be made to consist of a
single point,wluch I call the residual of the original 4 points. Prove
that any such residual is dependent wholly and solely on the original
@ points, being independent of the number, degrees, and forms of
the successiye auxiliary curves employed to arrive at it.

(Proposed by Dr. SarMoN, F.R.S.)——1. What is the degree of the
evolute of a circular cubic or bi-circular quartic? 2. Generally, how
are the characteristics of the evolute affected when the curve is circular
or bi-circular ?
(Proposed by the Rev. R. Towwsexp, F.R.S.)—Find a point on a
sphere such that the triangle determined by the middle points of the
ree arcs connecting it with three given points on the sphere shall
have two of its sides given.

(Proposed by W. S. BURNSIDE, M.A.)—Prove that confocal cir-
cular cubics cut at right angles : taking advantage of Prof. SYLvEs-
TER'S Feneration of these curves given in Quest. 1990. (Reprint,
Vol. VI., p. 88.) .
(Proposed by S.. RoBERTS, M.A.)— Representing by R (2, g, 2)
the reciprocal of u, explain (1) the nature of the locus
R (:_:, s d%) _ 0, and account for its degree; and (2) give cor-
Y
responding explanations relative to space of three dimensions.

2412.. (Proposed by Professor CREMONA.)—La surface de STEINER ne con-

2413.

tient pas de courbes d’ordre impair (ni réelles ni imaginaires) ; et
toute courbe d’ordre 2m placée sur cette surface peut dtre transformée
rationnellement en (& punteggiata projettivamente a) une courbe plane
d’ordre n.

(Proposed by Professor MANNHEIM.)—Three planes at right angles
to each other, and intersecting in a point A, touch an ellipsoid
whose centre is B. Prove that the connector AB and the normals
at the three points of contact are generators of a hyperboloid.

[




UNSOLVED QUESTIONS. XV

No.

2421. (Proposed by M. W. CrorroN, B.A.)—Two places are taken at
random in the northern hemisphere ; find the chance of their distance
exceeding 90° of a great circle.

2428. (Proposed by the Rev. J. BLissARD.)—Prove that

T (ma) n . .
1 ee ne =0 a=
( )' T (nx) (?"" ) m
T (z) r(z+2) =2 T'(z+4) x4
2)eee. - - — . —=—&c. =0,
@ o " TEar2) T3 TEars) T 233

2432, (Proposed by Captain A. R. CLARKE, R.E., F.R.8.)—Two perfectly
flexible and inextensible films, being equal circles in form, are
fastened together along the perimeter : what is the greatest amount
of air that this could be made to hold (as an air-cushion) ?

2458. (Proposed by S. WaTsoN.)—Three points A, B, C are taken at random
on the circumference of a given circle; find the chance that a given
point P within the circle lies within the triangle ABC.

2462. (Proposed by J. Grirrrras, M.A.)—Trace the curve represented by
the tangential equation

(sinA.pr+5in B, yA+8in C . Au)=dAus (A cos A+ cos B=v cos C).

2474. (Proposed by Professor EVERETT). —
If (i)’ + (i) : =0, show that when #» is any positive integer
\dz dy

(coso.d%+sin0 .%)“= (m”d—i +sinno.£) (dé)’; and
- hence prove the theorem(due to Rankine and Stokes) that at every multiple
point in & plané curve which fulfils the condition g + ';?;:. -0,
Yy
the branches made equal angles with each other.

2476. (Proposed by ExnumMaTus.)—A point is taken at random in each
fuce of a tetrahedron ABCD; these points form an inscribed tetra-
hedron A’B’C’D’. Determine the locus of all those points within
ABCD which have a givén probability p of being within A‘B’C’D’,

2482, (Proposed by H. R. GREER, B,A.)—A quadrilateral circumscribes an
ellipse, the eccentric angles of the points of contact being a, 8, v, 3.
Prove that the condition that a pair of opposite vertices should lie on
a confocal conic may be thus expressed :
a?(cos A +cos B +cos C + cos D) (cos A + cos B—cos C— cos D) x
(cos C +cos A —cos B—cos D) (cos B + cos C—cos A—cos D)=
" b7 (sin A +sin B 4 sin C +sin D) (sin A +sin B —sin C—sin D) x
) (sin C + sin A—sin B—sin D) (sin B+sin C—sin A~sin D);_
where A=3(—a+B+v+3), B=1(a—B+y+3),
C=3(at+B—7+3), D=}(¢+B+1_-:8).
Hence deduce a solution of Mr. C. Taylor’s unsolved Question
1819 (Reprint, Vol. V., p. 16).
2492. (Proposed by Professor SYLVESTER.)—Prove that the mean distance
between any two points taken arbitrarily within a triangle is a con-
stant fraction of the mean of the mean distances of the angles from

'
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2502.

2503.

2512.

UNSOLVED QURESTIONS.

‘the séveral points in the opposite sides, and determine the value of
the fraction, Show also that the samé is true of the mean distance
between two points in any parallelogram, and determine the value of
the fraction for that case.

. (Proposed by W. 8. B. Woorrousg, F.R.A.8.)—Equal ents are

cut 9&' fro.m two opposite corners of a given rectangle, thé. lines of
section being parallel to the diagonal ; determine their magnitude
sdch that if five points be taken at random on the remaining y
the probability of their forming the apices ofa convex pentagon shall
be 3 maximum.

(Proposed by J. Grryrrras, M.A.)—If A, B, C, D be fanctions of
‘@, 9, £; and A,, B;, C), D, be certain constants; required the en-
velope of A+ AB+uC+»D = 0, when the variables A, u, » are con-
necz}:u: byl the two equations A;+AB;+ uC+vD; = 0, A%+ pu3+»2
—2apy = 1. .o

(Proposed by H. R. GrEER, B.A.)—Prove that the number of
normals that ean be drawn from a point in space of p dimensions to a
(hyper)? -2 surface (i.e., what corresponds to a surface in space of

three dimensions) of the sth degree is _"_2 {(r—1-1}.
. ”—

(Proposed b{ Professor Cayrey.)—If B,C, Q, R are any given
points, find the locus of a puint A such that
AQ.AR.BC+BQ.BR. CA+CQ.CR.AB=BC.CA .AB.

. " N.B.—Thb- construction of one point on the locus is given by the
theorem, Quest. 2010 (Reprint, Vol. VL., p. 43).

oo by F. C. MATEEWS, M.A.)—A man has a weight of P Ibs.
which is broken into » pieces, each being integral in lbs.; find the
- least value of » such that it may be ible to weigh with the pieces

all weights from 11b. up to PI ‘ind also the maximum value of
P col nding to any value of #; and find, furthermore, with any
value of P and the corresponding minimum of s, the total number of

* distinct modes of partition which will satisfy the condition.

2520.

2523.

(Proposed by Captain A. B. Craexs, F.R.8.)—Three points are
taken at random iu a given triangle ; the probability (p) that they
enclose a given point whose triangular coordinates are z, y, 2, is

' p =F( 9 2)+F(y,ea)+F (s 29),

where F (s, 9, £)=2sys (1—627) + (63’6 —24y") log (1 + yi)

(Proposed by T. SAvAGE, M.A)—1. If A, B, C be three closed
areas sitmtex in sach a manner 1hnt no straight line can be drawn
meeting more than two of them, the average area of all triangles
formed by joining three points taken at random in A, B, C respec.
tively is equal to the area of the triangle formed by joining the centres
of gravity of A, B, C.

2. If A,B, C, D be four closed volumes such that (1) no straight
line can meet more than two, and (2) no plane more than three, the
“average volume of the tetrahedron formed by joining four points taken
at random in A, B, C, D respectively is equal to the volume of the

tetrihedron formed by joining the centres of gravity of A, B, C,D
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WITH ADDITIONAL PAPERS AND BOLUTIONS.

AT RANDOM: No. IV,
By W. 8. B. Woounousg, F.R.A.S.

THE opening paragraph of Mr. GoprraY’s remarks, No. III., upon
‘the phrase “at random,” (R?m'nf, Vol. VIIL, p. 98), intimating the
necessity of strict definitions of random quantities, cannot of course be
objec to, since mathematical investigations of every kind ought inva-
riably to procecd upon accurate definitions. But 1 would here repeat my
first statement, that the phrase *at random’” hasin general only one absolute
and unqualified meaning ; that the assemblage of quantities all equally likely,
to which the random one belongs, should be elicited from the true nature of
the problem, and not engrafted upon it as an arbitrary hypothesis, however
fensible ; and that mathematicians perfectly agree as to the precise meaning
of ““a line drawn at random from a given point,” and of “a point taken at
random on a given area.”

The example relating to the projectile * thrown at random from a point’”
is not a bad illustration. Looking at the simple phraseology of the question,
I unhesitatingly approve of the solution of the minority of candidates who
took a hemisphere with the point as centre, and assumed that the chance of
the direction of projection meeting any portion of the surface would be pro-

. portional to the area of that portion. According to the other solution, it is

.assumed that all azimuths are equally probable and all altitudes equally pro-
bable, so that all directions in space are not equally prohable, the probability
increasing towards the zenith. The former solution agrees with the suppo-
sition that the gun is worked on a pivot so as to move freely in all directions

. alike; the latter supposes it to be worked separately in azimath and altitude,
and it derives its chief support from the circumstance that the assaumption is
consistent with certain mechanical conditions, though at variance with the
strict wording of the question.
" 1t does not appear that anything more can be s1id on the subject, withont
trespassing unnecessarily upon your valuable pages; but if Mr. GonpFeAY
should consider it to admit of any farther elncidation, 1 should like to know
whether he really supposes the material discrepancies between the results of

v, B
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the different investigations of the * four point problem” have anything what-
ever to do with any existing misconceptions as to the simple definition of a
«random point,” or of any want of accord as to what that definition should
be. This indeed was the principal theme of Mr. Godfray’s irst paper ¢ On
some Problems in the Theory of Chances,’” and I am still compelled to with-
hold my asseut from what he had ussuined, especially in reference to the
* four point problem.”

2249, (Proposed by Professor SYLVESTER.)—Prove that the sum of the
ternary products of the six quantities
(a—a)}(d—b6)3(d—c)(c-e)Pi(e—a)?

(a_:): éf -;)):Efi—d)ffd_?“’?-a)’ (a—c)? (c—d)(d - b)’(b—e)? (e—a)®
- - —e)i (e—c) (c— —c)*(c— ~b)*(b—e)? (e—a

A4 b o o e 4 8 e A e e
is equal to the sum of the ternary products of the complementary six, viz.,

2a—c)’ (c—eR(e—b)(b—d)?(d—a)? | (a—b)*(b—e)? (e—d)*(d—c)® ic—a)’
a—d)?(d—e) (e—b)3(b~c)}c—aj? | (a—d) (d—e)* (e—c)? (c—b)* (b—a)
(a—e)} (e—b)! (b—c)* (c—d)} (d—a)* | (a—b)* (b—d)*(d—c)F (c—e)® (e—a)*

) 1. Solution by the PROPOSER.
Call p;, p; the two sums in question, and let @ = 0; then p, becomes

3IL%+3M2+3N%,
where L = b*cde.(c—d)? (c—e)® (d—e)2 (b—c) (b—d) (b—e),
also M= b3c3de. (d—e) (b—c)® (b—d) (b—e) (c—d) (c—e),

and N = b2c2d%.(d—e)%(c—e)?(b—e)2(b—c) (c—d) (d-0),
the summation referring to the interchanges of b, ¢, d, e with one another.
Thus the effect of an interchange between any two of the letters 3, ¢, d, ¢

is to leave p; unaltered, and consequently p, and ps are identical whenever

any one of the quantities a, b, ¢, d, e vaniahes,

- But in general (p;—p,)® is obviously from its form an invariant of the

function (with unity for its leading term) whose roots are a, b, ¢, d, e, and

this invariant, if not zero, from what has been shown above, contains as a

factor the last coefficient of such function: but no coefficient of a quantic can
- ever be contaiged in any of its invariunts ; for if 2o, an arbitrary linear func-

tion of all the coefficients would enter into the same. Hence p; = p,.

Nore.—M. HERMITE appears to have been the first to notice this pro-
- perty of the ternary products of the separate groups, in his memoir on the
equation of the 5th Degree in the Comgztes Rendus for the present year.

The sum of such products (say R) will eusily be seen to have the property
of vanishing whenever @ = b and ¢ = d; for in such case 4 out of the 6 terms
in either group become zero. It is therefore a linear function of A (i.e.
2"L—J3),and JD; L, J, D having the meanings ascribed to them in my

* T¥ilogy, in the Phil. Trans. for 1865. ¥From M. HERMITE'S calculations
the actual value of R appears to be a numerical muitiple of A—3JD, so that
by virtue of the rule given in the trilogy (—$ being comprehended within
the limits —2 and 1) R is a good and sufficient third criterion along with J
and D the first and second criteria for determining the nature of the roots
of a quintic. .
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IL. Solution by W. S. BURNSIDE, M.A.

1. Write a"l, B'l, ‘y'l, 31 for a—e, b—e c—e,d—e mpeétively, and
multiply all the terms by (aBy3)*; then all the denominators disappear, and
the first six quantities are thus reduced to

(a—B)* (B=7)* (v—9)* (a—3)* (3—8)* (B—)*
“(a—B)* (B=2)* (yr-a)’ (a=7)* (v—8)* (3—8)*
: (a—B)* (y=3)*(3—a)* (@=7)*(y—B)* (3—a)?
and the other six are the quantities complementary to these in
(a—B)% (a—7)* (a—8)? (B—7)* (B—3)* (y—3)
Again write 2, m,n for a—3, B—3, y—3 respectively, and the 6irst six
quantities properly arranged become

B(n=0% (m—n)? | m? (n—10)?
[ ) RO {m’(l—m)’ (r=d)? .| »° (I—-m)?
02 (l—m)* (m—n)? | Fm?(m—n)3

and the other six are the complementary quantities in
Bmn3 (m—n)? (n—10)? (I—-m)3,
which may be arranged in the two following ways:—

T (m—n)? (I—m)? 0 (I—m)?

(2) cecovone tecnes {m’(m—u)’ (n—=10) a’l’(m—n)’%
n (l—m)3 (n—172 Bt (n—1)?
m? (n—10) (m—n)? Pm? (n—1)3
((:) TV { 2 (l—m)? (n-10)? m3n? (I—m)?
B (l—m)? (m—n)? T (m—n)?

Now ifany three terms in (1) be combined, the resulting constituent will
be obtained from one or other of the arrangements (2) and (3) by combining
the terms occupying the same positions as those selected in (1); and thus
we see that the sum of the ternary combinations of both sets of six quantities
are identical term by term.

2. When the 20 ternary combinations expressed in terms of a, 8, v, 3 are
arranged symmetrically, we have

2{(a-7)! (a-3)*(§—7)* (B—8)*} . (y—8)%..........six terms
+AZ (B—7)2(7—=a)%(@=B)%. ..icveacescecccccssess.. four terms
+AZ(a=3)2 (B=8)%(7y=38)® ..iiieverennoancnssns..fourterms
+AZ (a—B)2 (Y—3) e iiiiiiiieitsaeatteeranas.. . 8iX terms

where A = (a—B8)2 (a—7)2 (a—8)? (B—7)® (8—3)2 (y—3)*.

8. Since the function we have been discusing is an invariant of the
quintic having a, b, ¢, d, e for its roots, and is of the 12th degree in the
coefficients, and of the 30th in thé roots, it must necessarily be expressible
in terms of the three fundamental invariants of the quintic, and must there-
fore be of the form p.A3+g.AB+r.C, (Salmon’s Higher Algebra, Art.
136) ; and p, g, r are such that this function vanishes for a pair of double
roots, viz. ¢ = b, and ¢ = d. ’
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2
9406, (Proposed by Rev. J. Buassaxp)—Show that 1%+ D}
T (2n+2)
¢Bay1 n Baig, m(n—1) B--n_
(1)"_-21”:"'1 “1'm+2’ 1.3  n+d &c}
_ nt3_ B,._n n ont8_ B+s
2)... 4{(2 1)m-i( 1)(“.2;.\::4-3)+ }'

where B is the Representative of Bernoulli’s numbers.

.

Solution by the PROPOSER.

By use of what I have called Repressntative Notation, it is easy to arrive
at the following general formula, viz.,

@+ w48t m(m—1) @+
n+l 1° n+2 1.2 n+8

wtl (o™ g o™ g (n—1) ™
G R +1+i°m+—ﬁ"w +ol

r(m+1)r(sn+1)

. r'(m+n+2)
@+a)** _ w42
M”-”,thm 1l i Y +&e....
w1 (S w gmHE ) {re+n}’
+(=1) =7 + i m+&c. = _I_‘(_z”—m- ......(l)-

Now (1) for  put B, then since (B + l)'- B, (r>1) and=0 (r odd), we have
(8See Theory of Geuneric Equations in the Quarterly Journal of Mathe-
matics, Vol. 1V.)
{r (’”‘1)} Byy1_nBuyse L h—1) B, &

T@Eei3) A+l 1w+3 1.2 atd O

B B
n+1)j s+l R n+2
+(-1) {'.+1 tiauset “} .

-n B
-z{ L g "(" ” ""”+&c}uodd and
L. B-"uxl_)("_-_z) Baes

= I1n+2 1.2.3 " #+8
But B, ,,, B, ., B, ; &c.all vanish (s even) and B, 5, B, , ,, &c. all vanish »

n+b

odd. Henoe whether n be even or odd

{l‘(n+1)} 2{ nt1 :.Bn+8+ﬂgﬂ—1)'Bn+8 &c(}

T@n+2) s+l 1 =+2 1.2 " 48"

Ex. Letsas,tben{r«)}’\( 14‘0) (B‘ B‘-ss B’)

+ &e.} # even.

T®)




21

1 1.1 1.1 .
but By = —g5, By = 0 = By, By = o, m-z(-m+8_4),whwhholdn.
Again (2), in (I) for z put A, where A belongs to the Generic Equation
r+2_g

(A+1)"+ A"=0(r>0), and .~ (A+1)" = —A_which = ——— B,

+ ._?.;21) @9 (n+li;.;£:+4) - &
. (__1).+1{(2.+s_ 2 (.+113;Z:+2) " % (2.“_2)(:4»:).::4-8) + }
theretoe, 8 in tho proceding euei;whether # be even or odd, .
ff-l:g—.:%}— ~s{e™-p ('.+1)'(?+ 3 G FTH TS
D G Dy )
i

8.68 1 2685 1) _..1oids
= - — — g — — g — hl o
4( 56 Bt7.8°8)" o

2370. posed by M. W. CrorroN, B.A.)—If three points be taken
at random gl;r:ho surface of a sphere, find the chance (1) that some one of
tbe angles of the triangle they determine will be than the sum of the
other two, (2) that the area will exceed a great circle of the sphere, (8) that
thearea will exceed a given area.

Solution by EXEUMATUS,

1. Let A and B be two points taken at random on the surface of a sphere;
then if the third point C be taken within the small circle which is described
on AB as a diameter, it is clear (on joining C with the middle point of AB)
that the angle at C is greater than the sum of theangles at A and B. Hence
the chance that theangle C is greater than (A + B) is

1 . 0
= 2x 8in c. dc) 2x (1—cos —
P= g ¢ ) ( s)

- [ (g g) g}
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Consequently, fRe chance that some one of the angles will exceed the sum of
the other two is §. :

2. It is ensily proved by the ordinary formulm of Spherical Trigonometry
that if the area of a spherical triangle on a given base AB be constant, the
locus of the vertex is a small circle. If the given area be & ‘great circle of
the sphere, the locus is a small circle described on a diametér equal and
opposite to AB. If a third point C be taken within this small circle, the
area of the triangle ABC will exceed a great circle of the sphere; and the
probability of this by the foregoing case is }, which is therefore ¢he chance
that the area will exceed a great circle of the sphere.

8. Generally, to find the chance that the area will be less than a given
area o; let p be thelength of an arc of a great circle joining C to the middle
of AB; then it may be shown that

tan® _gin o sinp sin ¢

2 cosjc+cosp
where ¢ is the angle p makes with AB at their intersection. This equation
is that of a small circle of the sphere whose centre is in the great circle which
bisects AB at right angles, and of which the radius is determined by the
equation tan s = tan }c cosec4o. This small circle cuts the great circle AB
in two points A’, B’ directly opposite to A and B. It is clear that the point
C must not fall within the circumference of this small circle, nor within the
circumference of another small circle equal to it and similarly situated on the
other side of AB, cutting AB also in the same two points A’, B/, The total

area then to which C isrestricted is 4 ’ : (1~—cos p) dp, which may be in-
o

tegrated by expressing cos p in terms of ¢, from the above expression for
t:gm . Or thus; if 1& be the middle point of AB, and P theppole of the
small circle, the area of the spherical triangle MPB’ is jx4 (v—()+
(}r+g)—-r, where ¢ is half the angle A’PB’, and coss tan { = tan 4.
That the angle A’B'P is equal to jx—Jo is evident from the expression
tan 7 = tan j¢ cosec jo. From the spherical triaugle MB’P we have to
deduct that part of the small circle which falls within it; the area of this is
(1—cos #) (x—(); the remainder mulfiglined by 4 is the arca to which the
third point C is restricted. Hence the ce required is

p= io/"' {g +cosr (r—'{)}i?dc.

Substitute here ¢ for ¢ by means of the equation cos { = cos }¢ cos §o, and
the expression is transformed to

-2 (4 . _ % st ¢

» ,r—m,w—_/‘{§ os sin (+ (x—() tan % cost ¢ } 05,

the limits being from { = }o, to g». The result is

-l (0L 0 s ? —wsing Ty (T (2 _z)'mz
’ ,msﬁ{é*émé"“f’. e 2*(2 z) 37— 3) =gl
which is £he ckance that the area will be less than o.

4. When the given area is that of a' great circle of the sphere, we have
o= in (8), and p takes the apparent form of infinity, but is really

a fraction of the form g'whos'e value is readily determined if we piit o =»—20.

-
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For this valtte of o we get y
o et emas T -0+ Linocones S0 (. Y}
P e » 8in% 0 .r+2 zsmOooso-o- prar) '2+8
=1— aino—Ocoso_g_{o—sinaeoso sinO—Oeoﬂ}
2 sl 2x U 0sin®0 sin’0 )

Now, when 6 is very small, it is easily seen that ultimately
sin 0:—000:0 N 1’ and 0—sin 0 cos 0 - g}
sin® 3 0sin% @ 3
80 that when 0 = 0, that is when o = x, the required probability is §. The
chance that the area will excoed a great circle of the sphere is consequently }

-

2417. (Proposed by the Rev. W. RoBERT8, M.A.)—Denoting the roots
of the cubic equation 23+pz+q =0 by a, B, 7, it is required to form the
equation the roots of which are a8 + v, 8y + a, ay + 8.

1. Solution by the Rev. RoBERT HARLEY, F.R.S.

More generally, let a, 8, ¥ be the roots of the complete cubic equatiorr
28+ bz*+cx+d = 0; then the equation y*+ By?+ Cy + D = 0, whose roots
Y1, ¥3. Ys» are a8+, ay + B, By + a, is readily calculated. For we have

—B=3y=3aB+3a=c—b,
C = 31y, = aBy3a+3aB + Zab
=b(d—c)+8d+c,
—D = g1y ¥s= a%8%" +aByZa® + 3a?6? + afy
= (d+c)*—bd (b +2)-d.
Therefore the required equation is
P—(c=b)y?+ {6(d—c)+8d+c} y—(d+c)+bd (b+2)+d = 0.
In the particular case proposed, we bave b = 0, and writing p and ¢ in
of ¢ and d respectively, the equation becomes

¥ —py? + (3¢ +p)y +q—(q+p)% =0.

I1. Solution by J. McDowsLL, M.A., F.R.A.8.; J. DALE; and others.

We have BApr+g=0.rciiiiiiiinsiiieneee. (1);
and rince ¢B+7_ﬂ+1__—_q_+% .
. Y Y
if we put y=—_q +Zy OF Z3~y2—@ =0 .iivereennsnrenens(2),
z

and climinate  between (1) and (2), the resulting equation in y will be the
required one. ) .
(1)—=z (2) gives Y23+ (P+9)2+g=0.0civenininieee..(8);
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@ -y @ gives (5" +p+9) 349 (y+1) =0, 0r 5 = — 1(y+1
+P+9

This value of # substituted in (2) gives, after a few simple rednct:om.

—py2+(p+89)y+g—(p+q)® =0,
the required equntx"'on.p’ d dyre=(p+)

2234. (Proposed by Professor EvERrTT.)— Find a curve such that
the area / 'ydz bounded by two ordinates, whose mutual distauce is con-
stant, varies directly as the ordinate midway between them.

Solution by THOMAS SAVAGE, M.A.

. th t y= j;’d(lz) be the equation to the curve, 2a the given mutual distance
of the two ordinutes.

Then f(z+a)—f(:—a)—uf(z) B ¢ § X
o S @ ats @ T G )n(5)+ o} =z,
or L) @ fo@) o "_,

OETOMATLET M
If }m = a, this equation is satisfied by f’”(r) = 0, which gives us any
straight line. If not, and k2 be determmed by exther of the equations

a? ab m
+ & l‘l(S) +k‘n(0) iyn(7)+.. -—-G

the equation (1) will be satisfied by 17(%). = 4 k9%, which gives

9 =A 4 Be™*, or y = C sin (ks + D),
where A, B, C, D are any arbitrary constants. The linear form of equation
(1) shows that the sum or difference of any particular solution is ulso a
solution.

by Professor Evenerr.)—Find the forms of ¢ and ¢
which make the mean value of ¢ () fromz = g—c tox = a+c tuke the
form ¢ () . ¥ (c).

Solution by the PROPOSER.

The mean value in question is — / +°¢ (x) dz, which, if F denote the
a—ec

primitive of ¢, is equal to ;_'c { F(a+c)—F (a—c)} ; and this by Tay'or’s
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theorem is equal to the serics ¢ (a) + ¢” (a) l'lﬁ(%) +¢'"(a Ec'(‘-é)"' soen

Equating ¢ (a) .y (¢) to this series, differentiating twice with respect to ¢
and then putting ¢=0, we have ¢ (a).y” (0) =} ¢”(a). Hence the ratio
of ¢ (a) to ¢ (a) is to be independent of the value of a. The only functions
which fulfil this condition are
¢ (2) = k sin (mx+ 1) and ¢ (r) =ke™ + le ™7, L, I, m being any constants.
gumlzting these values in tie series which is to be equal to ¢ (a) .y (c), we

nd tha

when ¢ (2)=F% sin (mz + ), we have ¥ (c) = si::c;

when ¢ (2) = k™4 le ™, wehave Y(c) = .2'_:0 (cw— t-”).

[The solation of Quest. 2234 follows at once from the above by putting
a—c and a+c for the extreme values of 2. The equation of the curve is
y= ¢ (z), where ¢ (z) has either of the values found above.]

2388. (Pro; by E. PRoUHET.)—Si P’on designe par a, b, ¢, o/, ¥/, ¢/,
les c8tés d’un hexagone inscrit dans un cercle; par A la diagonale qui n’a
aucune extrémité commune avec les c8tés opposés a et a’; par B, C les deux
autres diagonales analogues ; on aura les deux équations suivantes :—

B2Ca + B%'c — Ba’ (a®*—b"*—¢%) + a20'¢’ = C?Ba’ + C?'c’

—Ca (a’-=03=) +a%'¢,

BiCa’ + B%c—Ba (a’?—b*—¢?) + a®be = C?Ba + C?c

~Ca’ (a*—b2—¢%) + a’3be,
qui permettent d’établir une &quation entre les cdtés de 1’hexagone et une
des grandes diagonales. (J’appelle grande diagonale toute diagonale qui joint
deux sommets opposés.)

Solution by S. WATSON; G. A. OGILVIE; and others.
Let PQRSTU be the hexagon, and
join PT; then £ PQT =PST=»— PU'
=a (suppose) ; :
oo PT? = a3+ C*—~2aCco8 a
=a%4+B*~2a’Bcos a
=43+ + 20 cos a;
therefore, by eliminating cos a,
¢ +aC) (b + *—a"-B3)
= (6'¢ +a’B) (63 + ¢*~a?—C?)...(1).
Similarly, by joining QS, we get
(be +a’C) (b2 + c*—a?—B?)
= (be + aB) (8% + c3—a?=C?)...(2).
Equations (1) and (2) reduce to the
forms given in the question.

o
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2321. (Proposed by Professor CAYLEY.)—Given a conic, to find four
points such that all the conics through the four points may have their centres
in the given couic.

Solution by 8aAMUEL RoBERTS, M.A.

If we take any three points forming a triangle of reference, and (2, m, n)
are the coordinates of any other point, a quadrangle, of which the three
points first taken are the intersections of opposite sides, is determincd by

¢ m, n), (L, m, —=n), (I, —m, n), (=1, m, n).
This convenient result gives for any conic circumscribing the quadrangle
Aa?+Bgi+ oy’ =0, AB+Bm?+Cn®=0.
Now the centre of this conic is given by
a . b.c _a.b.c
tyiz=-:_:corZ:2:Z=A:B:
wy‘ABcorayz C
a, b, c representing the sides of the triangle of reference.
- Hence the locus of centres is
al  bm?  cn?
+—+— =0

. x y °
Ifthen we refer the given conic to any inscribed triangle and its equation is
A B C
—+—=+—-=0 .
z ¥

four points fulfilling the condition imposed are determined by
A’ . B’ . (o4
+/(3):+v(7)  2v(3)

2368. (Proposed by X. U. J.)—Show that the four straight lines repre-
sented by the equations =0, v=0, l«®+2muv + nv? =0, will form a har-
monic pencil if 8m2 =9In.

1. Solution by J. WALMSLEY.
Putting % = ga..': and &' = u + kv, we have 2m = 8/k and » = 20k2; and

the four straight lines are easily fouund to be, in another order,
W=0, /=kv=0, v=0, ' +kv=0.

I1. Solution by JaMES DALE.

The anharmonic ratio of the pencil formed by the four straight lines
ut+kp=0, 4+kv =0, u+kpw =0, t+kp=0
is (kr—ks). a’a—lh)’
(kr—ky) . (ks—F3)" - -




27

Putting & = 0 and & = %. the anharmonic. ratio of the pencil
$m=0, 0=0, u+kgv =0, 6+ =0
is "8__-]“’_‘, and if this be a harmonic ratio, then k; = 2k
i 2}
Now from the equation = s®+ 2muo + no® =0, we get
1 1
ky = 2 {m+¢(m’—ln)}, kg = 7 {m-/(n’:-ln)};

and substituting these values in %5 - 2k,, and freeing from radicals, we get
8m? = 9in.

2346. (Proposed by the Rev. R. H. WrianT, M.A.)—Through the

r points of the triangle of reference ABC, draw B’C’, C’A’, A’B' respec-

tively perpendicular to BC, CA, AB, and find the trilinear equation of the
circle drawn roand the triangle A’B*C’.

1. Solution by the ProrosSER ; E. MOCORMIOK ; and ofhers.

The coordinates of the vertices of the triangle A’B‘C’ are
A'....a, =ccot AcosB, 8, =ccosecA, 7, =—ccotA;
B....ag=—acotB, Bg=acotBcosC, y; = a cosec B;
C.ccoag=>bcosecC; By =—bcotC; 5 = 0ot C cos A.

Now any circle maj (Salmon’s Conics, Art. 128) be represented by
(la+mB+wy) (asin A+ BsinB+sinC)+BysinA +yasinB+aBsinC=0;
and substituting for («, B8, ¥) their respective values at A’, B/, C’ we obtain
three equations in terms of 4, m, s from which we get
_%8C o A B
gin AsinC’ sinAsiuB’ sin B sin C
and thus the required equation to the circle round A’B’C* becomes
a® cot C+ % cotA +9% cot B+ (eotA sinCinA+ °5LB) By
sin B C

sin
+ (cotBi';A +sin B+ °_°°C).1¢+(cotc’,i"3 +8inC+ 3’%\) af = 0.
gin C sin A/ sin A sin B;

l=c

i

II. Solution by 8. WATSOK ; the Rev. J. L. KrroHIN, M.A.;
and many others.

The trilinear equations of B’C’, C’A’, A’B’, are
aco8sC+B =0, BcosA+y=0, ycos B+a=0; i
and the perpendiculars from any point (o, B, 9/) on these lines, are
respectively (Salmon’s Cosics, Art. 61),
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o cosC+p BomA+y ‘_-/euls«&J

=~%cC 'Y " Gma ° “nB

Now, since the angles A’, B/, C’ are respectively equal to A, B, C, the tri-

linear equation of the circle about A’B’C’ in terms of (s, 9, x) is
yzsinA+srsin B+sysn C=0;

l;omg,mhﬁtuﬁngmddmppingthomh,thmquindqmﬁonhhnd

__cosecA cosec B cosec C -0
at+ycosB B+acosC  y+BcosA

2005. (Proposed by MaTTHEW CovLLINg, B.A.)—Find the whole number
@ 80 that 827 —29 may be divisible by 557.

1. Solution by SAMURL BrLis.

T am not aware that this question admits of any direct solution. It is
well known that if the expression 82729 is divisible by 557 at all, it will be
so for some value of z, positive or negdtive, not greater than 237, or 278.
The only method that I know of is to proceed by #rials. Now by using
varjous artifices and contractions I have tried al/ the numbers, both positive
and negative, as far as 278 ; and I find that either & = — 35, or z = 522 will
answer the condition. If we take m=any whole number either positive
or negative we shall have, generally, #=5567m—85; from which any num-
ber of answers may be found.

I may observe that —35 and 622 are the osly numbers less than 667
z:l.ich will satisfy the condition. If m=2, x=1079; if m=—1, z=—0542,

II. Solution by JaMES DALE, .

If 8ux7—29 = M (557) be solvable in whole numbers, M must be a term
of the series 2, 5, 8,....2+(r—1)8, and the equation may be reduced to

the form
a7—3881 = N (657),

M and N being connected by the equation M = 8N + 2.

To solve the equation 27—3881 = N (8567), let 7p = ¢ (567—1)+1; then
the least values of p and ¢ in positive integers are p = 159, ¢ = 2.

Put o=381'%, then 27 = 381113 and

27—381 =881 (8811112—1) =381 (3815% 4 1) , (8815%6.—1).

Now by Fermat’s Theorem (381%%6—1)=(881%-1—1) is divisible by 6567 ;
therefore = 3811% is a root of the equation 27—3881 = N (567), and hence
also of the given equation 327—29 = M (567).

Other values may be obtained by taking suitable values for p and g, such
a8 » = 88117, &o.
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2324, (Proposed by W. S. BurNsIDE, M.A.)—If four roots of a quintic
be in harmonic progression, prove that the following relation between the
invariants holds, viz., J8—~27,82JK + 213,83 L= 0, (where J, K, L are the
fundamental invariants as given in Salmon’s Higher 4lgebra, 2nd edition,
pp- 184—187.)

Solution by the PROPOSER.
In this case the quintic may be reduced to the form
B {lab+ maty+ oy + my* } s
then T, = (5+18.52—8%) (Im)6—4.562m? (B +m°) ;
also K = (54+ 8%) (Im)*—2.63 (B+m?), and J = 27 .3 I*m?,
Eliminating ! and m we obtain the relation in the question.

1947, (Proposed by W. B. Davis, B.A.)—Prove in any way that
419= 1 (mod. 83), and 824 = 82 (mod. 83). :
N.B.—Mod. is short for modulus, the first expression meaning that
419 —1 is exactly divisible by §3. )

1. Solution by M. JENKINS, B.A.; W, H. LAVERTY ; and ofhers.
Since 41 is odd, 824! + 1 is divisible by 82 +1,
therefore 824 = —1 = 82 (mod. 83), which proves the 2nd congruence.
Again 5 (28)" —(—1)" is divisible by 2a~(—~1), i.e. by 2n+1 ......(1);
-and, by a well known theorem, if 2» +1 be a prime number,
=1 {mod. (2n+1)}’ if 9 +1 be of the form 8rs +1
= =1 ceceteennee if ciiiiiieiiiiee 8m+ 8;
that is, 2% — (— 1) (*+1) ig divisible by (2A41) cevureerrnrnanaenres (@)
Multiplying (1) by (—1)®, (2) by (=1)¥*®*1) and subtracting,
(—1)"® (2n)® —(=1)}* *+1) 27 55 Givisible by (2n+1) ;
and dividing by (—1)* 2", #®—(—1)¥* *=1) {5 divisible by (2m +1).
This shows that, if # be of the form 4m or 4m +1,
%" = 1[mod. 21 +1)];
therefore, since 41 is of the latter form, and 83 a prime number,
419 = 1 (mod. 83).

II. Solution by J. DALE ; 8. W. BROMFIELD ; and others.
1. By Fermat’s Theorem, we have :
4181 = (419 +1) (414—1) = M (83),
or {831y 420} {(83-1)1-20} = 24.M(89).
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Expanding (88~1)", every term exoept the Iast is & multiple of 83, and the
above equation may be written

M (88) + (2.290—1)} {M (83)—(2.29+1)} = 2¢1. M. (83),
therefore either (2 .24—1) or (2.2%+1) is divisible by 83 ; but (2.29—-1)is
not divisible by 88, (see Legendre, sect. 145) ; therefore 2.2%+1 is divisible
by 88, and consequently 414—1, and not 414! +1, is a multiple of83. -

2. We have 82¢—82 = 82 (829~1)
- 82 (82% + 1) (82%—1) .
= 82(82% +1) (8210 +1) (82°~1)
= 82 (82% + 1) (829 +1) (825 1) (82°+1)
- :: . 88(820 +1) (82% +1) (825 —1) (83!—82" + 827 ~82+1)
= M (88), . .

1563 PrrMEs oF THE 10TH MILLION:
by W.B.Davis, B.A,

9010678 [ 9091801 | 9091879 | 9092887 | 9098017
9042409 | 9091429 | 9091891 | 9092437 | 9098061
9080919 | 9091441 | 9091909 | 9092449 | 9093089
9090947 | 9091481 | 9091997 | 9092471 | 9093121
9090958 | 9091477 | 9092008 | 9092527 | 9093127
9090978 | 9091483 | 9092011 | 9092533 | 9093143
9090989 | 9091513 | 9092058 | 9092543 | 9093151
9091009 | 9091541 | 8092063 | 9092657 | 9098163
9091021 | 9091543 | 9092071 | 9092561 | 9098169
9091051 | D091568 | 9092081 | 9092563 | 9093197
9091057 | 9091661 | 9082087 | 9002681 | 9033230
9091067 | 9091591 | 9092118 9092691 | 9151643
9091079 |’ 9091697 ‘| 9092117 | 9092693 | 9173471
. .9091099 | 9091609 | 9002181 | 9002617 | 9219189
9091109 | 9091613 | 9092187 | 9092647 | 9214043
9091127 | 9091631 | 9092143 | 9092658 | 9234463
Q091151 | 9091687 | 9092177 | 9092711 | 9260117
9091157 | 9091657 | 9092179 | 9092717 | 9357168
. 9091207 | 9001679 | 9092183 | 9092723 | 9422407
9091218 | 9091703 | 9092191 | 9092789 | 9624717
9091219 | 9091729 | 9092219 | 9092791 | 9705911
9091228 | 9091741 | 9092227 | 9092833 | 9745639
9091259 | 9091759 | 9092281 | 9092861 | 9768487
9091267 | 9091769 | 9092257 | 9092878 | 9820289
9091273 | 9091777 | 9092261 | 9092891 | 9826079
9091289 | 9091783 |.9092299 | 9092893 | 9880447
9091331 | 9091807 | 9092333 | 9092911 [ 9890219
9091833 | 9091813 | 9092339 | 9092933 | 9949259
9091343 | 9091829 | 9092858 | 9092947 | 9963137
9091373 | 9091843 | 9092371 | 9092971
9091387 | 9091871 | 9092381 | 9Q92989 .
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Note ox THE NuMEER OF PRIMES IX THR 7TH lﬁm.ron.f
by W. B. Davis, B.A.

It is well known to readers of the Theory of Numbers that Legendre
counted the number of Primes, in order to verify the log-integral formula,
and I have since found, that Bessel in his Briefwechsel with Olbers, has

- done the same thing, verifying the general accuracy of Legendre’s computa-.
tion. :

The following are the number of Primes in the successive 100,000, of the
7th Million. I suppress details,

1st .... 6386
2nd.... 6401
8rd,... 6418
4th.... 6340
bth.... 6340
6th.... 6398
7th.... 6323
N 8th..... 6366
Oth.... 6368
10th.... 6368
' 63708 Total number of primes in the
%7th million ; counted from Dase’s Factoren T'qfsin. -

2330. (Proposed by H. ToMLINSON.)—Describe a circle whose centre
shall be on a given diameter of a given circle, to cut that circle orthogonally
and to touch another given circle. ‘

1. Solution by Huea MURPHY.

Let the circle whose centre is A be that
which is to be cut orthogonally, and the
circle whose centre is T) be that which is to
be touched. Draw the lines as in the dia-
gram: then AF . AE [ = (tan)’ from A to
circle (D)], and AO.AE [= AB?] are
both given; therefore AF:AO or
DF : RO is given, COR and DF being
parallel ; therefore RO is given ; moreover
the point R is given by the proportion
AF : AO = AD : AR. Hence the question
is reduced to the following one: given two
points D and R to find a point C in a giver : i -
line AC, so that (CD~CR) may be given. (See Mulcahy’s Modern Geo-
metry, p. 63, Note.)

Otherwise ; a8 the envelope of the circle touching one fixed circle and cut-
ting another orthogonally is a given circle, ite centre and the centre of the
touched circle are given points; hence the problem is reduced to finding a
yoint in the given diameter, such that the difference of the lines drawn
therefrom to these two given points may be equal to the difference of the
radii.




82

II. Solution by Jauzs Darx.

1. To find the locus
of the centre of a
circle which shall cut
one given circle or-
thogonally,and touch
another given circle.
Taking the origin of 1
rectangular  coordi-
nates at the centre of
the orthogonally cut
circle, the line of
centres being the axis
of z, let r), 3 be the radii, and d the distance of centres; then, if (z, y) be
any point on the locas we have '

@+ —rdt = {@-2)+92} e
Clearing of radicals and arranging, this equation becomes
HdP—r)a— 4o’y — 4d(r—r2 + &)
+ {r2+ (+dr} {ni+(n—dr} =0,
which represents an hyperbola, the equation of which, referred to the princi~

pal axes,.is .
sf 2 (r2
(@1 by’ = C’ﬁ-?“_f-‘r;'ﬂ}"

As a diameter of the circle (r;) will in general cut the hyperbola in two

points, two circles, having their centres respectively at the points of inter-

section, can be drawn cutting the one circle (r) ortho%onally, and touching
ly.

the other (r,), the one externally, and the other interna

The vertices and asymptotes of the hyperbola can be readily constructed
as follows :—Let O::)y, be the centres of the two circles, D, E the points in
which the line 0,0; cuts the circle (Os), then the vertices are the points of
bisection of the distances between D, E and their polars with regard to the
circle (O;). Again, from C, the point of (O,) nearest to O, draw tangents,
CT,CT; to O, T)oin O,T and O;T’, then the asymptotes are parallel to these
lines O,T, O,T'.

When d2 = 2,2, the h bola becomes equilateral; and when d2 =¢,% + 1,2,
that is, when the circles O,, O, cut orthogonally, the hyperbola becomes the
two straight lines #, @ +ry = 0 and riz—ry = 0.

2227. (Proposed by W. LEA.)—Form 2"—1 symbols into triads, so
that every pair of the symbols shall appear once in the triads.

Solution by SAMUEL Bruzs. )

The following is perhaps the simplest method of solution to this question.
1 shall give examples when there are 7, 15, and 81 symbols, and it will be
seen that the method will be equally applicable for any value of .

Tuke 7 symbols a, b, ¢, d, ¢, f, g, and form all the pairs in order as follows,
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ab, ac, ad, ae, af, ag. be, bd, de, bf, by, cd, ce, cf, cg, de, df, dy, ef, g, fy.
Now each triad will comprise three pairs; take the letters in the first two
pairs for the first triad, viz., abc, and mark off the pairs of which it is com-
posed with a dash underneath ; then take the next pair in order, not marked
off, and join it with the next succeeding one which will not comprise a pair
that has been previously marked off, for the secoud triad, which will be ade,
and mark off the three pairs as before. By proceeding in this manner till
all the pairs are exhausted, we obtain the following seven triads,
- abe, ade, afy, bdf, beg, cdg. cef.

Next take 15 symbols, a, b, ¢, d, ¢, f, 9 k, 5,4, %, 1, m, n, 0, and form the
pairs-in order thus:—
ab, ac, ad, ae, af, ag, ak, ai, aj, ak, al, am, an, ao, be, bd, be, bf. by, bh, bi,

iy bk, bl, bm, ,%, ed, ce, cf, ey, ch, ci, ¢j, ck, cl, em, en, co, de, df, dg, dh,

i, dj, dk, dl, dm, dn, do, ef, eg. eh, éi, ¢j, ek, el, em, en, eo, fy, /h. fi. /). fF,
j.l:fhs.f",fog gh. gi, 18 gk, gl, gm, gn, go, ki, hl.y hk, kt, hm, kn, ho, '8 ik, il,
im, in, i0, 5k, 51, jm. Jn, jo, ki, km, kn, ko, Im, In, lo, mn, mo, no.

The number of pairs is 105, and by forming the triads from them as above
described we obtain the following 85, which are put down exactly in the
order in which they were obtained ; abe, ade, afy, ali, ajk, alm, ano, bdf,
beg, bhj, bik, bin, bmo, cdg, cef, chk, cij, clo, cmn, dM, dim, djn, dko, ehm,
eit, ejo, eken, fhn, fio, jl. fkem, gho, gin, gjm, gkl.

_In the above 35 triads all the pairs will be found. In precisely the same
manner we may proceed for 81, 63, &c., symbols.

For the case of 31 symbols, let the symbols be a, b,¢, ....y, 2, @1, by, ¢},
dy, &;; and form all the pairs in order as follows : —
ab,ac, ad, ....ae,; be, bd, ....be; cd, cey ....ce; de, d/;....de}; e,.f,eg,
coee; fu, fhy ... fer; gh, gis.. .. gex; Biy k.. .. hey; ik, . . . . de, jk, g, ...

Jeis kl,km,....ke ; lm,in,....ley; mn,mo,....me ; no, np, ....02; op,
0Qy 00 e 081 PG, PTy oo - . DL ; GF, G8, oo o. Q65 18,7, .. ..7€); 8L, 8U, ....85e3

tv,....te, ; nv, nw, ....n€,; VW, VT, ....v€,; WOT, WY, ....1€,; Ty,
T2y .00 203Y2,YB,, .. .. Y€1 8G,,2b,,....28,;0,b,,a,¢,,....01;b,¢c,,
b.d,, b,e, c,dy,c,e,de,.

The complete list of pairs may be very readily written out as required.

Now by forming the trinds from the pairs, as previously directed, we

readily find the following 155 triads, which are put down in exactly the same
order as they were obtained, and which will be found to exhaust all the pairs.
abe, ade, afy, aki, ajk, alm, ano, apq, ars, atu, avw, axy, aza,, ab,c,,
ad,e,, bdf, beg, bhj, bik, blm, bmo, bpr, bgs, biv, buw, baz, bya,, bb,d,,
be.e,, cdg, cef, chk, cij, cloy cmn, cps, cqr, ctw, cuv, cxra, cyz,cb,e,, cc,d,,
d!ol, dim, djn, dko, dht, dqu, drv, dsw, dzb,, dyc,, dzd,,da,e,, ehm, eil,
¢jo, ekn, epu, eqt, erw, e, exc,, eyb,, eze,, ea,d,, fhn, fio, [jl, fkm, fpv,
Jaw, frt, fou, frdy, fye,,fzb,, Ja.c,, gho, gin, gim, gki, gpw, gquv, gru,
get, gey gy, guc,, 93,6, e, Agy, hrz, Aaa,, hth,, Buo, hod,, hwe,,
ipy, iqx, tva,, sz, ilc,, iub,, ive,, wd,, Jpz,jqa,, jre, jsy, jid,, jue,, job,
Jwe,, kpa,. kqz, kry, ksz, kie,, Mu UCyy 1 PPy ey Uy, Lse,,
Uz, luy, loz, hoa,, mpc,, mgb,, mre,, msd,, mty, mux, mva,, mws,
fipd,, nge,, nrb,, nsc,, ntz, nua,, nox, nwy, ope,, oqd,, orc,, oc&l, ota,,
ouz, ovy, owz.

2310. (Proposed by J. M. WrrsoX, M.A., F.G.S.)—Prove (1) that if
ABCD be a quadrilateral circumscribed about a circle, and P, Q, R, S the
points of contact, then AC, BD, RP, SQ pass through one point. .

- Hence show (2) that the locusof the intersection of thelines joining the ends
of chords in a circle which pass through a given point is the polur of that point.

VOL. ViIL B D ) .
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1. Solution by the PROPOSER.

1. Consider the segments into which PR
divides the diagonal AC.

Through C draw a line CT parallel to AP,
then CT = CR and AO : OC = AP : CR.

Similarly QS divides AC into segments
which have the ratio of AS to QC, that is of
AP to CR. Hence PR and QS intersect on
the diagonal AC, and therefore also on BD.

2. To prove the second part, join PQ, RS.
Then B is the pole of PQ, D of SR, and
therefore the intersection of PQ, SR is the
pole of BD which passes through O, and
tgeame PQ and SR intersect on the polar
of O. -

Norr.—These well-known properties are proved in McDowell’s Ezercises,

by t:le harmonic properties of transversals to a triangle, and of chords of a
circle.

1. General Solution by the Rev. R, H. Wriant, M.A.; the Rxv. J. L.
KrroniN, M.A.; H. ToMLINsoN ; W. CHADWIOK ; and others.

,//"

Let ABE be a triangle of re-
ference where BE, EA, AB are re-
spectively represented by a = O,
B=0, y=0; also let PQR be an
inscribed conic; and draw any tan-
gent DC touching the conic in 8.
Now if theequation ofthe inscribed
conic be (la) + (mB)}+ (wy)! =0,
and if AS be represented by
B—ly=0, the equation of CD is
{Wright'sEzamples on Trilinears,
Art. 74.)

]
a— m‘b‘+n‘)m‘3—(m‘h‘+ﬂ‘) n‘h‘-y =0 .iieeerennas(l)
Making 8 = 0 and a = O respectively in (1), we have
for BD and AC.... m‘b‘+n‘) aly—la=0, and m'g +alily = 0.. (2, 3),
and we readily get
for PRocciiviiiiinnene. latmB=ny =0 ..0ciieericccnsanana(d),
and QS.. .. Im'a— (m*Al + nt) mintg— (mihd + n¥) (o'ht + md) wly =0 .. (5).
Now (o3t + mb) (2) + 5 (3) + oA} (4) + (5)=0,
which shows that AC, BD, RP, SQ pass through the same point.

2. If we refer to the Mathematician, (Vol. I., p. 183), we find that if the
sides PS and QR of the quadrilateral PQRS inscribed in the conic be pro-
duced to meet in M, and QP and RS to meet in L, and if the diagonals
meet in O; then ML is the polar of O, and OL is the polar of M.,
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NOTE ON A LOOUS CONNECTED WITH THE GEOMETRY OF THE TRIANGLE,
By J. GerrriTus, M.A.

The locus referrad to is that of a point (£, , {) such that its pedal circle®
touches the nine-point circle of the triaugle of reference. Its equation is,
3 {¢ 00s® A (n 008 B—( c08 C) (9 008 C—( o0s B)} 1= 0,

and the object of the present note is to show that the curve, though ap-
parently a proper one of the sixth degree, consists in fact of two coincident
cwbics given by the common equation .

§cos A (n°—(%) +n cos B ((*—¢?) +{ cos C (8—7*) = 0.
For if we write *
cos A (ncos C—Coos B)=2, cos B ((cos A—fcosC) =y,
co8 C (§cos B—y 008 A) =2; §co8 A (ncos B—(cosC) =2,
ncos B ((cosC~¢cos A) =y, (oosC (§cos A~y cos B) = ¢,
the above equation becomes (z2)} + (y3/)t + (s2)t = 0,
wherez+y+2=0, and 2 +y' +¢ = 0.
Hence, eliminating # and ¢, for instance, we easily find (zy’—= y)? = 0, or
cos A (n cos C—( cos B) n cos B ({ cos C—¢ cos A)
= ¢ cos A (n 008 B—( cos C) cos B ( 0os A—¢ cos C),
that s, 2§ cos A (n7—(%) =O0.
Hence we see that the pedal of (¢, #, {) touchee the nine-point circle, pro-
vided that the line joining (¢, , {) to its inverse (¢~*, n—?, {~*) passes through
the centre of the circumseribing circle.

AT RANDOM: No. V. By Proressor WHITWORTH.

As Mr. Woolhouse still adheres to his assertion, that the phrase ““at ran-
dom,” has in general only one absolute and unqualified meanin%.vperhaps I
may be allowed to illustrate the question by reference to Mr. Woolhouse’s
own language in the statement of the last two problems which he has pub-
lished in the Educational Times.

His Question (2420) in the June number, commences as follows :—*Three
numbers, each of them not exceeding a number %, being arbitrarily taken,
&c.” This may mean, either that a p 18 selected arbitrarily (any
being equally likely), or else that the numbers are severally selected arbi-
trarily, in which case the group 2, 8, 4 will be si» times as likely to occur, .
and the group 8, 8, 4 will be ¢Aree times as likely to occur as the group .
3, 8, 3. It seems to me, that Mr. Woolhouse’s language, in the statement of
his question, is more suggestive of the latter interpretation; but the result
which he arrives at shows that he intends the former. If he had used an
abeolute verb instead of a participle, the distinction might easily have been
expressed. The first case would have been indicated by the phrase, “ A
group of three numbers is arbitrarily taken;” the second by the phrase,
“ Three numbers are arbitrarily taken.” In the one case, we have to make
one selection of three numbers; in the other, three selections of ose number.

[* That is, the circle through the feet of the perpendiculars from the point
gﬁ,em {) on the sides of the triangle of reference. This circle also passes through
feet of the perpendiculars from the (£, 7%, {!) on the sides, see solutions of
Quests, 1815 and 1975, Roprint, Vol V .p. 19,and Vol VL p.48.]
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In the one case, all combinations (repetitions admissible) are equally likely: -
in the other, all permutations (repetitions admissible) are equally likely.

A precisely similar ambiguity occurs in Mr. Woolhouse’s Question (2433)
in the July Number. Does he mean, that five points are selected at ran-
dom, or that a selection of five pointa s made at random ?

But as to Mr. Woolhiouse’s general assertion, that the phrase “at ran-
dom ” must be unambiguous, having only one proper meaning in any enunci-
ation, I can only say that 1, for one, agree with him if he means that by due
care we can generally so express ourselves as to preclude any doubt about
the meaning of our most unqualified statements ; but if he means that such
loose language as we are in the habit of meeting with, his own Question
2420 affording an instance, is never open to a double interpretation, his ap-
preciation of the niceties of language must be much more precise than mine.

2371. (Proposed by Professor CAYLEY.)—(4). If P, Q be two points taken
at random within the triangle ABC, what is the chance that the points
A, B, P, Q may form a convex quadrangle ? :

Solution by PROFESSOR SYLVESTER.

1. If the quadrangle ABPQ is non-convex, ABQ encloses P or ABP en-
closes Q, and therefore the chance of a reentrant figure is double the chance
of ABP containing Q. ‘ j

Divide the triangle into infinitesimal bands parallel to AB; then taking
any element of given magnitude in this band, the chance of P being upon it
and Q inside the triangle APB is the same all along the band and is propor-

. tonal to the distance of the band from the base. Hence if the distance of
the apex from the base is 4, and from the band z (remembering that the
length of the band is proportional to z, and its distance from the base to
%—z) the total chance of APB enclosing Q is

fhd:(hzf-z’)-,k‘/'hda;.hza &.;_L.*,

Hence the chance of the fignre APQB being reentrant is §, and of being
convex is %, being independent of the form of the triangle.

2. In like manner it may easily be shown that for a parallelogram on AB
the chance of the quandrangle APQB being reentrant is )

2fh.§+fh.h=§,
o ()

Hence it is an even chance whether the quadrangle is convex or reentrant,
The principle of daplicity above employed is one of frequent use in the calcu-
lus of local probability ; by aid of it in Professor CAYLEY’8 question we have
been enabled to elude the calculation of the troublesome integral

/@ (CMPN), M and N being the points where AP and BP meet the
opposite sides, as we know & priori that this must be equal to f dm.APB,

8. The above method applies with still more conspicuous advantage to an
extension of Professor Cayley’s problem to five points. Suppose we want to
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calculate the probability of ABPQR forming a convex fgure ; P, Q, R bel
any three points inside the triangle, ABC. gures 5% e

If the pentagon is not convex, either two
of the points P, Q, R will be within the tri-
angle formed by the third with AB, or
one of them will lie inside the quadrangle
formed by the remaining two with AB.

The ¢hance of the former is three times
the chance of two specified points Q, R
lying within the triangle ABP.

The chance of the latter is three times the
chanceof one specified point R lying within
the quadrangle ABPQ ; or if we please sg 4 8
to say, is six times the chauce of this taking place coupled with the new con-
dition of Q being nearer than P is to the base AB, .

If then we draw a band parallel fo AB through P, the latter chance will
be twelve times the chance of Q lyingin APD whilst R lies in APB or AQP,
the chances relatiug to Q placed in APD and to Q placed in BPE being of
course the sume.

If then the chance of Q, R being each of them inside APB be called ¢,
: that of Q being in APD and R in APB be called ¥,
that of Q being in APD and R in AQP be called w,
the chance of the figure APQRB being convex will be
1-8¢—12¢—12w, , ,
It is obvious @ priori that the form of the triangle does not enter into the
result. Call then the perpendicular distance of C from the base and the
length of the latter each unity, so that the area of ABC == 4, and let the tri-
angle APD be divided into bands d ¢ parallel to AB or DE. -
Let x be the distance of DE from AB, { that of de from AB, and put
DP =y. Then since the cube of the given triangle is }, we have

to= [ de(-0) ()= 464-D = s
w=f‘af“'@-y (;)’=/‘az(1-w>*g’=;w

1 M-s . ] 1 ‘o 2t
=" AL N L,
wn T af & Q)i e
o o ° (]
Hence the required chance of the figure APQRB being convex is
. 1=j—3—7 or 4
In analysis, as in statecraft, the great rule applies, “ Divide et impera.’
4. The same method -gives a simple solution of the four-point problem
‘when the four points are taken anywhere inside a given tri
The chance of their fomin&amreentrmt is four times that of a specified
-one of them (as 8) lying within the triangle whose apices are the other three
}P, ?, R). Nolw the mea‘:; valuie o:hthe ti'iangle B R is one-twelfth of th
imiting triangle, as is shown in the solutions of Quest. 1229, (Reprint
Vol. I1., p. 95, and Vol. IV., p. 101; in_the first line of the huér(.oluﬁon,’
however, m is printed in error for M). Hence the chance of S8 being within

.
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PQR is yi;; and the whole chance of the figure PQRS being reentrant is-
therefore § ; 8o that the complementary chance of the four points forming a
eonvex quadrangle is §. :

6. It is worth while to show here how the result of Art. 4 may be’
obtained more direct'y by another mode of applying the theorem (@) in the
passage from the Reprint, Vol. IV., last referred to.

We may make n (the number of points) equal to 4, ¢ (the order of the
affection) equal to zero; we have then .

8.4.8.2 4.4.8 4m+3u
M= T e ™ 576 ~—3
1 } 2 4 w_ 8+4 1
L = _,and u = the double of = = =. H. =21
where m 4cmp e dou eo9 5 ence M - 7

the probability, as previously found, of four points inside a given triangle
forming the apices of a reentrant quadrangle. & e

6. Let us apply the same method to determining the probability of five'
points taken anywhere at random within the triangle ABC forming or not a’
convex figure. 1t may easily be seen @ priori that the relative lengths of
the sides will not affect the result, and Ishall regard them all as unifs. Call
m the probability of reentrance when three of the five points lie respectively
along three sides, u the same when two of them lie respectively at a vertex
und on an opposite side of the limiting triangle. Then, i?;che required chanoe’
of reentrance is M, we have by (2)

M _8.5.4.83m+4.5.4(8u) = 2mip

. 10.9.8 3
(a). Tofind u; calling B the fixed vertex, Q the point moveable in AC,-
1 - 2
we have p-igm-bgl‘»
where  ; = mean value of (ABQ(i;chQ %,

and  p; = mean value of $(ABQY ‘0381’;3)5‘3‘» (CBQ),

Hence m=2f‘d:v..z-'-%; p,asf’d.v(c'—:u’)-r%;
° [

17 1 29
therefore =_0 4 - =2
er F=3%*3

(8). Again, P, Q, R being points taken at random in BC, CA, AB
respectively, we have m = m,— g + ;M .
hy miedn valte of 2 @,
where m, = ARG

\ ‘
also = mean valme of (EQB)! :
™ (ABC)? :

- (PBR)? . (PBR)
am’l mg = mean value of X (—-“—AB o) that is of 8 m,
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where it is to be noticed that g is the coefficient of reentrance given in Art.

(1), and that the mean values of such products as &fyﬁ(é‘}cTP) donot enter

into m because the probabilities due to the distribution of the two outstanding
pointe between PBR, QCB is nil. }

The mean value of PQR is easily seen to be the triangle whose apices are
the mid-points of the sides of ABC.

) 1 1
H ha ot SR S
ence we have 3~ 3 1= 3

To find mg; for the moment suppose P and R fixed whilst Q travels along
AC; make AQ =2, ARP =a, and CPR = 8.
Then the mean value of (PQR)? becomes

[‘ dxA{(l—z)ci-:vB}’n L@ rasepn).
The mean valueof a? (as of 82) is ([l dx .z’)’(ABC)’, ie. (A::_ﬁf.

’

The mean valae of a8 is ( f . dz(z-ze))'(ABC)n, i.e._(_"igsc_)’ ;
[

where in explanation of the latter equation it may be observed that when R
remains fixed a varies as BP, say x, whilst 8 varies as CP or (1— &), so that
the mean value of aB on this preliminary supposition varies as

f’ de .z (1-2) (ACR. BCR).

[}

1,01, 1 1 1
H h == (z+ =+Z) =—.
ence we have g 3 (9 + %6 + 9)

Finall .f(PBR)!_(fn dr. ot 2=1_’ that -g:
inally the mean value o (&BO)? / z) 9:0 at my 5

1 1 2 23 1746429 25 . ..
Th - 4 S="andM == = =, which
us m 3-13ts an 3( ) g "hic fraction is

the chance of reentrance for § points taken at random in amy given triangle,

thus giving % as the chance of convexity.

7. The reentrance referred to above may be single or double. The
calculation for the case of double reentrance isolated from .that of single
reentrance is very easy. Following the notafion in Art. (1), the chance of
three points in any triangle ABC forming with A and B the apices of a
doubly reentrant pentagon is three times : .

/‘2 (h-x)ﬂ.dx-,:-f"qbe. dz, that is%.
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Then following the notation of Art. 6, 8o that u, us, my, mg, m3 remain the
same as before, we have now

1 1 1

= - . - d o E.—;

® 2m+0m Z,an m = mg is
1/2 ,1\_5
erefore M=_-(Z - =
theref 8(12+4) 36

Mr. WooLmovs®'s formula (Quest. 2438) gives for this case
B (2+cosgx)® B 1 5
M R e i B L = e e e
12° @engn)y? 12 8 3¢ 8 foundabove. ‘
Thus the probabilities of the pentagon cornered by five points taken at random
on any triangle being doubly concave, simply concave, and totally convex,
will be as the numbers 6, 20, 11.

8. The value of the fofal chances of concavity calculated in Art 3, by aid
of the diagram therein given may easily be seen to be

‘/"dcfl-zdy.z (3:’+12z’y+6 . g z’y“).
o o

The first term 622 within the brackets gives as the final result of the in-
tegration %, the chance calculated in Art. 2.
. 1 2 1 2

d 24x% 2(z=2+Z2)=2.
The second term 'y gives 1 (3 4+5) g
3 8 1 2
i'578) T w
Now g + ;23 = g, which is the chance of simple reentrance for the pentagon

whose angles are A, B, and three points taken at random within ABC; and

The third term 8z%y* gives g (.;: -

% + 45' = % which confirms the correctness of the resnlt found in Art.8.

9. There is no difficulty*in finding the chance that of ¥+2 points,
taken at random in a triangle, v—1 of them shall be within the remaining
three. This however it should be observed when »>8 is not the case of a
simple “ morph”, but comprises various distinguishable spedies of configura-
tion. Beginning with the supposition of two of the points lying on given
angles of the triangle, this collective chance will easily be found to be

2 [ dra"t(1—-2) = i.
4 b (-2) v+l

Then passing to the case of all » +1 points being free, we obtain
4 ! ,
dz.

T J— ' = ey

v+1J (r+1)
m = mean value of (Pﬂ.{)'
ABC

. -1
=mean value of 1 (a"l+a"’B+a "ﬂ’+......+‘ﬂ” )
v.(ABC)
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.% f1+0-17"+ [(,_ 1) ('_;_2)]"», [(v'-i) (:22) (i;_“)]"af + 1}
PR YO TS PR RN

== L {—’—. + -—.6.——-},
2v+8 L ¥  (v+1)*
where s is the sum of the squared reciprocals of the coefficients in the de.
velopment of (1 + t)"_l according to the powers of ¢.%

1917. (Proposed by W. S. B. WoornoUsE, F.R.A.8.) — Suppose the
surface of a sphere to be made up of an indefinite number of points, and
straight lines to be drawn through every two of those points, and determine
the law of density of this mass of lines as depending on the distance from
the centre of the sphere.

Solution by the PROPOSER.

Let a plane be drawn through the centre of the sphere, and first consider
the system of parallel chords that are normal to this plane. To simplify our
notions, suppose the plane to be horizontal and the chords under considera-
tion to be therefore vertical. .

Let a denote the radius of the sphere;

z the singular zenith distance of any point on the surface ;
n the number of points, supposed to be indefinitely great and uni-
formly distributed over the surface ;
the radius of a sphere concentric with the given one;
Q’ its volume ; )
L the quantity of line imparted to the volume of this concentric
here by the mass of chords joining every pair of the » points ;
D the density of the mass of lines at the distance p from the centre ;
k a’ 8xa
" Then, conceiving two consecutive horizontal parallel circles whose angular
zenith distances are gz, z+dz, the spherical radii of these circles are
az, a(z+ dz), and the area of the spherical surface contained between them
is 2wa gin #z x adz = 2xa%dz sin z. And as the n points are uniformly distri-

buted over the total spherical area 4nra"fdz sin z = 4=a?, the proportionate

. 270 ot
number of points contained between these parallel circles is 2'-“—::;;“—'_1-3 n
=4ndz sinz. The vertical chords which connect these points with the cor-
responding points in the lower hemisphere generate a concentric cylindrical
annulus, radii -a sin 2, a sin (2 + dz) and altitude 2a cos 2, and the portion of
each of these vertical chords which lies within the concentric sphere,

* Thus, making » successively 1, 2,3, M assumes the values 1, b which is right.
VOL. VIII. R
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radius p, volume V, is evidently 2,/(s%—a® sin’c). Hencs, differentiating
with respect to p, we get the sum of the two equal portions which fall within
the differential volume @V contained between two consecative concentric

spheres, radii P-P"dl'»e‘l“lhi(p%-z—). !

Now if the lgohere be moveable round its centre, and each of the s points
on the surface be made a zenith, and a set of vertical parallel chords drawn,
we shall evidently obtain, in the aggregate, the whole of the chords which
connect every two points on the surface ; and as these » sete of parallel
chords are precisely alike, they will all be included by simply multiplying
by n. From these considerations we find that the quantity of line thrown
into the differential volume dV by the whole mass of chords is

anx [ des 2pdp - dzsin g
dL=n f-d‘nn‘°/_——(p’-a’lin’z) l’pdpf——-————-

2 V/(p*—a? 8inls)
- "_’!;_d! log “““J?::“’d“’ 2) (up to a sin 2 = p)
= Mpdpy a+p
2a Tacy

And as this quantity of line is obviously equally distributed round the dif-
ferential volume, dV = 4arp?dp, the density of the mass of lines round this
spherical annulus at the distance p from the centre is

dL n? a+p A, a+p

D W e T e —— R - —y

dvV  8wap a—p p log a—p

which is the required law of density,
When developed in a series it is
DE_A MP -2.& _dp_-z.ﬁ(l-{-iin_e.‘.-}-&c.)
pfa’-p’ ap, 1__4:_’ a 83 ba*

&
=" P, p
m(1+8—‘2+57‘+&c.) k D
y : 22 _ n® Dy
And at the centre Dy=2 o %,
a  4ma® 0 | 10000
So that, putting £ = %, the law of density may be % }:gggg
statod thus : : 3 | 10817
) ‘4 1-0691
Do ligltk 5 | 10986
D, 2k 1—k 6 11662
A small marginal table is here annexed to show the 7 1-2890
numerical character of this function, which expresses | 8 1-8788
the relative density at the distance ¥ from the centre ‘9 1-6868
when the radius is taken as the linear unity. 10 )

The quantity of line within the sphere (p) is found by integrating
= pdplog®*L, andis L= "2 (1-%2=F" o 3P
dL =2, plplog S10,  wndis L= SF (1~%=0 1og 22F).
When p = a, we have the whole quantity ofline contained within the given
sphere = §n%a = 2xa® .D,. Henoce, as the number of chords is in%, the
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average length of all the chords is equal to the radius of the given sphere.
Also, dividing by the total volume $wa? the average density for the whole
sphere is §Dy. And if all the lines were uniformly distributed with the
same denmttimn that at the centre, they would occupy a volume (2xad) which
is equal to that of the cylinder which circumscribes the given sphere.

It will be observed that the demsity of the lines becomes infinite at the
surface of the given sphere. If the chords be all supposed to be produced
indefinitely outside the sphere, the external law of density is readily found
from the foregoing expressions. In this case p > a, and in determining the
value of dL,, we have only to give to z its full limit ». Thus we find

dL-’.'.”_.d"logeiﬂ, and hence D = X Jog £+ 2
2a p—a [

P p—df
and, putting as before 5 = &, we get '%0 = %log.”:_:_t_i

These forms are remarkably analogous to the expressions we have found for
the interior of the sphere, but they materially differ in their character.
Thus, by expanding the interior and exterior densities in terms of %, we find

D k2 | k+
when <’D. +8 +5+
D 1 1 1
when k>1’D_.-F(1+§3+W+&c')

The latter law for remote distances virtually becomes ‘inversely as the
square of the distance. Also for reciprocal pairs of points we have the
simple relation D, = %°D, , whatever be the value of &.

k

NoTe.—An analogous problem for the circle instead of a sphere was pro-

by me as the Prize Question in the Lady's and Gentleman’s Diary

for 1866. The law of density for the circle is an elliptic fanction, and we

have found that for the sphere to be a logarithmic function; but the result-

ing numerical law for the two cases presents a remarkable similarity, The

increase of density from the centre outwards is somewhat greater for the
sphere, and both of them become infinite on attaining the boundary.

On taking a finite number of points, and making a diagram for the circle,
the beautiful clusters of intersections were so striking that I was induced to
prepare diagrams on stone, impressions of which are published in the Diary
for the present year. I have also had photographs taken of a very large one,
constructed from 144 points, with a diameter of 17 inches, containing 10,296
connecting lines, and involving 17,178,876 intersections, for which extra.
ordinary production I am indebted to the assiduity and perseverance of my
esteemed friend, Mr. Jobhn Scott, of Lee.

1010. (Proposed by Professor SYLVRSTER.)—AB is a given straight
line upon which four points are taken at random. Find the chance that
their anharmonic ratio (estimated by the quotient of the whole into the
middle by the product of the extremo segments) shall exceed a given quantity.
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Solution by STRPHER WATSON.

Let C, D, E, F be the points, and put - ! M- !
AC =w, éD-w, DE=y, CF =g, 4 & D F b
AB = g, and m = the given quantity. )

Then Z,_,sza}':,'/'} >m, therefore y> "%Ezﬂ(ar suppose),

and obviously y must be < s—2; also the limits of 2, 2, w are respectively
(0, z), (0, a—w) and (0, a) ; moreover the four points can be u;t:erchgnged
in 24 ways, and the measure of the total number of their positious is a4;
hence the required chance is

24 o a-% s -, 2% a-w sz (z—a)d>
A T AT A T LT i
° (] [] Ty [] 0

24 a a-% (m+1 __1 2
== dwf {_m’_ log’(nH- 1) ;}s ds
o

-2{%!103 (m+1) — lm}

Professor SYLVESTER remarks that two of the points ma{abe fixed at A
and B, by virtue of a general principle: hence the required chance becomes

2/"11" dz=-2{"‘+llog(m+1)- 1}.

+mx m3 m

3 .
Thus the chance of the harmonic ratio being exéeeded, that is of the ratio
being ultra-harmonic, is 4 log 2—2, that is “77268872, or }§ nearly.]

2395. (Proposed by J. J. WALKER, M.A.)—A proof is required of the '
following generalization of a well-known theorem :—1f from dny point on a

conic lines be drawn to meet the three sides of any inscribed triangle, parallel

to the diameters bisecting those sides respectively, the three points of inter-

section will be in the same straight line.

L. Solution by W. 8. MoCay; 8. BILLS ; and others.

Let the eccentric angles of the vertices of the
inscribed triangle be (,8,7), and 3§ that of any other
point on the ellipse.

Then the equation of the side By is

% oos B, Y gin By _cogB7

2 co8 3 +b sin 5 3 esessesnsennnea(1).

Now the relation between the angles that two conjugate diameters make
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with the axis being tan 0 tan ¢’ = — 9-:, the equation of the line through &
. a .
parallel to the diameter bisecting (1) is easily seen to be
2 gnBrY _ Y oos BT mgin (Y _y
S 3 5 lm( ) ) RN ¢ ) B
The intersection of (1) and (2) is one of the three points that are to be
proved collinear; and the theorem would be proved if we could find a line
through the intersection of (1) and (2) symmetrical with regard to (a, 8, 7).
Multiplying (1) by sin$ (a—3), (2) by cos} (a—3) and subtracting, we
ﬁ;t, after reducing the right hand aige, the equation of a symmetrical
e, viz., -
Z n at+B+y=3_y cos a+B+y—3
a 2 b 2 -

= 2 sin—— sin ——__

a—8 _. B—8 . y—3 a+B+y—83
3 3 sm—2 +ain.——_—_.2

11. Solution by MoraAN JENKINS, B.A,

The theorem may be generalized still farther thus :—

Let ABC be a triangle inscribed in a conic; A’B’C’ the triangle circamscribed
to the conic at the points A, B, C. Then if any three concurrent straight lines
RA’, RB’, RC’ meet the polar of R in A”, B” and C” respectively, and
straight lines through A”, B”,C" respectively to any point T on the conic,
meet BC, CA, AB respectively in a, 8, 7; &, B, 7 shall be collinear.

By making R the centre of the conic we obtain the theorem in the question,

Let BC, CA, AB meet the polar of R in &', 8/, 7/ respectively,
TA, TB, TC meet the polar of R in a”, 8, o/’ respectively,
and the conic meet the polar of Rin P, Q.
Then since a’, &c., are the poles of A’A”, &c. respectively,
o', A”; B/, B"”; +/,C” are corresponding points of a system in involution of
- which P, Qarefoci ...covvvvvenrnnc(1);
and, since the polar of R cuts the inscribed quadrilateral TABC and the conic,
therefore o', a”’; B, B”; v, v"; P, Q are corresponding points of a system

» in involution.....ceeeuiiineiiiinnss (2).

Hence A”, &’; B”, B”; C”, o"- are corresponding points of another system
© ininvolubion sec.eeviecieiiniininenea (8

[We readily obtain (8) from (1) and (2); forif a', 8',.. .. divide PQin the
ratio u, /... respectively ; A”, B”...in the ratios D, E... respectively; and
', B"..in the ratios ", ¥"......; then

from (1) we have D=—u’', E=—//, F=—p';
from (2) we have w/u” = v'v"" = p'p"; !
hence  Du” = Ev' = Fp’’; whence (8) follows].
Therefore A”B”.B"y.C’a’ = A"y .B"a".C"B".
But if F be a perpendicular from T on By
"nar TB” "
QA"8")t= ZW.(TBA ), &c.
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(IBA”) (ICB") (TAC") _,
(TCA”) " (TAB) ' (TBC")

But gg:,:’)) is the ratio in which a divides BC, &c. Hence a, 8, 7y are
collinear.

It is to be noticed that if ABC, A”B"”C” be two given triangles, and T a
point such that TA”, TB”, TC” cut BC, ., .. &c., in three collinear points,
the locus of T is given by the equation

(TBA”) (TCB") (TAC") _ ¢

(ICA”) (TAB”) (TBC")
This locus is a cubic, which degenerates into a conic through ABC and a
straight line when A”, B”, C” arein the same straint line ; since A”B"C”
is then a part of the locus. ;

Hence

II1. Solution by the PROPOSER.

Let the point be taken as origin, and the three sides be
az+by+c=0, a'v+ly+c=0, a'z+b"y+c"=0;
then the equation of the conic will be of the form,
(@'z+...)(@"2+...)+(@az+...) ("2 +...) + (a2...) (a'2...) = 0;
or A3+ Bzyg+Cy3+.... +.... =0,
where A =d'd"+aa”+aa’, C=0bb"+bb"+b¥,
B =a'l!! +a"V +ab" +a"b +al/ +a’b,
and the absolute term ¢’c” + ¢¢”’ + ¢’ = 0, because the origin is on the curve.
Write d=a't’~a"V, d& =a"'b~ab", ~d’"=ab'—a'b,
then the eguation of the line drawn throngh the origin parallel to the dia-
meter bisecting the line az + by + ¢ = 0 will easily be found to be
{(@+d)d~(a+a")d"} 04+ {(B+¥)d'—(B+V")d"} y = 0;

and the coordinates of the point of intersection of this linewith aa + by + ¢=0
will be found to be

L e={G+¥)d—@+V)a"} 2%,7, y= {(a+a")d”—(a+a’)d’} 2_;;’_‘;,
Similarly, if (¢/, y’), (¢,") are the coordinates of the points in which the

sides ’x + ..-=0, "2+ .. =0 are met by lines drawn through the origin
parallel to the diameters bisecting those sides respectively, we have

= (¥ +¥)d"— (¥ +1) "}2%"’ ¥ ={@+a)i-@+a)a"} 2
- ', — (3" v €’ o ” (! [
o= (" +¥) d—(b +b)a}2Td,, y'={@" +a)d—(a +a’)d}m.
From the above values for (2, ¥), (¢, ¥'), (@, ") it will follow that

oy — 'y = — (@1 + 4+ &1~ 2d'd" ~ 2dd" —2dd') 4;;(1
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nnd,bylymme'ﬂ.
Iy — 2y -— %4+ d"=-24'd" = 2dd" ~ X
O'y 3’” ((’-i— W)“d'd"
' o'y m e (B o+ @Y+ A= 203 — 24" —2dd) S
oy 'y m (P4 4P+ =2~ 340" 200

whence 2y —dy+a’y—ay' + Y~y =
%] 78 ! 1 4
_d’+d +d” ﬁ:’, 2dd’ sdd(cc,+ccll+clcll);
but since co’ + c¢” + ¢’c”’ =0, a8 remarked before, on account of the origin bein,
on the curve, we have the condition for the points (,y), (¢,¥’), (2, ¥"
8, e cans o the ollipao the resul is esily satisfled b ting the figur
n the case of the ellipse is easily satii Y projec e e

into a circle orthogonally. "

IV. Solution by STEPHEN WATSON.

Let ABC be any inscribed triangle ; take BC=a, BA=c, as axes, then the
equation of the conic is
$*+ A2 + Bay—cy—aAr=0,
and the coordinates of its centre, .
c¢B—2aA —.A(aB~20)
P-4’ T T B-aA
and if y = ma be any line joining B to any point (z3,ys) in the conic
ém+ aA
m(m+B)+A’
From the above, the equations of the lines thronﬁh (2), parallel to those
through (1), and bisecting BC, CA, AB respectively, are easily found to be

y—Ys -—%(@-ﬁ') 9% 60c00repnecennvecevene ....(8),

v = ©B—20A
y ’! aB_zo

LR R TTI R TR Y (1),

) =

@y = Y3 = M1y ........--....(2).

(3_3,) et ceescc et nsstes e e -;(4)'

Yy=yg =~ ;(‘—S’) TR TRNY 'o’ooto seesccco e ..(5).

The line through the intersection of (8) and BC, and (5) and AB, is

Az !.ﬁ.- tecsesssases
B”+2A+ 7B hﬁ uunnun(e)t

and the coordinates (2’,y’) of the intersection of (6) with the line BC,
whoge equation is (‘Z + % -1), are
o = a (Bm+24) - “om (2m + B) ,
2{m(m+B)+A} 2{m(m+B)+A}

therefore?.—%2 — 3B=2¢ . y.once («/,4’) fulfil (4), and the lines (8), (4),
y¥—ys cB-2aA

(5) meet ina point.
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2444, (Proposed by A. RensrAw.)—Upon any three chords (AB, AC, AD)
of a circle as diameters circles are drawn, cutting one another againin E, F, G ;
. prove that EFG is a straight line.

1. Solution by Proi'euor Hirsr.

This theorem 1s the inverse of the well known one that the circle circam-
scribed to the triangle formed by any three tangents to a parabola passes
through the focus. To render this evident, it is merely necessary to take
.the point A as the centre of inversion. The given circle ABCD then be-
comes a straight line B’C’D’, and the three circles on AB, AC, AD as dia-
meters become three right lines through B’, C’, D’, respectively, })erpen-
dicular to AB’, AC’, AD)’, three tangents, therefore, to a parabola of which
A is the focus and B’C’D’ the tangent at the vertex.

II. Solution by H. MuRPHRY; H. ToMLINBON; the PROPOSER ; and ofhers.

The angles AGD and AGC are both right
angles, being those in a semicircle ; therefore
CGD is a straight line. Similarly CBE and
BFD are straight lines. Hence CBD isa
triangle inscribed in the original circle, and
from a point A on its circumference per-
pendiculars AE, AF, AG are drawn to its
sides ; therefore, by a well-known property,*
their three feet E, F, G are in the same

straight line.
ise: £ ADC = ABE = AFE,
therefore AFE + AFG = ADG + AFG=2
right angles ; therefore E, F, G are in the
same straight line. .
[An analytical solution is given in Salmon’s
. C‘mg'i:, p-99, ex. 7; and another in Salmon’s Higher Plane Curves, p. 240, .
ex. 2.

.

. 1959, (Proposed bi' W. S. BURNSIDE, M.A.)—If the roots of the equa-
tion (s, b, ¢, 4, e; (#,1*=0areq,B,7,3, find the equation whose roots
are (a—B) (a—1) (a~8), &e. )

Solution by MaTTHEW CoLLINS, B.A.; S. BIris; and others.

We have (d—B) (a~7) (a—3) = 2a3—(a+B+7+8) a3
+ (By3 +75a+3aB +apy)—236y8;
butas a, B, 7, 8 are the roots of the equation
azt+4bat+6cr? +4dr+e=0.00vevnriiiiennnnad (1),

we have 3 X (a) =— 4:% 2(&78)=-;4;—‘l, p«,aaa_:;

* 8Bee Question 2395, on p. 44 of this volume of the Reprint.
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hence g = (a—p)(a—7) (a—3) = 2a3+ t.ﬁ -4 _2

a. aa
therefore, restoring 2 for a, and putting 4¢ for y, we have

azt+ 20282 (d+ag)z—e=0.c.cceenrerenena.(2).
1)+ (2) gives a2*+8b22+8cx+(d=62) =0 ...coveverniaereea.o(8);
(1)—(2) gives bad+8ca3+(8d+az)2+e6 =0.....cc0uvenernccnens.(4).

Now in Meyer Hirsch’s Algebra, (pp. 119—121) it is shown that the "
result of eliminating & between the two equations

pH+gr+rad+ea® and p+gr+ral+ 2 is
Py —P'Q) (s —&7) (rd —7'9) + 2 (97 —9'Q) (sp'—&p) (5’ —¥r)
+(ap' —op)*+ (pr' —p'r)? (o' = ¥1) A
+(pr'—p'r) (ap’—&'p) (3¢’ —¥9)—(pd —1'q) (s¢ —&g)* =O.......... (5).
Substituting in (5) for p, p’, &e., the coeficients in (8) and (4), it becomes
9 (ac—b¥) (8d3—8oe—2adz—a®z?) (8bd—3c+ abs)
+ 6 (ac—b%) (8d*—8ce—2adz—a?z%) (ae—bd + ads)
+ (ae—bd + abz)® + 27 (cd—be+acz)® (ac—b2)
+8 (cd—be—ace) (ae—bd + abz) (3ad—8be +a%2)
+ (3ce—38d2 + 2adz + a%2?) (8ad—3bc + a®2)® =0,
or a#* + 8a® (a®d—3abe + 25%)
+6a2 (a%ce — 3a®d? + 14abcd— ab%e— Yac® —8b% + 6b20?) 52
+ {81 (d2—ce) (bd—c?) (ac—b®) + 18 (d* —oe)(ae— bd) (ac—b*) + (ae— bd)}
+9 (cd—be) (ae—bd) (ad—be) +27 (ce—ds) (ad—be)'} =0 .... (6).
[The coefficients in equation (6) may be readily reduced to the forms

given in equation (F) of Mr. Burnside’s solution. Moreover, equations (B)
and (D) of that solution may be deduced from the foregoing as follows :—

Assume 2 = v— % ; then equations (3) and (4) become ,

P43 (ac—b%) 0+ 263—Babe + a¥W—a% = 0 ouveeeinnnnnnsn (),

a%o8 + 8% (ao—b%) o* + (3abP—balbe + 8a®d + a'z) ©
—b4+8able—8a%d +aPe—atbz = 0........(4).

(4)—b (8') gives 8a3 (ac—?%) o*+a (2*—8abe + a*d +a%) v
—8b4+6abic—4a%bd +aPe = 0 ..eviivnenaa(F).
Now in Mr. Burnside’s notation (8") and (5’) may be written
ado3+8uHo + G—adz = 0, 3a2Hv? +a (% +8G) +a?[-8H?! = 0;
and they are thus seen to be identical with Mr. Burnside’s equations.]

II. Solution by the PROPOSER.

Since the requii-ed equation has for its coefficients functions of the dif-
ferences of a, B, v, 3; the result will not lose its generality by removing the
second term from (a, b, ¢, d, €) (z, 1)* = 0.

VOL. VIII. r
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When this is done it is found to be
&2+ 6a"Ha? + 4aG2+ a—-8H? = 0 ........00.. (4),
where G =a'd—8abc+20%, H =ac-b3, I = ae—4bd + 3¢3,
and J = ace + 2bcd—ad?—eb?~cl,
Now it is easily seen that
a®(a—B) (a+7) (a—3) = 4 (a’a*+8aHa + @) = 4a%s, suppose ;
and a must then be eliminated between the two equations
a’a®+8aHa+ G—a% = 0, a‘a'+6a’Ha’+4aCGa+a’I-8H2=0 ..(B,C),
These are easily reduced to the two quadratics
8a%Ha? +a(a% +8G)a+a%l—8H2 =0 .......cc0cuuee. (D),
a2 (8G + a%) a® + (a® 1 —12¢H?®) a + 3Ha%—8HG = 0......(E);
and the result of the elimination of a between (D) and (E) is
ab¢* + 8a%G2% — (18a%T —12a%1H) 2% + I3—-27J2 =0 ,.....(F).

That the coefficient of z must vanish in (F) is otherwise evident from the
fact that if the given equation have equal roots, that is if 13—27J2 =0,
two of the roots of the resulting equation must vanish.

2336. (Proposed by 8. RoBeRTS, M.A.)—Find the locus of points such
that the chord of contact of tangents drawn to a given conic from any one
of the points is of constant length.

Solution by the REv. J. L. KiToHIN, M.A.; W. CHADWICK; and ofhers.

Let (X, Y) be the coordinates of the point from which tangents are drawn;
(*1, %1), (23, y9) the respective points of contact ; then we have

le ij - X#, Yy, . . X Y - .
FrE o Tl et () =0
Let p, which is of constant length, be the distance of these points from each
other; then, if  denote the angle which p makes with axis of 2, we have

By =Ty = p o8O, Yi—yYs= pEiRO.....iiianen...(D);

therefore (w,+t;:0l0)’+(y,+i‘sin0)3 -'1’
Zgco8 0 . yy 8in @ cos? 0 | sin2 @
therefore 2('7‘*’7)“’(7* 5 ) =0 .- @)
From (1) and (2) we find tan 6 = — %; hence substituting in (3) we get
2
2(@Y—yX)+ EXHao_ o 4
(b4X2+ atY3)}

From (4) and ]%4- %- 1, we get
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_ %X patY . PHIX
s ore= o 2 (X2 + a«p)} BX3y a’Y‘ 2B X 4 @OV

" Hence substituting in E”— + % = 1, we get for the equation of the locus

© P BE+ AT - 4 (BXT + AT (X34 a7V =) ...... (6),

a curve oftbe fourth d The corresponding locus for the hyperbola is
obtained b y for 4%. The parabola is a very simple case, and is
here omi

[Otbm: if (&, &) be the middls point of a chord of constant length in
the conic 22 + "{—' =1, the length of this chord is given by the expression
a
2 4 a3
P Wf*““") ( BE+aRN e (A)
5% + a’k® a0
Moreover, we may write the equafios of this line in the two following
forms, (B) as a chord whose middle point is at the point (4, &), and (C) as
the polar of the point (X, Y); m,
ky _A® x.r Y,
’“ - ._.....(s), 2z :-1 cereeenn (O).
Comparing (B) with (C) we obtain
A_k _bR2+a% (b‘h’+a‘k’) - (b’lo’+a’l‘)‘

XY @ T\ iXram FXt a1
M+ o _ WX+ AT PRa _ o
whence e AT " —am ~ Foran o O

Substituting from (D) in (A) we obtain, for the required locus, the same
equation (5) as in the foregoing solution.]

Nors ox QuesTIoN 1990. By PRo¥rssor CAyLEY¥.

The theorem of h4,.(ambedbyProfenotSlvestertoMr
Crofton,) that “if a md a ht line be cut bynnytnmvernlin
thmpuinta,thuowmbothefod a system of Cartesian ovals ha
double contact with one another at two fixed points,” may be enuncia
under a more complete form, as follows :—

Ifin a given circle the chords PP), BC meet in A, then each of the two
) fodi A, B, C,whichpquthrozﬁhP 'mmtE:- hP,;
and moreover, :fa,a'bethedhmetnhof e chord PP, (that is, the ex

¢ 800 Beprint, Vol. VI, p. 88
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mities of the diameter at right angles to PP,) then the tangents at P, P, to
one of the Cartesians will be aP, aP, respectively, and to the other of them
o P, o P, respectively, these tangents being thus independent of the position
of the chord BC ; and thence also thus; .
Given the points A, B, C in Zined, and the point P ;
through P, B, C draw a circle gA and let PA meet this in Py,
.” s Us » B ” P » P’o
. P) A, ”» (C ” PC » f
then each of the Cartesians, foci A, B, C, which pass through P will also
pass through P, Pg, Py; and if .
a, o’ are the diametrals ofll:II,’, in circle (AB).
»”

B’ B’ » 3 ;s

v ‘/ » PP, 3 1 (C > -
then (the points of the several pairs being properly selected) the points
(a, 8, 7) and the points (a’, B, -}) will each lie in a line -through P, viz.,
the lines PaBy and Pa’Sy’ will be the tangents at P to the two Cartesians
respectively.

The two Cartesians meet in the points P, P;, Py, P;, and in the symmetri-
cally situated points in regard to the axis ABC ; the theorem contains as part
of itself the well-known property that the two Cartesians cut at right angles
at each of their points of intersection ; it gives moreover the construction
for the following problem :—given the foci A, B, C, and one intersection P
of a pair of triconfocal Cartesians, to find the remaining intersections, and
the tangents at each of the intersections:

AT RANDOM: No. VI. By W. 8. B. WoorroUsE, F.R.A.S.

In an article contained in the August Number of the Educational
Times, (Reprint, Vol. VIIL., p. 85), Professor Whitworth seems to labour
under some misapprehension as to an inaccuracy which has arisen in
the statement of my Question (2420) proposed in the June Number. It~
is, in fact, a pure inadvertency, which I should not have failed to dis-
cover in drawing up a splution to the question, and has no reference
whatever to the contorted interpretation of language which Professor
‘Whitworth has incautiously chosen to assume. In the rough working
of the question I was under the impression that the permutations of
each combination were included, but it appears that only the combina-
tions, inclusive of itions, are taken into account. The question
therefore, instead of  Three numbers,” &c., should have been stated “ A set
of three numbers,” &c. It is, however, unnecessary to make any formal
ocorrection, as I perceive the substance of the question has been given by
Professor Whitworth as the second part of his question (2434) in the July
Number. I may, however, be permitted to observe that in his enunciation
of this second part an inaccuracy occurs; the phrase “each one less than n”
should be “each one not exceeding ».” But I cannot bring my mind to
attribute this oversight to looseness of langunage, notwithstanding Professor
‘Whitworth has at same time s0 pointedly reminded us that by due
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care we can generally 8o express ourselves as to preclude any doubt about
the meaning of our most unqualified statements.”

Professor Whitworth further remarks, that ¢ a precisely similar ambiguity
occurs in Mr. Woolhouse’s Question (2438) in the July Number.” He asks,
do 1 ““mean that five points are selected at random, or that a selection of five
points is made at random ?” It would appear to me that in making this
animadversion Professor Whitworth had not given the subject that attention
which he might have done on mumini the office of a critic. Where the
number of possible selections is infinite, he ought to have satisfied himself
that it is virtually the same whether the five g:‘inu are selected separately
or as a group, and that the ambiguity he fancied was a myth of his own
imagination.

dBefore concluding p?;z:t few lines I :my‘owbomthe that Plrofeuor Whitworth
and myself are in agreement as e general interpretation and
nmllyygﬂned signification of the phrase “at random ;”te:sd it is only
right to add that I am obliged to Professor Whitworth for having suggested
the inadvertency in the enunciation of Question (2420),

2359, (Pro by EXHEUMATUS.)—A point is taken at random in each
side of a triangle ABC, so forming a second triangle DEF ; determine the
locus of those points within ABC which have a given probability p of being
enclosed within the triangle DEF.

L Solution by STEPHEN W ATSON.

Let P be a point in therefredloeus,
through which draw lines as in the dinﬂm,
and put respectively BL, LC, CM, &c. =
ay, a3, by, &c., AL, AP, PL =, 0, l;, and .
AE, AF = z,y. Then we easily find
- 0h® 1p_ ahy
LQ 1o =iy
Now P will lie within the triangle DEF ;

when D is any point on QR; hence when E and F lie on AM and AN, the
number of favourable positions of D, E, F, is

‘/‘“["(LQ-rLR)dydw....................g.........(l).

When E and F lieon AM and BN, R lies beyond C, and the favourable
positions are

LN
[ [COFS 70) T 2RO )
Similarly, when E and F lie on CM and AN, the favourable positions.are
/“(al+m)b.dg terrsrnmeaeane s aeneresasanann s (8).
L]
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When E and F lie on CM and BN. If E be at E, F may lie anywhere on
F'N, and D on BC; hence the favourable positions are

[(m-co'm-[(‘g%-c,) a8 (4).

The above include the whole of the favourable cases, and the total number of
itions is abe. Hence the chance of P lying within the triangle DEF,
every position of D, E, F is

L++@)+@ _ 1 - _bk ahich
2D o - {aber— oo = 2 (ashye + arbey) + 220

abe
h mbl ach _ magh, o be}
+a—l,{aelzlolm+“llil°ga—lﬁ—l’+—a—l°8m} Poee.(6)

No'; (#,y, z) being the triangular coordinates of P, 80 that 24 y+2 =1,
we have

k- Z‘- -2 G,aﬂ-i 'ﬁ- z — s
Pl ! z,ahoa_, AAPC ¢ ‘e 1-z' e l—-2

with similar values for I;T' ’;_-,a; hene (5) reduces to

(1-2) log (? +y (1—y) log (1%”) +5(1—s) log (1';') ->,

—2\2(1=2) 1\ VA-V) s1 5\ 5(1-9)

or 1-# (l_y (}._f) -ep I ()8
@ y z

which is the equation of the locus required.

Cogr. 1. If AL, BM, CN be the internal bisectors of the angles A, B, C,

then g‘-%_:_.,sl_'; and (6) gives

2050y (1) s (532) D (222,

which is the chance that the point of the intersection of internal bisectors
lies within the triangle DEF.

Com. 2. If AL, BM, CN bisect the sides, then 0 =gy =2z = §; undg?)
ives p = § log 2, which is the chance that the point of intersection of the
of the sides lies within the triangle DEF.

II, Solution by MORGAN JENKINS, B.A.

Let P be a point within the triangle; a, b, ¢ the
points in which AP, BP, CP meet BC, CA, AB,
respectively ; D any point in Ba; F any point in
BA; d, fthe points in which DP, FP meet AC.
Then if F be in Bo, the favourable cases will be
when E falls within df; but if F be in cA, the
.favourable cases will be when E falls within Cd.

Now, using triangular coordinates, the several
pointe may be denoted as follows :—
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(P)..(z,9,9); (D)...0,p,1=p)3 (F)...l=7,7,0)4
(2, 0, LYY @ +ﬂ)-y 0, =)
@ (225, 0, LEXEY); () (T, 0,
The chance of P being within DEF, if D be any pomtha, will be
3(BDy 3(BF) df 3(BD) 3 (BF) Cd

BGC " BA 'AC T TBC ' ~BA . AC

Now BD = (1—p) BC, and BF = (1—7) BA;; hence the sum of these
chances, when D lies anywhere in Ba, is

/- / _r (z+v)—y) dpd‘r-l—f /-zw
v—v T—y
y+s z+y : y+s
-f‘ P gp- 2 [ TED g
Yy Py yteJ gy TY
y+s z+y
- 1y log (z+2) (y+2) + v log (x+v) (z+2)
xy yt+s yz
It will be found that the chance when D lies in aC may be obtained from
the foregoing expression by interchanging y and 2 ; hence we have

(z+2) (y+2) , . log(:c:-i»,y) (y+2)
xy xz

p =2y log

b log (z+2) (2+y)
y+e yz

- (1—-2) log (1_:_') +y(1—y) log (‘_;_’) +2(1—2) log (?%‘) ;

N =) I =) I =) R
z x
is the equation, in triangular coordinates, of the required locus.

2397. (Proposed by Professor WrITWORTH.) —If a body of homo-
eous fluid be thoroughly shaken and allowed to come to rest again, the
nce that no particle of the fluid now occupies its criginal position is -3,

where e is the base of Napierian logarithms.*

L Solution by the PRoPOSER ; and C. M. INaLEBY, LL.D.

First suppose there were a finite number » of particles in the fluid ; and
let them be distinguished severally by the letters a, B, 9....x. Let N de-

* For the history of this problem see Todhunter’s History of the Theory of Probabili
Arts. 160 ~163, 196, 204, 430, 627, s s d
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note the number of ways of arranging the » particles; also let (A) express
the condition. that a i in its original place, and (a) the condition that o s
out of its original place. Let (B) and () denote the corresponding condi-
tions for 8, and so on.

Then we have N =II(s); but N (A) = 1T (8s—1); hence by subtraction
N (a) =n(s)—m(r—1). But the condition (B) would leave us (s—1)
things instead of » to deal with. Hence writing (—1) for # in the last
equation, we have N (aB) = I(8—1)—1II (n—2).

Therefore, subtracting, N (ab) = IT (n)— 201 (n—1) + 1T (r—2).
Similarly, writing s—1 for # in this equation, we get

N (abC) = 11 (n—1)—211 (n—2) + T (—8),
and subtracting, N (abe) = I () —3I1 (w—1) + I (n—2)— 11 (n—3),
and so on. Hence we obtain

N (abo..) = H()- 2n(r-1)+ :g"_;”n(.-z)-ueo(._u) terms.

=0 §1-1+ % - 2—1'-§+......to (s +1) terms} .
Therefore the chance that all the s particles are misplaced is
1-1+ ; - 21__3 +eesesto (84 1) terms,
which,whennbeoomainﬂnite:becomutheexpamionofa".

I1. Solution by W. 8. B. WooLHOUSE, F.R.A.S.

1. The number'of particles of the fluid is here assumed to be infinite, or
indefinitely great. To determine the question generally, suppose the number
to be finite. Consider a primary group of » things or symbols to be taken
in a specified order, and on the IT (») permutations of the group being com-
pared with it, let ¢ (n) denote the number of ways in which the » symbols
are wholly displaced. Then it is evident that the number of ways having 1
symbol in its original place and n—1 symbols wholly disp! is equal to
n¢ (n—1); the number of ways having 2 symbols in their original places and
the remaining »— 2 symbols wholly displaced is equal to §n (n—1) ¢ (n—2);
and so on. The total number is that of the permutations. That is,

p(n)+np(r=1)+in(3-1)¢ (8—2).... +1=TI(n).
Similarly are obtained the equalities
Pp(n—1)+(n—1) ¢ (n—2).... +1 = 1 (n~1)

[ ] (l—zzk.‘;... +1l= n&lcj'2)

ﬁence, by eliminating the depressed functions ¢ (n—1), ¢ (»—2), &c., from
these relations, we get

¢ (»)=II (n)—all (3—~1) +n "2;]!1 (5—2)-»';1 . ";2

1 1 1
= -— —-— e to n+
(n) (1 1-0»2 2'3+ 2.8.4&& n ltermn)
1

1 1 )
= - - —— &c. ton—1 ter! .
() (2 zstzga """ me

' (s—8) + &e.
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Therefore, if one of the IT(») permutations of the group be taken indis-

criminately and compared with the primary arrangement, the chance that
all the symbols are severally dxsplneed is .

1 1
P 3- 53t 553 2
According to the established formuh
-z | a8 ot
3

—— =—&c. to n—1 terms.

€ =1l-z+i _ %
2 - 2. 8 2.
wehave e —1 1+1-_1_ 1__

2 2. 3 2.3.4
Thus it appears that the chance of the » symbols being wholly displaced 1s
precisely equal to the expansion of e to n+1 terms, which is a remarkable
result. It is further remarkable that, as the number n is consecutively in-
creased, the value of the probability is alternately increased and diminished.
In fact, it oscillates on !l)mth sides at the same time that it approximates
nearer and nearer to its ultimate value €-1,

3.8.4

2. Otherwise: as there are n—1 positions of displacement for any one
symbol, the probability of displacement for each symbal is ——, "_1 and the pro-
bability that all the » symbols shall be displaced is

- C2)-()

- +® (n— 1) 1_n(»=-1) (n—2) 1
1=»- 7w 2.8 +he.
And when # is increased indefinitely, this becomes
m1o1+l_ 1 e
p=1-1+ 3 33 &e. = e},

the same as before. .

Orif 1 om; thenp-=(1-n)'_', and
”

—dm

logp-_log(l m) =_ T—m

= ;f-d“ QA +m+m?+&e.)
--(1+3% +"_"+ac.)

1
-—(1+ — + — ) &c.)
- 1+_+ + &o.
R )
Andv'vhenn-w,p-e-l
Nore.—It should be stated, that the methods of solution last given are

not quite strict. The probablhty of duphcement of any specified symbol is
VIIL
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undoubtedly 2—> 1 , but the probability of the displacement of all the symbols,

when  is a finite number, is not accurately equal to (.";1 *, since these
n

several simultaneous displacements are not independent. For it is obvious
that the displacement of any one symbol must necessitate the displacement
of the symbol which appertains to the place it occupies. The inaccuracy
thus involved diminishes as the number n is increased, and becomes zero
when » is infinite. But unless this is proved to be so, the solution is not
conclusive even for this particular case. It will however be unn

here to adduce any such proof as the solution first given is perfectly general
and accurate throughout.

2426. (Proposed by C. Tavior, M.A.) —If F, denote the fraction
M prove that, in general, if nis not =1,

a+ad+..+a1
atl, @-.F, > 1"*‘( ) ®-. -2 F,

increases with n.

Solution by C. M. INaLEBY, LL.D.

1. Summing the series, for numerator and denominator, in F,, and con-
verting the resulting fraction into a continued fraction, as in my solution
of Quest. 1621, (Reprint, Vlol. V., p. 99,) we obtain the expression,

D e AP ¢ §

a -1

=(¢a-—) +2- =.+1 n—l (Ja _)

SLES (J __) (n—l L OO %

Fy_1

But, by Quest. 1521, F,_, > _1 ;

”»—
K .—:]-'—-F—l- is positive; .*. from (2), F, >2];+(«/“ —)

n—-1

2. Since F, 1>_"_1.anda+§>2-

" —
s F_y>— = 2 .. <=l (a-r%)s

5 Re U P
a
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substituting, then, for 1 in (1) the quantity n—1 a+ 1), the equa-
Fo 4 2n a
tion (1) becomes an inequality, viz.,

F, >a+l_ﬂ a+1) l'il(a-pl).
2 = a

8. This is a eoro]lary from (2). Of course, if _"- F,, increases with #,

itis >2"~ 1F

"_: F,_s andsoforth; till at last we have
n—

21+a’+a‘ 1 1 .
3 o1 2 ('H-;); so that u—:_lF" >3 (a+;). Conversely, if

s+l

since we should have at last a general equation between a function of # and
a quantity that does not involve it), we have

r1 T 2(“+)°'F 1;-+1( )

whigh is absurd, since the converse is established by Art. 2.

2447. (Proposed by Professor SYLVESTER.)—If in the development of
sin!, z, viz.,
e, 12 132
1 °2°837°234'5
every number which occurs is increased by umty, prove that the result, i.e.,
2,2 e 2.4 a0
2 8°% '35 6
is equal to § (sin~—!2)%.

L Solution by THOMAS SAVAGE, MLA.

Since (sin—!z)* is unaffected by a change in the sign of #, and vanishes
with x, we may assume that

B T U I Wl YA V.. P
u = } (sin~12) ,2+ 1 theyg

N°W‘/."d"" =}z (sinlz)+ (l-ﬂ*sin‘lz—x = zu+(1—2?) % -a,

a3 2 x8 x5 )
oo A == et (1- A )2,
1 gt Mgt T At AT et A Ar At )
whence, by equating the coefficients of corresponding powers of 2, wé have
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Agy Agn 2n .
C A = 1andgm Ty = Anee — Aae + 3y T Agaig =5 A0
. 2 2.4 2.4.6
=...,A b IR m— = .
Thus we obtain Ay P 557 &

. 2 22¢ 2.4 2°
Therefor: k1 -1 =% 2% L 4t T .
o =t Tt et

[N

II. Solution by M. JENKINS, B.A.; H. TOMLINSON; and others.

We have aiz {4 ein1 &7} = (sin~1 2) (1—57) "3
and gxi, {(3 sin1 2)2} = (1—2Y T 42 (sin-1) (1—-a) "

- (1= {1+zd%.§(sin"x)’} e (D)

=0

Assume that d—d-z {(* uin"c)’} =3 o Agsy ! where A =1..(2),
=

since it is evident that the series cannot contain even powers of 2 ; then

r=w

ajé:-‘ {Gointay} =3 @r+1)Ag, o
therefore from (1) and (2) we obtain

143 {@r+3)A,, 5= (@r+1) T Pk

r=0

r=ow
2r+2
=1+3 o Aori1® 2.
r=

2r+2

Hence Agys = 2r+8

A,, . 1; and therefore, since A, = 1, we have
8.6...(2r+1)
Hence by integration of (2) we obtain

. ®  2.4,.2 2 g2r+2
FEne) =gt + 2 o) e T

2
Ag = ¥ and Agppr =

which proves the theorem.

[Another investigation is given in Todhunter'’s Differential Calculus,
:;3.11121 (4th ed.) For a more géneral form of the property, see Question
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2452, (Proposed by Professor SYLVEsSTER.)—Prove that if P, Q be two
points chosen at random inside a tetrahedron ABCD, the chance is an even
one of ABCPQ forming the angles of a convez solid.

1. Solution by the PROPOSEE.

If we divide the whole of the tetrahedron ABCD into partial tetrahedra
of which P is the vertex and each face in turn the base, it is clear that Q will
lie in one of these. Inlike manner P will lie in one of the tetrahedra having Q
for its vertex and one of the faces of ABCD for its base. Heuce the sum of
the chances of PQABC, PQABD, PQACD, PQBCD forming reentrant
solids is fwice certainty, and consequently the chance of PQABC being re-
entrant when ABCD is a regular tetrahedron is §, and the principle of hy-
perperspective invariable association leads to the belief that the conclusion
remains good whatever the form of the limiting tetrahedron.

So in like manner we see instantaneously that the chanceis § of P, Q taken
at random inside a triangle ABC forming with A, B the angles of a reentrant
quadrilateral, at all events when ABC .is equilateral, and then by perspective
whatever the form of ABC.

Note.—The method of invariable association above suggested is open to
very serious and possibly irremovable objections in point of legitimacy,
whether for the triangle or the tetrahedron. The result itself is of course
correct ; in fact the method used for the triangle in the solation of Question -
2371 (Reprint, Vol. VIII., p. 36) gives for the chance of non-convexity
in the case of the tetrahedron

?/"‘da.z’(k—c) -:-f"d:c. #%h, which is §.
o o

IL. Solution by PrO¥ESSOR EVERETT. .

If the solid ABCPQ is not convex, either P is within ABCQ or Q within
ABCP. These two events are mutually exclusive and equally probable,

therefore the chance of ABCPQ being not convex is double the chance of Q@
being within ABCP.

Let A and A—2 denote the distances of D and P respectively from the
base ABC. For each value of  the chance of Q being within ABCP is
.h_;_’; but the probabilities of different values of « are as 2%; hence the

chance of Q being within ABCP is .
/" a’ﬂ,s+/"a¢.,:- -3y
3 . )
[ o

and the chance of ABCPQ being not convex is double of this, or §.
If instead of a tetrahedron ABCD the limiting solid be a prism on ABC
as base, the chance of ABCPQ being not convex is

A=z (g _2(y 1\ _1
2 [Pt a2 (1-1) L
.[ o ‘o/‘ (-2 -3

The former solution holds good for any pyramid or cone, and the latter
for any prism or cylinder.
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2405. by H. MurprEY.)—If from the middles of the arcs
which subtend the three sides of an inscribed triangle, three sets of perpen-
diculars be drawn to the three sides of the triangle, and their feet joined, a
new triangle will be formed ; prove that the sum of the segments of the per-
pendiculars of the original triangle, between their point of intersection and
the sides of the new triangle, is equal to the excess of the diameter of the
circumseribing circle above the radius of the inscribed circle.

Solution by the PROPOSER ; J. DALE ; and others.

From P, the middle of the arc AB, draw the per-
pendiculars PL and PQ; then the line LQ gives the
direclion of one of the sides of the triangle referred
to in the Question. Now, (Euc. I, 26,) DG=GE =
QM ; but in the triangles NQG and PME, the angle
NQG = LQA = LPA, which is the complement of
the angle PAL, and MEP is the complement of the
same aungle; therefore, (Euc. I., 26,) PM = NG;
hence PQ=ND. In the same way P'Q’ and P"Q"
may be proved equal to the other two segments of
the perpendiculars ; but -

PQ+P'Q+P'Q’ =R {8—(cos A+cos B+eosC)}
= g%—R(oosA+eosB+eosC-l)
= 2R—r.

Cor.—If P were taken anywhere in the arc AB, we should have,

similarly, PQ = DN, which is the solution of an Honour Question, proposed -

in 1866, in Trinity College, Dublin.

2460. bga'l‘. CorTERILL, M.A.)—Find the conic which is the
locus of a point such that the lines joining it to a pair of conjugate foci are
harmonicals to the conic. The circular points at infinity being considered as
conjugate foci, the three conics thus obtained and the conic in question have
four points in common,

Solution by Pro¥essor HImsT,
Let A, A’; B, B’; C, C’ be the three pairs of opposite intersections of any
quadrilateral circumscribed to the given conic (X). h A draw any

right line # and connect its pole with A’ by a line 2. The pole of «/, of
course, lies in z ; and # and 2’ are harmonicals relative to (3). But they are
also corresponding rays of two homographic pencils (for to each ray x cor-
responds but one ray 2/ and vice versd), hence the locus of their intersection

@ is a conic (X) which touches in A and A’ the connectors of these points
with the pole of AA’. Moreover since, when either of the lines z or 2/
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touches the conic (2) the other passes through its point of contact, it is
obvious that (X) passes through the four points of contact of the circam-
scribed quadrilateral. The same is true of the conic (Y) [or (Z)] which is
the locus of the intersection of harmonicals passing through B and B’ [or C
and tC"]of (Henoe the three conics (X), (Y), (Z) pass through the same four
poin ). )

When A and A’ coincide with the circular points at infinity we bave
obviously the theorem in the question.

NOTE WITH REFERENOE T0 QUESTION 1829 (Reprint, Vol. IV, p. 77.)
By SAMUERL RoBERTS, M.A.

It may be worth while to notice that if in the
first case of a circle, PARB be the given circle,
and with centre P thereon and ra%lius 2k we R
draw a circle SAQB meeting the given circle in
A and B; then, joining AB, the probability
sought in the question is expressed by

2 Area AQB + Area APB
Area PARB :
The corresponding expression for a sphere also gives the probability in that
case : that is to say, we have for the sought probability
2Vol.AQB + Vol. APB
Vol. PARB. ’
supposing the figure to be turned about RP.

I have not been able to obtain a satisfactory explanation of this result
which ought to enable us to solve the problems without integration by taking
a fixed point on the surface of the sphere or the circumference of the circle,

We seem however to get a clue to the matter by considering tbat if AQB

“be filled up with concentric arcs and APB with arcs touching at P and havi
their centres on RP, an element of an arc to radius p in AQB will subten
at P twice the angle which a corresponding element of an are to radius p in
APB will subtend at the same point. This would seem to imply that the
elements of AQB must count twice when we seek the probability that a
point taken at random in the circle PARB shall be not further than 2%
from P.

2343. (Proposed by W. K. CrirrorD, B.A.)—A is any point within or
without a conic, B any point on its polar, CD a fixed straight line. Tangents
BC, BD are drawn cutting CD in C,D. AD, AC meet BC, BDin E, F;
show that EF is a fixed straight line and meets CD on the polar of A.
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1. Solxtion by the Rxv. J. L. Krronry, M.A.

Let the conie, for convenience,
be an ellipse, and A without the
curve. Then it is plain that
AOB isa triangle self conjugate
with respect to the conic.

Taking this as the tﬁanﬁle
of reference, we may write the
equation.to the conic

Pa? + m2B3%—n2y2 =0, or
m2p2 = (ny +la) (ny—la)...(1) 5
therefore ny +la =0 ...... (2;
and ny—la =0, ..ccceeee... (8
are the equations of tangents
from B,viz., BSC, BRD.

Assumed the egnation to CD

Pa+gB+ry =0 .ceenviiiinee..(4);
then since AD passes through the intersection of (3) and (4), and also
through the point (8 = 0, v = 0), we get for its equation

B+ (pn+rl)y=0..cccinienan..(B).
Similarly the equation of AC is .

gB—(pn—rl)y =0 cecieeeee...(6).
Now EF passes through (2) and (5), and also through (3) and (6) ; hence its

uation is —~pa+gB+ry =0 ....ciieuiaies(),

which shows that EF is a fized line: also it evidently passes through the
infersection of a = 0 and (4), or EFK is a straight line.

Obviously we might draw a figure, and the lines corresponding to those
in the above dinfram. either with B or O to start from ; and the same con-
clusion would follow in each case. Hence the point may be either within or
without the conic. Again, the only use made of the ellipse is to make the
figure simpler ; hence what is proved is true of any conic section.

It is easy to write-the remaining two equations for the lines from B and
O; viz., these are

—~gB+ry=0....(8), and pa+gB8—ry =0....(9).
Of these, (g; passes through the intersection of CD and 8 = 0, or the polar
of B; and (9) through the intersection of CD and v = 0, or the polar of O.

II. Solution by J.-DALE ; H. TOMLINSON; and others.

Let the Eolar of A meet the given line
CD, and the lines AD, AC in O, K, K’
respectively, and join OA. Then the range
(AKED) = (AK'FC), since both are harmo-
nic; also OA is common to both ranges;
moreover, (OK, OK’) and (OD, OC) are co-
incident; therefore OE and OF are in the
same straight line; and since KK’, CD, and
OA are constant in position, EF is also con-
stant in position. .

The same may be shown analytically, by
referring the conic to any self-conjugate
triangle, A and its polar being represented
by (y=0, £=0) and #=0, the equation being

L2g® + M3y2 + N222 = 0.
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Thehngenh to the conic from anypomt B on the polar of A will be

L(M’y”+N’z”) z+MNzy+ MNy'z = 0,

—L(M2y?+ N L) P MNz'y + MNy’z = 0.

Let the equation to CD be Ir+my+ne = 0; then the equations to AED
AFC are respectively

L(Myuzw)* (my +nz) +IMN (Zy +y'z) = 0,

L (My”* + N3} (my + nz) + IMN (d'y +9'2) = 0;
and thence we find the equation to EF to be — Iz +my+nz = 0, which
represents a fixed straight line passing through the intersection of the line
12 l:r myf+Ans =0 and # = 0, that is, through the intersection of CD and the
polar of A.

TIL. Solution by the REv. R. H. WriaHT, M.A.

Taking AGH as the triangle A
ofGreference, whixi-e IGH
AG are respectively repre-
sented by =0, =0, y=0,
the equations of the several lines L
may be expressed as fol-
lows :—

D

COni. s veererannsnssannses (4 (mBYY+(ny)t = 0;
Polar LM.......c.ccvs00scee —la+mB+ny m0;
Tangent BC..........cccov. la—2mB+2ny = 0;
AD....B—ky=0; AF....B~ky=0;
wA(B—k)a+2(n+mk) B—2h (n+mk)y =0;
DC....l1(k~h)a+2(n+mh) B~2k (n+mh) vy =0;
BydlEulil;ractmg the two last equations, we have for the intersection of CD
an
—la+mB+ny =0,
which is the polar of A; therefore the -property is established. In the
same manner we may obtain the reciprocal property.

Cog. 1.—From this it is manifest that if a conic be inscribed in 4 tri-
lo; a tmae;t at the point where the line which joins the vertex with the
point of contact of the opposite side cuts the conic, the line which joins the
points of contact with the other two sides, and the base of the triangle, are
concarrent.

Cog. 2.—The locus of intersection of EF and CD will be a straight line,
the polar of A.

IV. Solution by W. H. LAVERTY.

Project the conic into a circle, and A into its centre, then the properties
being entirely about position, will hold good in the general case, if they do
in the particular one. But B will be somewhere on the line at infinity, and
BEC, BFD will be parailel tangents. Also EF is evidently parallel to CD,
and at a fixed distance from it, that is, EF is a fixed right line. And it
meets CD on the line at infinity, wlnch is the polar of A.

vuI. . H
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9980, (Proposed by M. W. CrorroN, B.A.)—A Cartesian oval or ellipse
is cut by an awial circle [i.e. a circle bisected by the axis] in two points
whose vectorial coordinates referred to two of the foci are (r, ) and (s, #).
Show that if a circle concentric to the former be drawn fouching the curve,

the vectorial coordinates of either point of contact are{ (r+4), § (' +4)}:

1. Solution by JaMEs Darz.
Taking one of the foci as origin, and putting ¢ for the distance between the
foci, the polar equation of a Cartesian oval is
Zr+m(r’-—2croos0+c’)‘ =Ciiennnecenannsaa(1)

The equation of an axial circle whose radius is #, and whose centre is at a
distance d from the origin, is

1r2—2drco8 04+d3—k2 =0 .cccvcerninininees()e
Eliminating cos 6 from (1) and (2) gives

{l’d+m’(c—d)} r® —2ledr +const. =0 .....eue.. (3);

therefore if # and & be the radii common to the circle and curve, we have

led . me (c—d)
= andsi 1 = .
Br+o Fd+m*(c—d) and similarly § (' +#) Bd+ m*(c—~d)

If (2) be taken to represent a tangential circle, then the roots of (3) must

be equal ; so that, if R be the coordinate of the point of contact, we have

- led - _mec(e—d) |
R rrrwomg ™" mrme—g

therefore R=3}(r+s), S=}(+¢).
In the ellipse [ =m = o; therefore R = %, and 8= =%,
[] L]

II. Solution by S. WaTsoN; H. TOMLINEON ; and others.

Let F, f be the foci, C the common centre of
the axial and touching circles, the former
cutting the curve in P, Q, the latter touching
itin R. Put £LQEf=a, LPFf=8, Ff= 2¢
= 2ae, and FC = d; then r(a—c cos a) = 3%

therefore r cos a = =%, Similarly, s cos 8 = #=%, But CQ = CP;
(4
therefore P+ d—2rd cos a = 8%+ d?—2sd cos 8,
therefore r3—g2 = 2d (r cos a—s ¢28 B) = 2d (r—s) -Z
therefore r+c=2a_d=-2_d................(1).
(4 e

Now RC, being a-normal at R, bisects the angle FRF; hence
FR :fR = FC : fC, therefore FR : & = 24 : 2ae,

therefore FR = g =3 (r+4), by (A
Similarly, fR = § (' +4').
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.. (Proposed by M. W. CroFPTON, B.A.)—Prove that the equation of
the osculating circle at the extremity of the major axis of the ellipse

rer=2ais T + 7 _ 2,
a+c a—C

1. Solution by W. CEADWIOK ; J. DALE ; H. TOMLINSON ; and others.
Since the equation of the ellipse is put in the form r+ ¢’ = 24, we have
r= {y’+ (a:-l-c)’}" v - {y’+ (z—c)”}*-
Now the radius of the osculating circle at the extremity of the major axis is
%’ , and therefore the equation to this circle is
o () -ty B e,

that is —_—t —— =2a.

II. Solution by W. H. LAVERTY.

The centre of the osculating circle P
will evidently lie on the major axis. — 71N ,
. Then, first, to find the equation to a 4 s ¢ £ 4

circle having its centre at the point
g;P= k,’lr’ =2¢—k), we have, if SO =%, SC=CS8' =¢, OP=p, SP =1,
=7,

2 2 __ Y] ?__
c08 SOP + 008 S'OP = 0, or ¥ *l; & 7;)0:: " _o,

whence we see that the equation to the circle may be written under the

general form ,
R L N ¢ O B
Now the osculating circle passes through the points
(r=a+e, ¥=a—c), (r=a+c—p, ¥=a—c+p),
where p is a very small quantity ; whence we have
k(@+c)®+¥ (a—c)2=1; and k(a+c—p)2+ ¥ (a—c+p)2=1.
Eliminating %, #’, between thdse two equations and equation (1), we find

ON FORMING THE MAGI10 SQUARE oF NUMBERS from 1 to (12» + 6)*
By W. H. LAVERTY.
The magic square of an 0dd number (6n + 8) is by well-known rules easily

attainable. Let P be the sum of any one of its rows, columns, or diagonals,
80 that

P=,6";8{(6u+8)’+1}.
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Now change (m) any one of the numbers from 1 to (6» +3)? into a small
square of the form
(4m-1) . (4m-2)

(4"”—3).(4"}) .-.-..........-,.-........(a).’

Now separate the constituents of the squares (a) by lines, so that the large
square (A) becomes one having {(12;: + 6)} numbers in each row ; and let
us examine what alterations we must make in order that (A) may be a magic
square. Firstly, it is evident that the two rows of () have equal sums and
consequently that the rows also of (A) will have equal sums. Secondly; in
(a) the right band column" i greater by two than the left hand column ;
therefore in (A) the columns will be alternately greater and less than the

proper sum 8P -3(6s+ 3) (=Q suppose) ; by {(Gn + 3)} Thirdly ; one
diagonal in (a) is less than the other by 4; therefore in (A) one will be less,

and the other greater than Q by 2 (6 +8). Now to remedy tlns look at the

figure; where CH=CL=CK=CG=4CB=etc.; BD=
iBN =2n+1. Ifin all the (a) squares, contained in the

exagon CAFEDBC ; the places of (4m) and (4m—3) be F|
interchanged ; let us examine the result. Firstly; the
rows do not change, Secondly; each of the too-small and
too-great columns respectively in (A) has been increased p- S

or diminished by m?. .8; the very result required. Also, the diagonals,

which have been mcreased or diminished through £ of their length have been

increased or diminished by § (6 +3).3; likewise the very result wanted
Hence we have a perfect magic square.

In the particular case of the following Question 2243, we have #=0 ; and
the square stands as in the first of the arrangements there given. In the
above figure (MB) is not a diagonal Zine, but a diagonal formed of (a)
squares, similarly for the points B, D, &c.

2243, (Proposed by S. Brris.)— Place the numbers 1 to 36 in six

rows, six in a row, so that each row, vertical, lateral, and diagonal, shall
make 111.

Solution by W. H. LAVERTY ; and the PROPOSER.

Of the two following arrangements, the first may be obtained by making
n = 0 in the foregoing paper ;—

s1(30] 8| 22822 582 8[s4] 1|36
32 (29| 1| 4|24 |21 12 |29 | 10|27 8|25
11[1019 (18|27 | 26 15 (20|23 |18 |19 |21
9 122017 |25 |28 18|17 |14 |24 |22 |16
15|14 |35 32| 7| 6 28| 7|s0|11|26] 9
18|16(33 36| 5| 8 s| 6(31| 2|35] 4
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.

Note ox QUEsTION 1990. By M. W. CroFTON, B.A.

The theorem in paragraph 4 will be found stated as a note in a paper on
the Cartesian ovals which I have given in the Pr dings of the Lond
Mathematical Society, No. VI. The theorems enunciated by Professor
Cayley in connexion with il (Reprint, Vol. VIIL,, p. 61) will be found (in
substance), with their proofs, in the text of the above Paper. That aP,
aP; are tangents to one Cartesian, and «’P, o’P; to the other, is an evident
consequence of the theorem in Quest. 1924 (Educational Times for March,
1866) :—that a Cartesian is always equally inclined to the circle through any
two foci and the straight line through the third.

These theorems are cases of the following more general ones regarding
bicircular quartics:—

If two given circles meet in P, P}, and they be cut by any arbitrary circle
in four points 1234 ; then the two (complete) bicircular quartics, foci 1234,
which pass through P, also bass through P;; and if a, a’ be the two centres
of simihtude of the given circles, then aP, aP, will be tangents tq one bi-
circular quartic; a’P, o’Py those to the other; these tangents being thus
quite independent of the positions of the foci 1234 on the two given circles.

Hence, given two circles, the four points where any arbitrary circle meets
them are the foci of one of a system of bicircular quartics which have double
contact with each other at the two intersections of the given circles.

Several results connected with these theorems are given in a paper which
I presented to the London Mathematical Society at one of their recent
meetings.

ON A CRITERION OF DIVISIBILITY BY 7 AND 18.
By M. Jenxkins, B.A.

In the Proceedings of the Royal Society (Vol. VII.,, No. 8, p. 42, Ap. 27,
1854,) it is noticed by the Rev. James Booth, LL.D., F.R.S., that a number
of six places of figures, consisting of a repetition of a period of any three
figures, is divisible by 7 and 13. Example 507507.

A useful criterion of divisibility by these two numbers is thus suggested.
It is given in the following rule by making =7 or 13, r=10, and therefore
t=5, §t=3.

Let # be the scale of numbers, p any uneven prime number, ¢ the index to
which r appertains, and suppose that ¢ is even.

Then to find out if any number of more than 3¢ digits is divisible by p.

“Add sufficient cyphers to the left hand of the number to make its num-

“ber of digits a multiple of 3¢ ; subtract the extreme left-hand digit from the
next §¢th digit, and the residue from the next §¢th digit, and so on until we
obtain a final residue; form similar final residues beginning with the second,
third, &c. digits from the left hand ; then the divisibility by p of the number
formed by the }t final residues taken in order is a criterion of the divisibility
by p of the given number.”

The subtraction must be algebraical, and therefore the criterion number
may contain negative as well as positive digits. The proeess gives a number
which is a criterion of divisibility by every prime divisor of 3 +1; if, how-
ever, we are considering only a single prime divisor p, the final residues may
be made positive by the addition of any multiple of p during the process, and
may also be made less than = if p be less than s.
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Examples : 57,898,362 is divisible by 7 because 021 is divisible by 7 and
leaves a remainder 8 (mod. 13).

The criterion number of 645,268 is (—4, 2, 8) or 877 for both 7 and 18;
or 928 for 18 or 328 for 7.

A similar criterion exists when ¢ is odd ; ¢ taking the place of §#and addi-
tion being used instead of subtraction.

The proof of the correctness of the criteria is simple, depending on the
facts that +¥+ 1 in the first case, and r* — 1 in the latter is divisible by p.

A sufficient condition for ¢ being even when r =10 and p is prime, is
P=+17 +11, £ 17, or £ 19 (mod.40), since in that case, by a theorem
of Euler’s, 10¥®~1) = —1 (mod. p), and therefore ¢ is a divisor of p—1
contaning the same power of 2.

The antitheses with respect to the nature of the recurring ¢-mal of p—! are
shown below. ; :

even.

(I.) A number is divisible by p if .i.(ll.)f Period of p~! in scale # con-
t8 of

it contains
twi igits titive, i.e. 4t twi igits lomen;
e e Pt amier Y to ey, () digits complementary
¢ odd.
II1) twice (¢) digite complemen- IV.) ¢t fi )| -
tang topr e () digita co g, o) trios sy Bgaven rapmtiine:

NortE o THE FOUR-PoINT PrOoBLEM. By W.S. B. WoorroUsE, F.R.A.S.

An approximate solution of this problem may be obtained as follows :—

It is just the same whether four points A, B, C, D are taken at random,
or two lines AB, CD are taken at random. In the latter case, the relative
position of the lines as regards intersection evidently resolves into three
cases :—

1. The lines may already intersect ;

2. The lines may intersect on the production of one of them ;

8. The lines may intersect on the production of both.

The apparent probabilities of these several cases, on consideration, appear
to be nearly equal, and the second alone is that in which the quadrilateral
is reentrant. This probability is therefore §, at least approximately. It is
here unnecessary to assume any boundary.

1011, (Proposed by Professor CAYLEY.)—Given four points, and also
the “conic of centres’’aviz. the conic which is the locus of the centres of
the several conics which pass through the four given points; then if a conic
through the four given points has for its centre a given point on the conic of
centres, it is required to find a construction for the asymptotes of this conic.
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1. Solution By the PROPOSER.

1. Consider four given points, and in connection therewith a given line
1J ; the locus of the poles of 1J, in regard to the several conics which pass
through the four points, is a conic, the “conic of poles.” Consider a parti-
cular conic @, through the four points; the pole of IJ in regard to the
conic © is a point C on the conic of poles, and the tangents from C to the
conic ® meet the conic of poles in two points H, K; the chord of intersec-
tion HK passes through the point IT which is the pole of 1J in regard to
the conic of poles. Moreover, the polars of a point C’, in regard to the
several conics through the four points, meet in a point Q’, the *common
pole” of C’, and in particular if C’ be the point C on the conic of poles, then
the common pole is a point 8 on the line 1J; this being so, the line HK

«as already mentioned) through II, and the lines HK and IQ are
Ermonica in regard to the conic of poles,

2. Assuming the foregoing properties, then, given the four points, the
ling 1J, the conic of poles, and the point C on this conic; we may construct
II the pole of IJ in regard to the conic of poles; and also O the common
pole of C; the line HK is then given as a line passing through I, and har-
monic to I1Q in regard to the conic of poles; this line meets the conic of
poles in the points H, K; and then CH, CK are the tangents from C to a
conic @ which passes through the four points. ’

8. In particular if IJ be the line infinity, then the conic of poles is the
conic of centres; T is the centre of this conic; Q is as before the common
pole of C; HK is given as the diameter of the conic of centres, conjugate to
na; H, K are the extremities of this diameter ; and then CH, CK are the
asymptotes of the conic through the four points, which has the point C for
its centre; and the asymptotes are therefore constructed as required. 1If the
points H, K are imaginary, the asymptotes will be also imaginary; the conic
@ is in this case an ellipse. N

4. It is hardly necessary to remark, in regard to the construction of the
point Q, that we have among the conics through the four points, three pairs
of lines meeting in points P, Q, R respectively (it is clear that the conic of
poles passes through these three points) ; the harmonics of CP, CQ, CR in
regard to the three pairs of lines respectively meet in a point, which is the
required point . In the particular case where the point C is on the conic
of centres, the three harmonics are parallel ; it is therefore sufficient to con-
struct one of them; and the line HK is then the diameter of the conic of
poles, conjugate to the harmonic so constructed.

6. It remains to prove the properties assumed in (1). We may take
£=0 for the equation of the line 1J, # =0, y = 0 for the equations of the
tangents to the conic © at its intersections with the line 1J, so that we have
(z=0, y=0) for the coordinates of the point C; the equation of the conic
@ will be of the form #°—ay =0, and the four points may then be taken
to be the intersections of the conic 22—zy = 0, and the arbitrary conic

(a,8,¢,f,9,8)(2,9,23=0.
The equation of the conic of centres is found to be
@ (az+hy+gz)—y (ha+ by +f2) =0, or az?—by'+gea—hzy =0;
or, as it may also be written, ~
(20, —26,0, —£,9,0) (2,9,2)*=0;
and it is convenient to remark that the equation in line coordinates (or con-
dition. that this conic may be touched by the line ¢z +qy+ ¢z = 0) is

(/% —g* —4ab, 2af, 2bg, =f9) (&, 02 =0.
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The line x = 0 meets the conic of poles in the point 2 =0, by +fz =0, and
the line y = O meets the same conicin the point y = 0, axr+ gz = 0; hence
the line HK, which is the line joining these two points, has for its equation
afe+bgy+fgz=0;
and it only remains to be shown that this line passes through the point mm,
and is the harmonic of the line I1Q in regard to the conic of centres. The
point II is the pole of the line z = 0 iu regard to the conic of centres, its
coordinates are at once found to be
ziy:z=0bg:af: —2ab;

and we thence see that IT is a point on the line HK. The point & is given
as the intersection of the polars of C in regard to the conics 2°—zy = 0, and
(a, b ¢, [, g9, B) (2,9, 2)* = O respectively ; that is, as the intersection of
the lines z = 0, and gz +fy+cz = 0; ita coordinates therefore are .

.. zlyiz==f:9:0.
Hence the equation of the line I is

2abg z + 2abfy + (af?+bg®)z = 0.

Now, in %?naml. if we have a conic the line-equation whereof is
3

(A, B, C, , H) (§,m, () =0, then the condition in order that, in
regard thereto, the lines Az+uy+vz =0 and A'z+u'y+»z =0 may be
harmonics, is

(A, B;C, F, G, H) (A, ) ') ()‘,’ s /)- 0;

is,

AN +Bup’ +Cov/ + F (0 + p'v) + G (N + VA) + H(AW +A'u) = O, .
Hence, in order that the two lines HK and I1Q may be harmonics in regard
to the conic of centres, we should have

(=% —9*) —4ab, 2af, 2bg, —f3) (af, b9,.f9) (2abg, 2abf, af? + bg®) = 0.

But developing, and omitting the common factor abfy, which enters into all
the terms, this equation is

—(22f*)—(2bg®) 4 (af* + bg°) + {4t§f’+2(¢gf’+ by’)}
+ {438 +2(af? +bg") } -2 (af?+ bg") =0,

which is iGentically true; and the lines HK and I1Q are therefore harmonics
in regard to the conic of centres.

that

IL. Solution by the Rev. R. TowNsEND, F.R.S.

Professor CAYLEY’S question is evidently equivalent to the following :—
% @iven the centre O of a conic, and three points A, B, C on the curve, to
determine the directions, real or imaginary, of the asymptotes”—which may
be solved immediately as follows :—If X‘:r{', Z be the three points at infinity
on, and U, V, W the three middle points of, the three sides BC, CA, AB of
the triangle ABC; then, the three pairs of lines OX and OU, OY and OV,
OZ and OW being evidently pairs of conjugate diameters of the conic, the
two double rays, real or imaginary, OM and ON, of the involution they
determine, as dividing harmonically the three angles they form, are con-

uently the two asymptotes required. -

e more general problem—* Given a point and line P and L pole and -

polar with respect to a conic, and three points A, B, C on the curve, to de-
termine the directions, real or imaginary, of the two tangents from P to the
curve’’—may be solved in precisely the same manner. For, if X, Y, Z be the
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three intersections of L with, and U, V, W the three points harmonieally
conjugate to, them with respect to the three sides BC, CA, AB of the tri-
angle ABC; then, the three pairs of lines PX and PU, PY and PV, PZ and
PW being evidently pairs of conjugate lines with respect to the conic, the
two double rays, real or imaginary, PM and PN, of the involution they de-
termine, as dividing harmonically the three angles they form, are conse-
quently the two tangents required.

The reciprocal problem—* Given a point and line P and L pole and polar
with respect to a conic, and three tangents A, B, C to the curve, to deter-
mine the positions, real or imaginary, of the two intersections of L with the
curve,” with the particular case of it—* Given the dentre ) of a conic and
three tangents A, B, C to the curve, to deterinine the directions, real or
imaginary, of the two points at infinity,” —may of course be solved by the
reciprocal of the preceding construction.

II1. Solution by F. D. TroMsoN, M.A.

In the proposed problem, we know the centre of the conic and four points
through which the conic ’Fssses, and we huve to draw the tangents to the
conic from the centre. The problemn is, therefore, a particular case of the
following :—* Given & point and its polar with respect to a conic passing
through three given points, to draw the tangent through the given point.”
The more general problem may be solved as follows :—

Let O be the given point, abc its polar, A, B, C
the given points; then since the polar ade
divides harmonically the chord through O, the a R
points A’, B’, C’, where OA, OB, OC meet the 0<% e A
curve again, are known. ) \

Also (C . ABA'B’) = (C' . ABA’B’). ¢

‘I'ake the segment on abc ; then we get two
homographic sections aBa’B’, a;8,a)'8/’, suppose,
the double points of which will be the points
where abc meets the curve, that is, the points of
contact of tangents through O.

In the particular case proposed, abe is the line at infinity,
and OA’= ~O0A, OB’ = —0B, OC’ = —OC; and if we draw lines Oa,
0B, Od’, OB’ . . . . parallel to CA, CB, CA’, CB’ respectively, and Oay, OB,,
O/, 08, parallel to C’'A, C'B, C’'s/, C'B'...... ; then (O . aBa’S....),
(0 . a8,a'18')... .. ) form two homographic pencils, the double rays of which
will be the asymptotes required.

2378. (Proposed by the EpiTor.)—Find the average (1) of the areas of
all the circles which can be drawn within the circuinferenca of a given circle,
and (2) of the volumes of all the spheres which can be drawn within the
surface of a given sphere; also find the probability (3) that any one of the
circles taken at random from (1) will excced a given circle, and (4) that any
one of the spheres taken at random from (2) will exceed a given sphere. ’

VIII. I
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Solution by S. BILLS ; S. WATSON; and others.

1. Let a be the radius of the given circle,  the radius of a variable circle,
« the distance of its centre from the centre of the given circle, N the num-
ber of circles that can be drawn within, the given circle, 8 the sum of all
their areas, and A the average required. Then we have

N-f“ (6—2) . 2xzde = jxad, 8 -f" hzdxf"“’"mr = dorat;
0 o

therefore A=S 1% (area of given circle).

N 10
2. Adopting a similar notation for the sphere, we have

N= f ® (a—2). 4natds = yxat, 8 = / o hz’dxf O ¥y = gy 7T
A 4 4

therefore A= % = yiz *a® = Jg (volume of given sphere).

8. Let N, be the number of circles, greater than a circle of radius ¢, that
can be drawn within the given circle ; then we have

N, -fa-c(a-x—c).zrzdz = {x(a—c);

hence the probability (p) that a circle drawn at random in (1) will have a
radins greater than c is

=Nl= a-—c)’
PN (a :

4. Using the same notation for the sphere, we have
N|=/ *7 (@—z—c) . dmatde = 3 (a—c);
°

therefore, in this case, the required probability is

=En-(a_-_°‘
P N a)

2371, (Proposed by Professor CayLEY.)—If P, Q be two points taken
at random within the triangle ABC, what is the chance that the points
A, B, P, Q may form a convex quadrangle ?

Solution by the Rev. M. M. U. WILKINSOXN.

1. Produce PQ both ways till it meets the periphery
of the triangle in p, g. If AB be the side on which lies
neither p nor ¢, APQB will be convex, but APQC,
BPQC will be reentrant. Therefore the chance of the
quadrilateral being reentrant is twice the chance of its

* being convex, and is therefore §.
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2. Taking the case of a paral- o-

-] e ¢ c
lelogram on AB, the samne method
shows that, if the sides, in which pi, ¢ // M
[}

and ¢ lie, meet in D, then PP

APQ, DCPQ are reentrant, A T
and BAPQ, CBPQ convex. (APQC, BPQD are not included in the condi-
tions of the problem.) If the sides, in which p and q lie, are parallel, as
AD, BC, then DPQC, APQB are convex, and DAPQ, BPQC reentrant.
The chance of reentrance is therefore §.

2416. (Proposed by the Rev. R. TowxsexND, F.R.S.)—Find the pointin
a plane the sum of the squares of whose distances from any number of given
lines in the plane shall be the minimum.

Solution by JAMES DALE.

Let (5, my, my), (&, Mg, #3)y.eee.ee. By, my, m,) be the given lines
dy, dy, ds.. .. ..d, the distances of the required point (2, y, 2) from these »
lines; then

A (b + myy +n,2)? a3 (57 + mgy + ng2)?
= s = goo oo
{bym,m}’ {lo me m}
@z +my+n,2)? "
= {l',m',n“}s » e

{ire m,0 1.} =12 4+ m2 4 n2 —2m n,_cos A—2n1, cos B—21,m_cosC. -

Adding these, and equating the differential of the sum to zero, we get

{2 (Gmep) " (o) ()}

+eiee@y+eiede =0,
and as a2 + by + cz = 2A, we have adz + bdy +cdz = 0;

’({z,:-}*)f*’({z,:-'f-}*)”*’({__z,:-y)‘

- ? ({l, :l, n}’) i ({l, m, n}’) y+a ( {l,::n}’) i
b

_’(mﬂfT}’)”’({z.:,"n}*)’*’(‘{z',:‘:n}*)‘ .
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These equations, together with az + by + cz = 2A, determine 2, g, =.
When the number of lines is three, tuking them for the sides of the triangle

of reference, the equations reduce tos = % ="
c

.
2261, (Proposed by S. Birrs.)—Sixty-three school-boys walk out three
abreast for thirty-one days in succession; it is required to arrange them
daily 8o that no two of them shall walk twice abreast.

Solution by W. 8, B. WoorBoUsE, F.R.A.8.

Let the sixty-three school-boys be denoted by 4; 1, (1); 2, (2); 3,(8) ;...
81, (31) ; and let us endeavour so to arrange these symbols in threes that, after
{erforming a (31) cyclicul operation, by successively increasing the numerals

y unity, no pair of symbols shall be repeated, and the conditions of the
question shall thus be realized. As an auxiliary let r be a primitive root to
modulus 31; that is, a number such that the successive powers 79, #, 73, 53,..,
7% when severally divided by 81 shall all leave different remainders. Then
these thirty remainders must necessmily exhibit all the consecutive numbers
1 to 80. In what follows let it be distinctly understood that all values em-
ployed are to be estimated according to this modulus, and that the number
381 and all multiples of it are to be rejected from all values that ordinarily
exceed such amount. According to the even and odd powers of r, it will be
convenient to partition the numbers 1 t6 30 in two systems, viz.,

Even system ¢9,¢3, 74, .. 938 o

0dd system 1, 13, 15,0, .9 (O
Suppose now that the sixty-three symbols have for their primitive arrange-
ment either of the two following forms A and B:— pe e

A B
A 81 (381) B 81 (81)
r P11 yl P 210 720
B 8 g s g gm
e o L
7 W 37 lad rls e
P R s g8 s
N G IO r () (AHD)
r’(r"'+2) (’3+2) 4,3 (r¢.+8) ('ﬁ+8)

A s et

rn('a-l-ﬁ) ('ﬂ+28) ) (’,0.1-39)(’.#4-39)'
The only possibility of repetition of symbols or duads would be amongst

the last 15 triads of symbols which are placed below the second horizontal
rule, Of these each vertical column will evidently constitute one of the two
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systems () in a direct order of succession. Those included within parentheses,
that is the second and third vertical columns, must be mnade to form different
systems, and therefore a and 8 must be unlike as to even and odd. -

Again, if the numbers in the first column be subtracted from those in the
second and third, we get two sets of differences, viz.,

A B
r&—e0 PB—p0 i, A,
ra-l-’_': ,.3+3__': ’,¢.+8_',. 'ﬂ+a_',
roti_p BHi_p e A6
LB BB _m AHO_ym BB

and it is evident that in the cyclical process no repetition of a duad can
occur unless values in one of these two sets of differences should be identical
with values contained in the otherset. But each of these sets of differences
progressing by the common ratio #3 must necessarily also constitute one of
the two systems (6), and hence the values will be all different if each set

appertains to a different system. Hence if we make #*—1 = r*' and r—1
= ¥ the indices a’, B’ must be unlike as to even and odd.

‘We have therefore only to comply with the two following requirements :

a, B to be unlike as to even and odd, and neither of them to be zero ;
o', B’ also to be uniike as to even and odd.

The number 81 has four reciprocal pairs of primitive roots, viz., (3, 21),
(11,17), (12, 18), (22, 24). To work out the calculation numerically, take
r =38, and we readily form the following table showing the values of
7% % o, @ classed in two divisions according to the even and odd systems.

a r* a’ a re "4
V] 1 . 1 3 24
2 9 12 3 27 5
4 19 26 b 26 10
6 16 21 7 17 | . 6
8 20 4 9 29 16

10 26 13 11 13 19
12 8 28 13 24 27
14 10 2 15 30 9
16 28 8 17 22 29
18 4 1 19 12 23

6 18 21 16 22
14 11 23 11 14
6 20
18 7 27 28 17

7 25 29 21 8

w gl 8| F£| &

> | BRERS
®
g
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By inspecting this table the suitable cooperating values of a, 8, which
satisfy the foregoing requirements, are readily extracted as follows :—

{a even, a’ even,

a=2, 4, 8, 12,14, 20,24

Bodd, g'odd, B=3,11,18,15,17,19,27

{a odd, @ even, a=1, 5, 7, 9,21, 283, 25,29
Beven, 8'0odd, B = 6,10, 16, 18, 22, 26, 28 °

The corresponding values of r%, #® are

re = 9,19,20, 8,10, 5, 2}
rB = 27, 13, 24, 30, 22, 12, 23

{," = 8,26,17,29,15,11, 6,21)
£ =16,25,28, 4,14,18, 7

and in either of these cases (r%) (rﬂ) may be any number contained in the
first line associated with any number in the second line. The number of sets
of these values is therefore 7.7 + 8.7=105; and as the forms A and B may be
both resorted to with each of them, the number of distinct constructions

is 210.

As an example, take a = 2, 8 = 11,0or r* = 9, 8 = 18; then the primitive
arrangements A and B, in which the several numbers are filled in vertically
from the preceding table, are the ollowing :—

A
» 31 (31)

8 13 16
27 24 11
26 30 6
17 22 28
29 12 21

1 9@

9(19) (2
19(16) (3
16 (20) (2!
20 (25) (1!
25 (8) (!
8(10) (L
10(28) (!
28 (4) §2=
4 (5)(2
5(14) (
14 2) @
2 (18) (2t
18 (7) (1!
7 (1) (2

B
» 81(31)

12 5
9 8 14
19 10 2
16 28 18

20 4 7

3(2
27 (2
26 (1
17 (2
29 (L
18(2
24 (30
80 (2
22 (L
12 (1
15(1
11 (

6(2
23 (2!
21 (¢

The cyclical development of the first of these, showing all the required
thirty-one arrangements, is produced by successively increasing all the num-
bers by an unit, and rejecting 81 when necessary, as the following will

show :—
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A31@BL| A1 (1)) b 2@ A 4 (4)
3 13 15| 4 14 16| 5 15 17 7 17 19
27 24 1128 25 12|29 26 13 31 28 15
26 30 6,27 31 728 1 8 30 3 10
17 22 23|18 23 24|19 24 25 21 26 27
29 12 21(30 13 2231 14 23 2 16 25
1 (9)(13)| 2(10) (14) | 3(11) (15) 5213) a17)
9(19) (24) 10 (20; (25) | 11 (21) (26) 13 (23) (28)
19 (16) (30) ; 20 (17) (31) | 21 (18) (1) 23(20) (3)
16 (20) (22) | 17 (21) (23) | 18 (22) (24) 20 (24) (26)
20 (25) (12) | 21 (26) (13) | 22 (27) (14) 24,(29) (16
25 (8)(15) | 26 (9) (16) | 27 (10) (17) 29 (12) (19
8(10) (11) | 9(11) (12) , 10 (12) (13) 12 (14) (15)
10(28) (6) | 11(29) (7)|12(30) (8) 14 (1) (10
28 (4) (23) | 29 (5) (24) | 30 (6) (25) 1 (8) (27
4 (5)@1) | 5 (6)(22) | 6 (7)(23) 8 (9) (25)
5(14) (3)| 6(15) (4)| 7(16) (5) 9(18) (7)
14 (2) (27) |15 (3) (28) | 16 (4) (29) 18 (6) (31)
2 (18) 526) 3(19) (27) | 4 (20) (28) 6 (22) (30)
18 (7) (17) [ 19 (8) (18) | 20 (9) (19) 22 (11) (21)
7@Q)@)| 8 (2B 9 (3)((31) 11 (5) (2
s ()| a6 ®] s 7T | B 8(8)|h 9 (9
818 20 | 9 19 21 {10 20 22 |11 21 12 22 24
s1 4 11 | 15 15| 2815 |8 7144 8 15
5 1 18 1 1
22 27 28 |23 28 29 |24 29 30 |25 30 26 31 1
317 26 | 418 27 | 519 28 | 6 20 7 21 30
6 (14) (18) | 7 (16) @9) | 8 (16) (20) | 9 (17 10(1° 2
14 (24) (29) | 15 (25) (30) | 16 (26) (31) | 17 (27) (1) |18 (¢ 2
24 (21 .(4; 25 (22) (5) | 26 §za) )| 27 (29) (7) | 28 g '8
21 (25) (27) | 22 (26) (28) | 23 (27) (29) | 24 (28 25 (¢ il
25 (30) (17) | 26 (31) (18) | 27 (1) (19) | 28 (2 29 (1
30 (18) (20) | 81 (14) (21) | 1 (15) (22 g 31
13 (15) (16) | 14 (16) (17) | 15 (17) (18 170 0
16 52 11) | 16 (3)(12) | 17 (4) (13 g 19 5
2 (9)(28) | 8 (10)(29) | 4 (11) (30 61 1
9 (10) (26) | 10 (11) (27) | 11 (12) (28 29) |18 (1 10
10 (19) (8) | 11 (20) (9) | 12 (21) (10 14(: 2
SR Gn | % dn @ |55 @ ne %
2 1 5) (2 3 4
23 212 §22 24 513 és 25 (14) (24, 27 (1 6
12 (6) (3|18 () 4) |14 (8) (5 60 4
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310 (10) | 211 ()| 5 12 (12) | A 13 (13) | B 14 (14)
18 23 25 |14 24 26 |15 25 27 |16 26 28 |17 27 29
6 321 |7 422|852 |9 624110 7 2
5 9 16 | 6 10 17 (7 11 18 | 8 12 19 | 9 13 20
27 1 2|28 2 3 (20 3 43 4 5815 6
822 31| 92 1102 2|11 2 3 |12 26 4
11 (19) (23) | 12 (20) (24) | 13 (21) (25) | 14 (22) (26) | 15 (23) (27
19 (29) (3) | 20 (30) (4) | 21 Es] () |22. (1) 6) (238 (2) (7
29 (26) (9) | 30 (27) (10) | 31 (28) (11) | 1 (29) (12) | 2 (30) (13
26 (30) (1) | 27 (31) (2) | 28 gl 3) | 29 52 )30 (38) (5
30 (4) (22 31(5&23 1 (6)(24)| 2 (7 (25) | 8 (8) (26
4 (18) (23) | 5 (19)(26) | 6 (20)(27) | 7 (21) (28) | 8 (22) (29
18 (20) (21) | 19 (21 222 20 (22) (23) | 21 (23) (24) | 22 (24) (25
20 (7)(16) | 21 (8) (17) | 22 (9) (18) | 23 log 19) | 24 (11 520
714 (2| 8(@s) (3)| 9 (16) (4) |10 (17 €5 11 (18) (6
14 (15) (31) | 156 (16) (1) | 16 (17) (2) | 17 -(18) (3) | 18 (19) (4
15 (24) (13) | 16 (25) (14) | 17 (26) (15) | 18 (27) (16) | 19 (28) (17
24 (12) (6) | 25 (13) (7) | 26 (14) (8) | 27 (16 29 28 (16 510
12 (28) (5) [ 13 (29) (6) | 14 (30) (7) | 15 (31) (8) | 16 (1) (9
28 (17) (27) | 29 (18) (28) | 30 (19) (29) | 31 (20 230 1 (21) (31
17 (11) (8) | 18 (12) (9) | 19 (13) (10) | 20 (14) (11) | 21 (15) (12
R 15 (15) | A 16 (16) | A 17 (17) | & 18 (18) | 4 19 (19)
18 28 30 |19 29 81 (20 80 1 |21 31 2 |22 1 8
11 826 |12 9 27 (13 10 28 (14 11 29 (15 12 30
10 14 21 [11 16 22 [12 16 23 [13 17 24 |14 18 25
1 6 7|2 7 88 8 9|4 910|510 11
13 27 5 |14 28 6 (1529 7 [16 30 8 |17 81 9
16 (24) (28 i 17 (25)(29) |18 (¢ 0)| 19 (27) (31) | 20 (28) (1
24 (3) (8)'25 (4) (9|26 « 0|27 ®(1) |28 (7)(2
3@YUY| 4 IR | 5« 6| 6 FaN| 7 (48
31 4 ®)| 16 M| 2 8| 8 (1) ()| 4 (80
4 §9 27) | 5 (10)(28) | 6 (0 9)| 7 (12) (30) | 8 (13) (31
9(23)(30) |10 (24)(31) (11 ¢ 1) |12 (26) (2) | 18 (27) (3
23 (25) (26) | 24 (26) (27) | 25 (:  8) | 26 (28) (29) | 27 (29) (30
25 (129 (21) | 26 (13) (22) | 27 (1 8) | 28 (15) (24) | 29 (16) (25
12 (19) (7) |13 (20) (8) | 14 (¢ 9) | 15 (22) (10) | 16 (23) (11
19 (20) (5) [20 (21) (6) |21 (¢  7) | 22 (23) (8) | 23 (24) (9
20 (299 (18) | 21 (30) (1Y) | 22 5 0) |28 (1) (1) |24 (2; 22
29 (17) (11) | 80 (18) (12) [31 (1 8) | 1 (20) (14) | 2 (21) (15
17 (2)(10) |18 (3)(11) [19 (  2) |20 (5)(18) | 21 "(6) (14
2(22) (1)] 3 523 @] 4 52 3| 5 §25 @ | 66 (5
22 (16) (13) | 23 (17) (14) | 24 (1 5) | 25 (19) (16) | 26 ézo 17




380 20| 520 @) 522 (22| 528 23| & 24 (249)

28 2 4 (24 3 B |20 4 6|26 5 7 (27 6 8
16 13 31 |17 14 1 (18 16 2 |19 16 8 |20 17 4
156 19 26 |16 20 27 |17 21 28 |18 22 29 |19 23 80
6 11 12 7 12 138 8 13 14 9 14 16 |10 15 16
18 1 10 |19 2 11 (20 8 12 (21 4 18 |22 6 14

21 (29) (2) (22 (30) (3) 23 (31) (4) |24 (1) (5) |26 (2 (B
8) (18) | 30 (9§ (14) | 81 (10) (15) | 1 (11) (16) | & (12) A7
5)(19) | 9 (6)(20) | 10 (7) (21) | 11 (8) (22) | 12 (9) (28
11) | 6 (10)(12) | 7 (11 (13) | 8 (12

14 21 10 (16) (2) | 11 %

29

8

]

9

14 4) | 156 (29) (5) | 16

§g3031 2931130(1231(2%3\134
17

24

25

17) (26) | 31 (18 §27 1 ?9 28 2 §20 §29 ] 221) 30

(8)(23) | 26 (4) (24) | 27 (5) (25) | 28 (B) (26) | 29 (7
3 (22) (16) | 4 (28) (17) | 5 (24) (18) | 6 (25) (19) | 7 (26) (20)
22 (7)(15) [ 23 (8) (16) | 24 (9) (17) | 25 (10) (18) | 26 (11) (19)
%7 8 gzs (M| 929 (8|10 (30) (9|11

7 6
27 221 (1(8) 28 (22) (19) | 29 (23) (20) | 30 (24) (21) | 31 (25) (22) :

»25 (25)| 526 26)| 527 @27)| 5 28 (28)] & 29 (29)| % 30 (30)

28 7 9 (29 8 108 9 11 (8110 12| 1 11 13| 2 12 14
21 18 5 (2219 6 |23 20 7 2421 8 (2522 9 (2623 10
20 24 81 [21 26 1 (22 26 2 (2327 3 (24 28 4 (2529 &
11 16 17 |12 17 18 |13 18 19 (14 19 20 |15 20 21 |16 21 22
23 6 15 |24 7 16 |25 8 17 |26 9 18 |27 10 19 |28 11 ‘20

26 (3) ()|27 (4 ®) |28 5) (9|29 (6)(10)[30 (7) (11) |31 (8) (12)
3(13) (18) | 4 (14) (19)| 5 (15) (20)| 6 (16) (21)| 7 (17) (22)| 8 (18) gzs)
18 (10) (24 | 14 (11) (25) | 15 (12) (26) | 16 (13) (27) | 17 (14) (28) | 18 (15) (29)
10 (14) (16) | 11 (15) (17) | 12 (16) (18) | 13 (17) (19) | 14 (18) (20, | 15 (19) (21) -
14 (19) (6) |15 (20) (7) |16 (21) (8) |17 (22) (9) |18 (23) (10) | 19 (24) (11)

19 (2) (9) |20 (3) 10)|21 (4 (ug 22 (5) (12) |28 (6) (13) | 24 (7) (14)

2 (4) (5)] 3 (5) 6)] 4 (6) )| 5 (" ()] 6 (8 9] 7 (9)(10)
4(22) 31| 5(23) (| 624 (2)| 7@5) (3)] 8@26) (4)| 92N (5)
22 (29) (17) | 28 (30) (18) | 24 (31) (19) | 26 (1) (20) | 26 (2) (21) |27 (3) (22)
29 (30) (15) | 80 (31) (16) |81 (1) (17)| 1 () (18)] 2 (3) (19)| 8 (4) (20)
30 (8)(28) (31 (9)(29)| 1(10) (30)| 2(11) (81)| 3(12) (1)| 4 (13) (@
.8(27) (21)| 9 (28) (22) | 10 (29) (28) | 11 (30) (24 | 12 (31) (25) [ 13 (1) (26)
27 (12) (20) | 28 (18) (21) | 20 (14) (22) | 30 (15) (23) | 31 (16) (24) | 1 (17) (25)
12 (1) Q1) |13 (@) (12) |14 (3) (18) |15 (4) (14) |16 (6) (16) | 17 (6) (16)
1(26) (23)| 2(27) (24) | 3 (28) (25)| 4 (29) (26) | 5 (30) (27)| 6 (31) (28)

It may be observed that if a different notation be required, a consecutive series of
numbers, or any arbitrary set of symbols, or other designations, may be substituted
for the first arrangement, and the two collated together will supply a key for
putting down all the others.

VIIL X



82

We may also remark that the same process will resolve the problem
generally for any other number, provided only that the modalus m=6%+1
be a prime number, the number of school-boys being then # = 2m + 1.

EXTENsION OF THE SOLUTION OF QuEsTION 2261. By 8. Bruis.

Suppose 256 school boys to walk out for 127 days, 8 abreast, and let it be

uired to arrange them so that no two shall walk twice abreast.

ferring to the foregoing Solution of Question 2261, and employing Mr.

‘Woolhouse's notation, I find 3 and 85 to be a pair of reciprocal roots of »* to
modulus 127.

Taking r=8, the succession of remainders arising from dividing r* by 127,
while a takes every value from 1 to 126 will be in order as follows.

(Read this list downwards.)
3| ss|119| 26(106]|100| 66| 72| 20[ 62
9| 66108 78| 64| 46| 41| 89| 60| 59
27| 71| 65]107| 65| 11|123| 18| 83| 50
81| 86| 38| 67| 63| 33|1156| 39| 32| 33
116 4[114| 74| 77| 99| 91|17 | 96| 69
94| 13| 88| 95[104| 48| 19| 97| 34| 80
28| 86| 10| s1| 68| 2| 57| 87 (102 (118
84(108| 30| 98| 47| 6| 44|111| 52| 85
125 70| 90| 25| 14| 18 5| 79| 29| 1
121 88| 16| 76| 42| 64| 158|110 &7
109|122 48| 98|126| 36 45| 76| %
73 (112 17| 40|124(105| 8[101| 21
92| 83| 51|120|118| 61| 24| 49| 63

Now if we take a=2 and B=7; then a'=90 and B’=38; and r* =9,
rP=28; and the necessary conditions, a and 8 unlike as to sign ; and also
o’ and A’ -unlike as to sign will be satisfied, (see Solution of Quest. 2261).

Mr. Woolhouse’s forms A and B, extended for 255 symbols, will be as
follows :— .

A B
h 127 (127) B 127 (12D
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* A g " o sl
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Now taking r=3, a =2, and 8=7 ; substituting in A, sud remembering
to take out the proper remainders from the above table, we find the
primitive arrangement to be as follows. And by using the form B we chould
obtain another primitive arrangement. To save room however I shall not

develop the subject farther than to obtain ocve primitive arrangement.

127027 1 9) (8)] 81 (5)(Q6) 73(3; 1
9 (1)(15)] 2 (8) (5] 18a 7) (110
3 67 67| 81 (4)(19)| 98 0) (7|17 / 7) (10
27 95 5| 94 (4) (12)[120 (4) (8)| 87 9
116 93 45| 84(11) (6)| 64 (8) (4)| 79 8
28 76 24(121 (3) (6) 68QA 4)(16)| 76 9
1256 40 89| 73 (2) (2)[108 (7)(18)| 49 o) Qo3
109106 89| 23 (1)1 8)| 47 (2) (6)| 60 z;(so
92 65 97| 71 4) (3)| 43(14) (3)| 83 4 (7
66 77111| 4 (6)(12)|124(10) (8)| 84 2) (63
86 58110 36 (0)(19)(100 (1) 6)| 62  7) (89
12 14101 70(12) (5)| 11 (9) (4| 87 1) (2)
108126 20(122 (2)(14)| 99 QA S)| 21 8) (80)
83118 63| 82(13) (0)| 2 (8) (6)| 62 0) (85)
112 46 96/103 (8) (0) 18 (5)(A 38)| 60 . 9) (8
119 33102| 38 (8) (8)| 3 (1) (1)| 69 8) (27
55 43 29| 88 (0) (1) 61 (1) (7|18 1)(116
114 6 7| 30 (6) (8)] 41(15) 8
10 54 63| 16 (7) (7)|115 (9) (5
90105 59| 17 (6) (6)| 19 ( 4) ( 4
48 56 28| 26(17) (8)| 44 (5 (9
61128 80107 (4) (6)| 156 8) (9
78 91 85| 74 (1) (0)| 8 (2) (7

By passing this primitive man‘gement through a cycle of 127 we should
obtain the required arrangements for every day during the 127 days.
. This question admits of numerous constructions, but it is unnecessary to
develop it farther as it necessarily leads to such lengthened results, and the
method is the same for each.

The above arrangement may be relied upon as accurate.

Nore ox THE Four-PorxT ProBrLEM. By T. SAvaax, M.A.

1. Let P, Q, R, 8 be four points taken at random., Then the chance that
the terminated line PQ will intersect the terminated line RS is one-third of
the chance that the four points are the angles of a convex quadrilateral,
For if the quadrilateral be reentrant, they cannot intersect. It the quadri-
lateral be convex, they will intersect only when Q is the angle opKOlite to P,
and any one of the three Q, R, 8 may with equal probability be the opposite

angle.
2. Now the chance that the terminated lines PQ, RS will intersect is the
compound chance that P and Q lie on opposite sides of RS, and that R, 8
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lie on opposite sides of PQ. If then we may assume that infinite space is
divided into two equal portions by any straight line, this chance is § x 3,
and the chance of a convex quadrilateral is §.

8. The above assnmption is undoubtedly trne when the straight line
passes through any point at a finite distance, but probably in that case only. "
The following appears to be free from this objection. If we examine four
points which form a reentrant quadrilateral, we see that three of the six
pairs of points lie on the same side of the line joining the other pair, but
that in a convex quadrilateral four of the six pairs have this property.
Hence if # be the chance that four points form a convex quadrilateral, the
chance that two random points P, Q lie on the same side of the line joining
two other random points R, § is §x+4 (1—x) or §+3= ; and the chance
that P, Q lie on opposite sides of RS is §~4». Hence we must have
8 (3—4=)® = z, which gives us 2=9-6,/2.

4. The same result is obtained if we consider that the only ways in which
we can obtain a convex quadrilateral are by supposing P, Q to be on the
same or opposite sides of RS, according as R, S are on the same or opposite
sides of PQ. This would give us the equation

G+42) + (G—gef = =, -
which is the same as the former.

6. The chance that P,’Q fall on opposite sides of a random line RS is
then, it appears, ,/2—1. That this chance must be less than } seems to be
evident from the following. If any line divide space into two portions in
the proportion of « : y, the chance that two random points lie on the same

side of the line is :1';; that they lie on opposto sides it is 2:‘-; S
z . z
and always less than the%ormer, unless #=y. The above would appear to
show that the average proportion of z : y is 4/2+1: 1.
6. In (2), (8), and (4) it is assumed that the two events,

P and Q on opposite sides of RS, and

R and S on opposite sides of PQ,
are independent. It is difficult completely to justify this, but it is evident
that the probability of the d depends simply on the ratio of the two
portions into which we consider space to be divided by the line PQ; and I.
do not see how the probable value of this can be affected by our knowledge
that PQ joins two points taken at randon, one on one side of the line RS and
the other on the opposite side. As there is, however, doubtless a weak
point here, I will proceed to show that the chance of a convex quadrilateral
18 less than §. Let A be the chance that R, S are on opposite sides of PQ
when P, Q are known to be on opposite sides of RS; and u the same
chance when P, Q are known to be on the same side of RS. Then, from
the reasoning in (5), it is clear that neither A nor u can exceed §, and the
modified forms of the equations in (3) and (4) are

3(}—42)A =2, and (J—§2)A+(3+32) 1-w) =2;
from which, by eliminating #, we find that
A+1)(e+1) =2,
which gives us § as an inferior limit to the value of either A or u. If we
express  in terms of (1) A or (2) u, we find

8A 8(1—p)
[v) ———y
2= T T e

By substituting either for A its greatest or for u its least value, we find that
the true value of # must be less than 3.
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%7. It is curious to observe that just as we obtain the maximum value of A
or u by supposing space to be divided into two equal portions by any straight
ine, 80 we appear to obtain the minimum value by assuming that the inter-
section of two random lines is a random point. For let PQ, RS meet in O.
Then if O be a random point, of the three O, P, Q any one may with equal
probability be the middle point, and therefore the chance that O is the
middle point is §. The discordance between the results obtained by the
methods of § 3 and § 4, when we make either of these assumptions, appears
to be a sufficient proof of their falsity.

1971. (Proposed by C. W. MerrIFIELD, F.R.S.)—In a given tetrahe-
dron to find a set of rectangular coordinate axes, sach that each axis shall
pass through a pair of opposite edges.

Quaternion Solution by T.

Let a, 8,7y be three (vector) edges of the tetrahedron, one corner being
the origin. Let p be the vector of the origin of the sought rectangular
system, which may be called 3, j, ¥ (unknown vectors,) The condition that
i, drawn from p, intersects a is

I T | PR ¢ )
That it intersects the opposite edge, whose equation is w = 8+ 2 (8—17), the
condition is
S.i(8—=7) (»—B) =0, or Si { (B—y)p—By} =0 ....(2).
There are two other equations like (1), and two like (2), which can be at once
written down.
Pat B—y=ay, y—a=B), a—B=7v, VBy=ay Vya=pg; Va=v,,
Vaa=ag VBB =8y Vmy =7
and the six become S.iap =0, S.fap —Siag =0,
- B8.jBp =0, B.jBp —8jB; =0,
S.kyp =0, S.kyp—S8Sky;=0.
The two in § give i It aSagp—p (Saay + Say).
Similarly,  j i BSByp—p (S8Bs+8Bw), and % I ¥8vep—p (Sy72 + Syw).
The conditions of rectangularity, viz.,
8ijj=0, Sk =0, Ski=0,
at once give three equations of the fourth order, the first of which is
0 = Saf Sagp Sy — Sap Sagp (SBBs+ SB3p)—SBp SBy (Saay + Say)
'+ % (Saag + Bap) (5P + 3Bep).
. The required origin of the rectangular system is thus given as the inter-
. section of three surfaces of the fourth order. How many such points of
intersection there may be, I have not endeavoured to find.
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2466. (Proposed by H. MurrHY.)—If four points A, B, C, D be either
in the same t&lano or not, and if the three rectangles AB. CD, AC. DB,
AD. BC be taken; the sum of any two of them is greater than the third,
except when the points Lie on the circumference of a circle.

Solution by PROFESS0R CAYLEY.

Write for shortness BC=jf, CA=g, AB=A; AD=a, BD =3,
CD = ¢; then, Lemma, if r be the radius of the sphere circamscribed abount
the tetrahedron ABCD, we have .

—ab 1Bl — R~ fgTh
42 J @SB (8 + B =f7) | = 2% + 277K + 2aBiYg?
+EPra) Bef1—gh) [ —afi-big—o,
+(c*h? + a°B%) (2 + g*— %)
where the left-hand side is =576 V%3, if V be the volume of the tetrahedron.

8u; first that the points are not in the same plane, then the left-hand
side 2=576V‘r’) is positive ; therefore the right-hand side is also positive,
or putting for shortness, af = a, bg = B, ch = v, we have
2822 + 2% + 2a'F — ! — Bi— ot = +, thatis, 482 —(a’—PA—7P = +,
and thence a<B+7v; for if a were equal to or greater than B++, say
& = B+7+a, the left-band side would be 48%*—{28y+3(B+7)2+2%}",

which vanishes if 2 = 0, and is negative for # positive. Similarly 8<vy+a,
y<a+B; and the theorem is thus proved for the case where the four points
are not in a plane.

Starting from this general case, if we imagine the point D continually to
approach and ultimately to ecoincide with the plane ABC, but so as not to be
in the circle ABC, then the expression 25&’+ 2%2 + 2aBi—at— B — A,
which does not vanish in the limit, is throughout equal to the positive
quantin V33 (in the limit V is = 0 and r = o, but Vr is finite, and of
course is positive), that is, the expression in guestion is = +, and the
theorem follows as before. Of coarse when the four points are in a circle,
then the expression is = 0, and consequently one of the quuntities a, 8,y is
equal to the sum of the other two.

The lemma is at onoe proved by means of my theorem for the relation be-
tween the distances of five ponts in space, [Cambridge Mathematical
Journal, Vol. II. (1841) p. 269,] viz., if the point 1 is the centre of the cir-
cumscribed sphere, and the points 2, 8, 4, 6,are the points A, B, C, D respec-
tively, then the relation in question, vis.,

0, (12)% (189, (147, (1%, 1 | =0
@15 0, (28), (24, (26, 1
(81 (32, 0 , (847 (38), 1
(A1, (42, (437, 0 , (46, 1
(51)% (52)% (3)% (5%, O ,1
1, 1,1 ,1,1,0
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becomes 0, 2 r o o
” 0, ¥ g o
P 8 0, 7 8,
"’ .9’: f” 0' c”
” d, 8 d 0, l
, 1,1, 1, 1,

Multiplying the last line by —¢2 and adding it to the first line, this is

=0,

© b b p

-3, 0, 0, O, O, 1 =0,
P 0, A ¢ a, 1
2, A, 0, f3 083, 1
": 9’» f” 09 "" 1
" a, B ¢ 0,1
(1]

1, 1, 1, 1, 1, |

and then proceeding in the same way with the first and last columns, the
equation is

-27, 0, 0, 0, 0, 1 =0,
0, 0, # 9’» al 1
0, B 0, y3, 8 1
o, 9’. ﬁ: 0, ¢, 1
0, a% 8% ¢ O, 1
1,1, 1, 1, 1, 0

which is in fact the equation of the Lemma. See my papers in the Quarterly
Journal of Mathematics, Vol. 111. (1859), pp. 276—277, and Vol. V., (1861),
Pp. 381—884. .

Cor.—1It appears by the demonstration that for any four points not in the
same plane, the expression

— GV bAGE— R =g + (a3 + Be2) (g7 + A2—1Y)
+ (B4 c30%) (B +f1=g) + (M4 %) (/24 4~ B)

is always positive.

1496. (Proposed by MaTTHEW CoLLINS, B.A.)—Prove thata triangular
pyramid whose vertices are A, B, C, D, and a parallelepiped formed from it as
follows, have the same centre of gravity ; viz., through any point in each of
the opposite edges AB and CD draw ltn.ight lines parallel to the other
edge, we thus get two parallel plane faces of the parallelepiped; two other
parallel faces of it are similarly obtained from the opposite edges AC and BD ;
and the third pair of faces are obtained from the remaining two opposite
edges AD and BC.

Solution by W. 8, B. WoormoUsE, F.R.AS.

Each pair of parallel planes determined as described in the Question are
those which pass through two opposite edges of the tetrahedron, and the line
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of shortest distance between the edges is normal to the planes. The
parallelism of the planes proves the figure to be a parallelepiped. Now, if
with respect to the parallelepiped, planes be drawn through the centre of
gravity parallel to each pair of opposite faces, they will manifestly bisect
every line which conmects those faces, and therefore they will respectively
bisect the three lines which join the middle JPOint' of the opposite edges of
the tetrahedron which liein those faces. Bdt the three last mentioned lines
are known to mutually bisect one another in the centre of gravity of the
tetrahedron. Therefore the tetrahedron and parallelepiped have the same
centre of gravity.

2459, (Proposed by R. Batr, M.A.)—If » be a cube root of unity,
express the roots of the equation

3 1
azd + b2+ = {tr+e (ac-b*)}“;, {ad+8(@-1) (ab —)} =0,
in terms of a, B, y the roots of aa8+3b22+80c2+d = 0.

Solution by the Rev. RoserT HARLEY, F.R.8.
Writing in the first cubic X, and in the second X, in place of az+ b, we

have
X2+ 8w (ac—2) X+a3d—3abe +288 =0 .vuenvnnen.. (1),

X2+8 (ac—b%) X' +a3d—38abc+203 —0 «vvueeniees.(2).
Now (2)—(1) gives X3—X3+8 (ac—5%) (X'—wX) = 0;

or (X' —aX) {X1—wXX'+0?X2+3 (ac—b%)} = 0;
whence, either X = «2X/,
or X = jot X’ +4/(—8) /[X? +4 (ac—81)]}.

The latter result is incongruous with the condition =X =0, and must there-
fore be rejected. The former gives :

=0t -b(l-w ),
where 2’ =@, Bor 7.

1805. (Proposed by Professor SYLVESTER.)—Prove that in general

‘/.l‘b/\rd.'/F(’_»y) -fldzfzdyF(l—y,l-z).........(l),

and hence show instantaneously that
/"’ d0 [ ¢ (simosin &) sin(9-8) =

[\] (3

and (3) apply the latter integral to prove that the chance of four points taken
at random in a circle forming the apices of a reentrant quadrilateral is —

1.8.5....(4i—1) x .
— 2.46....4 & QF

36
12+
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Solution by THOMAS SAVAGE, M.A.

1. The first of the above integrals is the
volume included between the surfuce
£ = F (2, y), the plane of zy, and the three v ,
planes perpendicular to the plane of zy, and 0
having as their traces on this plane the three ria.1.
lines y =0, y=x, x =1 Ifwe transfer
the origin (Fig. 1) to a point (O') whose
coordinates are (I, 1, 0), and take for our new
axesof rand y two lines (0’X’, O’Y’) parallel () X
respectively to (OY, OX) but drawn in the be
opposite dircction, it is clear that the equation
to the surface becomes ¢ = ¥ (l—y, [—z), and that to find the same volume
a8 before, the limits of the integration with respe:t to y and 2 will be
(0, z), (0, ?) respectively. Hence the truth of the first equation is manifest.

2. A particular case of the above general formula is evidently

/"ao/"ao' (sin 6 5in )™ 008 0 sins ¢/

(]
=_[‘do % (sin 6 sin )™ " 5in0 cosd’;

f " do f 49 (sin 0 sin&)" " sin (9-¢)
0 . .
. - :/"M/Vdf(linoﬁne’)“qnin()eosa'

_1/" (sho)“do-l’s'ﬁ""(“_.l)..:.
L, 2.4.6....4

8. Let P, Q, R, 8 be four points taken at | 2. r
random within a circle whose centre is O.
One of these four points (P suppose) must be
more distant from the centre e others,
Then Q, R, 8 are three points taken at random
within the circle whoee radius is OP, and the
chance that PQRS should be the apices of a
reentrant guadrilateral is the chance that one
of the three points Q, R, 8 should fall within
the triangle formed by the other twoand P, or
is three times the average area of the triangle -
PQR divided by the area of the circle whose radius is OP. Referring the
circle to polar coordinates, P being the pole, and the tangent at P the
initial line, the average area of PQR is easily seen to be

S/ krv sin(0—0).rdrds .Parde
S/ rdrde.viray

the limits of r, #/, &, 0 being respectively i
(0, 20P gin 8), (0, 20P sin ), (0, 6), (O, x).
VI %
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Hence the average area of the triangle PQR is
$(OP)s "/"do'i"o‘ A
1 (OP) (OP)‘[ do 3 (sin 0 sin &) sin (6—¢')
o

x _ 35(OP)?
2 86x

and the chance of a reentrant quadrilateral is
8 85(0OP? _ 35
= (OP) "~ 86x 12x

2356. (Proposed by CapraIN CrARKE, R.E, F.R.S.)—A tetrahedronis
thrown into the air and a small shot fired through it ; show that the chance
of one of the faces (which is marked) being perforated, is 2F = S, where V' is
the area of the marked face and 8 the whole surface of the tetrahedron.

Solution by W. 8. B. WooLEOUSE, F.R.A.S.

The relation stated in the Question may be proved to be true generally
for any polyhedron. If we conceive a large number of shots to be fixed
through the polyhedron, and suppose the polyhedron to occupy every possible
position with respect to the direction in which the shots are thrown, a little
consideration will show that the number of shots which perforate two faces
whose areas are F, F/ will be proportional to those areas. For, in inte-
grating for the various positions of the plane of F it is evident that the plane
of F’ will equally require to be integrated through the same positions; and
as the orthographic projections are proportional to the areas, it is hence
manifest that the resulting number of perforations must be also proportional
to those areas. Hence if only one perforation were made, the chance of its
being in the face F would be ¥=-S8. But as two distinct faces are per-.
forated by the shot, one in entering and another in quitting the polyhedron,
the chance of the assigned face I' being one of them is 2F = 8.

1843. (Proposed by the Eprror.)— 1. Three points being taken at
random within a circle, find the chance that the circle drawn through them
will lie wholly within the given circle.

2. Four points being taken at random within a sphere, find the chance
that the sphere drawn through them will lie wholly within the given sphere.

Solution by SAMUEL ROBERTS, M.A.

1. The centre of a circle through three favourable points must of conrse
lie within the given circle, and any point within this circle may be taken as
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the centre of a system of interior circles. Snppose we take any such point
P, ¢ being its distance from the centre, the radius of a circle about P must
not exceed #—¢, r being the radius of the given circle.

Now if a circle be drawn about P as centre, with the radins ¢, the points
on its circumference can be combined together three and three in $»*#

r—e

ways, and f 4=%*dt gives the total number of such combinations relative
o

to P. The probability required in this case is therefore

pu (wf :/':;: t'dt) = (—) - 4—"/.’(.r—c)‘cdc =2
: “\ 6 8 16’
o o o
2. Adopting a similar notation for the sphere, the number of favourable

r—c
combinations relative to the point P is f 3¥#x4%d¢, and consequently the
probability required in this case is °

r-¢ 82x4p12 86x T 8x
p= A%g,tffcedc, pdg) - (%— =7 (r—c)cdc = 35
o o

[Mr. RoBERTS remarks that the problem may be reandily extended to
by per-space of a dimensions; then, the content of the hyper-sphere being

inn n_{n
o . A o)A 1ge
TastD’ the result is r“‘"+1)l‘(§n+l) / (r—c) s

which includes all the cases for integral values of ».]

II. Solution by W.S. B. WoorLHOUSE, F.R.A.S.

1. The required chance being obviously the same for all circles, will remain
unaltered if the given circle be augmented by a concentric annulus; and it
will therefore follow that the same probability must result if the new cases
thence arising be treated separately. It will be observed that the investiga-
tion is affected by this peculiarity, that the new cases which satisfy the pro-
posed condition are principally derived from a conversion of a portion of the
old combinations which were previously unfavourable. Thus the newly
acquired favourable cnses are those in which the circle passiug through any
three points passes into the annulus without going beyond it; wheress the
total new cases are those in which one, or more, of the three points is situated
in the annulus. If we now conceive the annulus to be diminished without
limit, the total new cases will ultimately become those which have one of the
points in the periphery of the given circle, and the additional favourable
cases will be those in which the circle drawn through the three points is
tangential to the given circle. To estimate these favourable cases, let R de-
note the radius of the given circle, and p that of the circle described through
the three points ; then, as the points may beanywhere in the circumference,
the positions are (2xp)’. Also, as the circles are in coutact, the positions of
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the centre, from p to p+dp, are 2x (R—p) dp. Therefore the estimated
number of favourable positions is

(2)' f pPdp (R—p) = (2x)' R* (}—}) = $=* RS,
The total number of new cases, bearing in mind that each of the three points
may be in the periphery and the remaining two on the is
3 (2#R) . (xR7)?=6+RS. Henos by division the required probability is 2%,

2. If four points be taken at random within a sphere, the chance that the

here drawn through them shall be wholly within the given sphere may be
obtained in a similar manner.

Here the estimated number of acquired favourable positions is

J Gt (B pYidp= (42" [ dp (R*=3Rp +§°)
- 1 2, 1y _ G
(-3 o ) - 2
And the total number of new cases is

4 3_ 4t
4 (4xR%). (ZaR?) = 7 R
@R (378)"= 75
Therefore the probability of the sphere being included within the given one

is .

65

N.B.—This solution is only approximative, the estimated points not bein%
in strictness equally distributed. An accurate solution of the question woul
"be very complicated. .

1849. (Proposed by Professor SYLVESTER.)—Two points are taken at
random, one on each side of a given diameter of a circle; wha!; is the pro-
bability that the chord drawn through them shall not exceed a given length?

Solution by STEPHEN WATEON.

Let AOB be the diameter, RR’ a chord of the
given length, touching a concentric circle in D,
cutting AB in 8, and passing through P, one of
the random points, Put OB=g, OP=2, £ ROD
=a, LPOB=¢, £DOP=0; then the chord
through PQ will be less than RR’ s0 long as Q
lies within either of the spaces BSR, AS'R", the
area of the first of which is

BSR = ja2{a+0—¢+cos’a tan (p—0)—sinacosa} ..........(1).

Now the result obtained by taking BSR alone must be doubled, because
AS’R” obviously passes through the same variations of area; also the limits
of ¢ are from O to a + 6, of z trom @ cos a to @, and (since z cos 8=a cos a)
of @ from O to a; moreover an element of the circle at P is zdzd¢, and the
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total number of positions of P and Q is expressed by jata®; hence the re-

quired chance is
p= %fa f‘+‘(r1)’d"d¢
acosa O
'a%sf‘ fatop-(a+9) lin2a+2cm’alog(%—:)}mb )
acosa
Nowremembeﬁngthgtaemo-aeua,wehave

S xdz =34a*, foxdr =} (0s3—acosfatan §) .oe.evrerieennon(8, 4),
fo'zdw=gw’0f—a’eoa’a(otano+logeo-o) [ NN () B

/iog %%) zdzaflog (g) cdz-«)a’log(S)+ia’ rereenenen(6).

Taking (8), (4), (6), (6) between the above stated limits of 2 and 6, and
substituting the results in (2), it becomes

p= :-.:{“ («—sin 2a) (3 +8in? a) + sin®a c08® a (8 —2 log cos a)}.

[Putting, in Mr. Watson’s general result, a=}x, we find that the
chance of the chord being not greater than the radiss is

_18 18/3 8 4 .
m__m_'.+.ﬁ—"(3+log§),orp 00342, nearly.

The value of the analogous chance when the two points are taken at random
anywhere within the circle is “0117, as shown in Professor SYLVESTER’S
solution of Question 1818, on p. 20 of Vol. V. of the Reprint.]

I1. Solution by SAMUEL RoperTs, MLA.

Let AB be the given diameter of a circle
whose radius is unity. Describe an inner con-
centric circle, and let P be a point on its upper
semi-circumference. Through P there can be
drawn in the original circle two chords of a given A 8
length. Let PP’ be one of these chords, meeting
the diameter at E, which must by the conditions
of the questian lie between the centre and A or
B. For the particular position of P, AEP” is the 7
favourable area outside PP’. Now it may be in- L4
ferred from the symmetry of the figure that the favourable areas outside
PP”, the other chord, will be the same in inverted order as those outside
PF, so that we need only double the result relative to PP’ alone.

Draw Cp perpendicular to PP/, and le¢ £ PCB=¢, ZPCp=¢
L P'Cp = a; then we have £ ACP',=¢+¢+0—1-, y4 CEP = o+ 0—§g;
cos a sin (p+a+6)

2 cos (¢ +6)

therefore arca ACP' = ¢+°;0?' -
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This expression is to be multiplied by pdpd¢ and integrated as to ¢

"between the limits (x—a—6, x) and as to p between the limits (cosa, 1).

The first integration gives
{(a+6) (a+6)cosasina
U4 2

)
+ 00’2 2 (log cos 6—log oosa)} pdp.

Substituting for pdp its equivalent 728000 Oy 06 to integrate

cos® 8
cos® a ‘{o_’+a-co«Aasihao+c’—f¢eosasina—200s’alogoosa
4 4 3 . 4
+eos‘alogcoso sin 0 4o
2 % cos3@
@sin0d0 1,/ @
B —_—— = = [ —— — 20 tan 6—-2
u cosd 0 2(003’0 " hg”’)’
8s8in 0d6

17 6
cos 6 =§(oos=o m’)’

sinfdg _ 1 sinflog cosfdo _ 1 logeos0+ 1
zeowf )

cos’ 6 cos® 0 2\ cos?0 2 cos?d
Taking these integrals between the specified limits, we get
3 {a (a—sin 2a) (3 +sin’a) +sin?a cos? a (3—2 log cos a) }.

This must be multiplied by 2 and divided by 3%, giving for the required
probability the same value as in the foregoing solution.

2340. (Proposed by R. TUCEER, M.A.) — The circles of curvature at the
extremities of a pair of semi-conjugate diameters of an ellipse are drawn ;
find (1) the envelop of their radical axis and (2) the curve upon which their
points of intersection lie.

Solution by the PROPOSER ; the REv. J. L. KrroHIN, M.A.; and others.

1. Let 6 be the eccentric angle of the extremity of one diameter, then
& =acos0and y = b sin 6.
Now the equation to the circle of curvature is

(X=a)?+(Y=8)2=ph.ceiiirernncrnnna.. (1),

.. 2,
but a = as? cos 6, =_“_’bi’siuﬂo, and p=-.‘£f_sl“_’ﬂ_%_____‘%‘“"’)’

hence the equation (1) becomes

X24+Y2—2aecos? 0. X + gab’_e’ sind 0. Y = 3u2¢? 8in® 0 + 262 —at......(2).
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The equation to the other circle will be obtained by changing 6 into 3=+,
whence we obtain

X2+ Y2+ 2a6? sin® 9. X+.2_a21’ cos® 0 . Y = 3a%¢? cos® 0+ 282 —a® ...(8).
The equation to radical axis of (2) and (3) is
5X (cos® 0 +sind 6) +aY (cos® 6 —s8in® 6) = §ab cos 20.......... (4).
Differentiating, we have
5X (cos 6—sin 0) +aY (cos 6+8in 6) =2ab ..............(B).
Put cos 8—sin § = A and cos 0 + 8in 8 = u; then‘(4) and (5) become
wbX (1+2%) +AaY (1+4?) = 3Auab, ADX +uaY = 2qb....(6,7);
that is, making use of (7) in (6), the equation of the envelop is obtained by
eliminating A and u between the three equations )

X |, aY _ ab, ABX+puaY = 2ab, AT+pd = 2...... (8,9, 10).
"

A
Multiplying (8) by (10) and equating the result to (9), we get
LD S
® aY

hence we find that the curve required has for its equation
{i(bxﬁ’ T (aY)%} { ox)t +(aY)*}*=2*a 5.

2. To find the eurve on which the points of intersection lie, we have to
eliminate A and u between the two equations

2 o2 :
a8 XA (1+u3)— % Yu (1+A%) = 2 (X3+ Y3)—(a%+5%),
b (L+ADX +aA (1+4%) Y o= SabAg, AP4ul= 2,
the first equation being obtained by adding (2) and (3) together; that is,
_ we have to eliminate A and u between three equations of the form
AAA+p)+Bu(+AY) =¢, AuQ+A%+BAQ+4%)=c'Ay, NB+p?e=2;
that is to say, between three equations of the form
xp(1+A3)=cB' — Ac'Ap, —uA (1 +u?)=cA’~Bc'ap, A2+ ui=2.. (11, 12,13).
Squaring and adding (11) and (12) with the help of (183) we get a quadratic

for the determination of Au; hence A, u are known, and the curve can-be
determined.

2886. (Proposed by G. O. HANLON.)—If the side AD of a square be
divided harmonically in B and C, and squares be placed on AB, BC, CD,
falling without the square on AD, prove that the circles round the four
squares pass through a common point.
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Solutions by J. DALE ; the PROPOSER; R. TUOKER, M.A. ; and others.

1. Describe semicircles on AC, BD cut-
ting in P, and join PB, PC; then as
(P . ABCD) is a harmonic pencil, of which
the conjugate rays PA, PC, and PB, PD
are at right angles, therefore each of the f ¢ 2
angles APB, BPC, CPD is half a right angle; and oircles described on the
segments AB, BC, CD on the side towards P, and on AD on the side
opposite P, each containing balf a right angle, will pass through P; and
these circles will circamscribe the squares placed on AB, BC, CD, AD.

2. Otherwise: let ADEF be the square on AD ; then FB and EC meet on
the circle round ADEF, say in the point P. Then FPA, FPE, EPD are
evidently each half a right angle, from which the proof immediately follows
(that is, the circles all pass through P). .

8. Or again: let AB=A, AC =%k, AD = a; then, taking A as the
origin of rectangular coordinates, the given line being the axis of z, the equa-
tions to the circles circamscribing the squares placed on AB, BC, CD, aud
AD towards the opposite side, are

T2HYR =ATHAY veeeeereencenenranancnennnnens(l),
a2 +y® = (k+A) m+2k—h)y—hk B ) 8
g2+yd = (a+k)r+(a—Kk)y—ak .....cccvieaa. (3),
R L R () 8
The radical axes of (1), (2), (8) with respect to (4) are
a—h)z—(a+h)y =0,
(—a+h+k)z+(a—h+k)y—hk =0,
kz+(2a—k)y —ak=0,
and the condition that these lines meet in a point reduceatol.,.% -2;
a
therefore when A, %, a are in harmonieal progression, the circles meet in &
point,

2117. (Proposed by R. Tuoxer, M.A.)—A point P is given (1) on the
‘base of a triangle, (2) on a circle ; draw a transversal through another
given point Q to cut (1) or (2) so that the intercept may subtend a given or
a maximum angle at P.

Solution by Jauzs DALE.

1. Let QRS be the required transversal
cutting the sides in R and 8 so that RPSis
equal to the given angle. On PQ as diameter
describe a circle, cutting the transversal in T;
draw PD, PE perpendicular to AC, AB; and
IO en’ the angles SPT, R respecti

en the angles , RPT are ivel
equal to ADT, AET, 7

therefore 2BAC+ ADT + AET = BAC + RPS = DTE = a constant.
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Hence the following construction. From P draw perpendiculars on the
sides of the triangle; on the line joiming the feet of these perpendiculars
describe a segment of a clrc]e containing an angle equal to the sum of the
given angle and BAC; .and j 30111 Q to either of the points in which the circle
is cut by the circle described on PQ as diameter. The maximum angle is
the supplement of BAC, the arc DTE in this ease coinciding with DE,

2. In the case of the circle, draw any chord
CD so that CPD may be equal to the given
angle ; describe a concentric circle touching CD,
and from Q draw a tangent to this latter circle,
and cutting the given circle in RS. Then since
chords equidistant from the centre of a circle are

equal, and equal chords subtend equal angles, it
follows that the angle RPS is equal to the given
angle.

The maximum angle is equal to the angle in
the segnent formed by joining QP.

2429, (Proposed by R. 'l‘Ucm. M.A.)—An ellipse (4) and hyperbola
(B) have the sume transverse and conjugate diameters; prove that tho
polar of any point on (B) with reference to (A) touches (B).

1. Solution by JaMES DALE.

Let a, b be the transverse and conjugate axes; then taking for axes of
reference the asymptotes of the hyperbola, which are a pair of equal conju-
gate diameters of the ellipse, the equations of the two curves are

Byt = (@402, 2y =3(@+8) ceuenenrnn. .. (A, B)

The polm'~ of any point (A, k) with respect to (A) is hr +ky =} (a*+57),
and this polar touches B if A% = § (a®+5°), that is, if (A, k) is & point on
B ; therefore (B) is its own reciprocal with respect to (A).

——

II. Solution by the PROPOSER.
Let the ellipso and hyperbola be given by the equations

2
+-Z, 1,%—*0— =1 ....(4 B).
Now the polar of any point (z’, ') on (B) with reference to (A) will have for

its equation
C_‘E’_ + g = 1’

the envelope of which is readlly found to be the hyperbola (B) or its con-

jugate.
VI, M
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If the conics be
az® +2hzy +by® +292 +2fy +¢c =0 ......(B),
&'+ 2Wxy + V'Y + 20'2+ 2y +¢' =0 .......(4),

the curve envelope will be given as the result of the elimination of (z’, ¥’)
(¢ point on B) between (B) and
o (dz+Ny+g)+y We+by+f)+gdz+f'y+d =0,
The resulting equation is
o' [(ab'—hk) y + (ak'—a'h) 2 + af '—bg']
+y [(AW' —H'b) y + (AW —a'D) x + hf'—by']
+ (Yg—Kf)y+ Wg—af)z+f'g—fy =0.

2438. (Proposed by R. Tucker, M.A.)—Two parabolas turned in
opposite directions have the same axis and coincident vertices; if from the
vertex as centre, and diameter a mean proportional between the parameters
of the curves, a circle bedescribed, prove tE:t the polar of any point on one

with reference to the circle touches the other.

1. Solution by W. H. Laverry; H. TOMLINSON ; and others.

Let the equations to the three curves be
y2=daz, y2=—4bz, a2 +ySw=dab..........(1, 2, 8).
_ Then the polar of (2, y’) with reference to (3) is
Yy ==z +4ab....ciiiiiiiiiiniiiiaa (4);

- and if (4) is coincident with y = mz— % whichisa tangent to (2), we have
m

m -—f, and — % = ﬂ;or eliminating m, y'*=4a2’, and (/, y) is a point

y
on (1) .
- II. Solution by the PROPOSER.

Let y?=4daz,and2?+gy=r3......i0iiniine 0 1,2),
be the equations to the parabola and circle; then the polar of any point
(#/4’) on (1) with reference to (2) will be given by v po

L T O N :) 5
the envelope of which is readily found to be y3 = — 'i.'c, and the product
a

of the parameters is = 4a (;:) = 4¢3, which proves the property stated.
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1985. (Proposed by MarraEW CoLLiNs, B.A.)—Find what integral

—29
value of z renders a7 =0 whole number, or else prove it impossible.

Solution by SaMUERL Brrig.

82729 ] :
If " whole number be possible for any very large numbers, it

is well known that it will also be possible for some either positive or negative
values of  less than 532, that is for some value of & not greater thaneg";&

Now by using various artifices and contractions, I have tried all the
mu_nbers for z, 'both positive and negative, as far as 273, and none of them
satisfy the required condition ; I therefore conclude that the relation is im«

possible.

2339. (Proposed by T. CorTERILL, M.A.)—1. If two triangles in a plane
are similar, but right and left in position; then the lines drawn from the

angular points of one triangle parallel, perpendicular, or isoclinal to the
corresponding sides of the other triangle, meet in a point. Find its locus, if
tlll: first triangle remain fixed, while the second moves in any manner in the
plane.

2. l;xnalytically, we may assume the sums of the corresponding angles to
vanish,

Solution by SAMUEL RoBERTS, M.A,

This proposition depends on the movement in rotation of the second triangle,
and not on its translation in space. Moreover, if the lines corresponding to
a given position of the seeong triangle are drawn (say) perpendicular to its
sides, those lines will be parallel to sides of the second triangle in another
position, and isoclinal in any position of that triangle. Let us take lines
parallel to the sides of the second triangle. Denote the drawn lines by 1/,
2/, 8/, and the sides of the first triangle (fixed) by 1, 2, 8; then we have

L(12)=2(12), £(23)=14,(28), £(81)==x—,(81),
supposing the figures are appropriated as the relative positions of the
triag;sl'es require. It is very easy to see that the locus of the points is the
circumscribing circle.

If we refer the triangles to two independent axes (z, y), we find that
(A, B, C), (A, B, C’) take the forms [y—8, x—(y—a), (8—a)], [B—"
x—(a—7), a—B], and 2» produces the same results as 0.
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(Proposed biv)oW S. B. WoOLHOUSE, F.RAS .)—Let a given sur-
fnce, havmg a convex undary of any form whatever, be referred to its
centre of gravity and the principal axes of rotation situated in its plane;
and, corresponding to an abscissa x, let y, ¥’ be the respective distances of
the boundary above and below the axis; then, if A, 2 denote the radii of
gyration round the axes, and M the total area, we shall have

W = f'de "il'. B tfhy'_;f.

Letaso  Amferts LY, Befute YPIt I/ .

and C = }A +3B; then

1. If three points be’ taken at random, on the given surface, the aver-
age area of the tnangle connecting them,,in parts of the total area, is

(b)) = d lc’-:C, and the average square of the area, expressed in parts of

8h%k
PRCN
2. If four points be taken at random, the probability that the quadri-
lateral shall be reentrant = 4 (A).
8. If five points be taken at random on the surface, the probability of
a convex pentagon =1-10(A)+10(A2),
one reentrant point =  10(A)—20(A%),
two, reentrant points = 10(Aa3).

the square of the total ares, is (A%) =

Solution by the PROPOSER.

In the direction of the axis of = the three points
may be taken in the order P, R, Q, asin the dia-
gram, since all other arrnngementa will eventually
be included, if we afterwards suppose the position
of the points to be permuted, and in consequence
multxprothe result by 6. Let the coordinates of
P, Q R be (z,y), (&, %), (¢, y’), and let B de-
note the ordinate of the point m in which the side

PQ is intersected by y”, produced if necessary;
then we shall have

e y(z’—z’}+v(z’-—z) Ao d-zw,_p)'/Ady,,ay_-,@,,_B),. .

‘When R is above the point m, or y’ > B, the integral glves -} (2’ =) (v —B)*;
and when R is below m, the integral, made also positive, is 1 (2/—z) (w” + B)3,
where v/, ¥ refer to the up;‘))zr and lower boundary. Therefore when R, or
y", varies from boundary to boundary, the value of the integral is

JSody'=1(@'—z) {"—B) + (' +8)2}
=} (¥—2) {v"2+w2—2 (" ~u") B+287}.
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To abbreviate, put o2 +u”2 = 292, o'—u"=2¢, ' +«"=2u"....(a);
then  fAdy'=}(@—8)y?—(F—1) B +} (¥ -2)p* =
y(@—=a") +y (@"—2)
Ci@-a) -y g @ =) oA 27 2) z,
o ffnda"dy’ = § (@ —a) [y 2da’ —(y ~y) [¢'s" dx" — (32 — ¥'o) ) f¢'da’
{y(w’—- o) +y @ —a)}*
6 (¢ —0) (y'~y)
Now by hypothesis, as regards the abacissas, the point R lies between P

and Q, so that the limits of #” are » and /. On tnkmg the preceding in--
tegral between the limits, o= o...0’, the last term gives

P =Py =P _ (a/—zr
§@—21 W—9) G ey +9)
Therefore, between the stated limits, we hnve

Jadedy' = Z2F ([~ [ de)—(7'=9) (/e'dda’-fwd«)

— (9 —y'v) (f¢ da/ = fedo) + (i'%ﬂ @ +9y +5).
Again, the limits of y are —«'....7";
o Jfady da’ dy’ =y (& —a) ( ([ 4 — [+ dz)
=24 (¢'~y) (/e'z’ dd—/w dzx)
-2y (ya/ ~ €z) (fc’dz’—/:da‘)
b 5 (P g )
Also the limits of y are ~u....v;
o ffffadydy ds"dy’ = “““ZIT.Q (f7*de —f v ax)
—4py’ (—e) (fe’a/ dz’—/w dz)
— 4 (et~ &) ([ ¢da’ —fe dr)
+4N*'( --.r)“ (v"-oau+u + ‘,+v"-'—v’su’+u")
(or, putting ",_”:“‘2 - A% "l’_"s“ e A%, it becomes)
= o' (@ [P d + 2 [ dz) - 2 (. [y 4 + & [ d)
— ! (¢ f¢2' A/ + ¢ fex dz) + dup’ (e [ €’ da’ + € [ex d)
- A’ (ea’/(da/«l»e’a:/ed.r) + 4pn’(e’zf¢’dz’+ez’f¢d¢)
+ 2%’” {@\2+ ) + (A + 29) + €' (o + 2%) — 202/ (A + AT — 227/ ce’}.

This expression is a symmetrical function of z, #/, and it is here purposely
u'nng:s in pairs of terms of the form ’

X = Faf's'+ flz ¥,
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each of which pairs will, on further integration, give
JXdd = Fafed +f'zFs (¢'=2) =Fafe+Fzfr,
and therefore J/Xdzds = Fz .f.

Hence, by observing this formula, the remaining double integration of the
foregoing expression is directly effected, and we get

_/W/Adxdr’dydg/dz’ dy"’ =
2/pd.¢./owdzjyﬂdx)—zfpzdz./(pdzfyﬂdx)
-4/;:.d.r.f(yedx/s.tdz)+4fﬂedx./(pdr/ezd.v)
—4fuedz . [(urde fedz) +4 fusda . [ (uedz [ ¢ d2)
+§{f;w’dz .fnk’d.t+fud¢ .fM’z’dz-i-fyeth ./pea"da'
—2/;&:412./nh’zd\t—/ue:dz./mzd#}......(b).
According to the notation adopted in the question, M is the total area, and

regarding the surface dynamically as a thin lamina, 4, ¥ are the radii of
gyration round the axes;

Mf‘/fdrdy = fdz(v+u) =2 [uds,
M.R = [fotdzdy = [2°ds(v+u) = 2[pa?de,
M.k’a‘[/y’dzdy=§/d¢(v’+u’)=2/pk’d.r.

In all that precedes, the position of the coordinate axes is wholly unrestricted.
If the origin be at the centre of gravity, we shall also have

0= /[frdzdy = [zdz(v+u)=2[pzda,
0= [fydzdy = }fdz (0~ v’) = 2 [peda.
Also, if the axes be principal axes of rotation, we shall have furthermore
0 -/fzyd@dy = éf:cd:(v’—u’) = 2/[464'(10.
The integral we have found, therefore, reduces down to the following :
/]]]Z’/ ()= M/bwdcfy’dx)—ZMﬂuedxﬁxdx) + FM2A2%3 + M /M’x’dz.
But [(ueds[exda)+ [ (exdsfpeds) = fuedzs . fezxdz =0
gives S(wede fexdz) = —[(ex dz [uedz);
< S C ) = M[(uzdz [+ dz) + 2M [(ex dz [ pe da)
+§ M%22 + 3 M [un%s? de
= M [{(o+u)zde[(F+u)dr} + 3M [ (0—u) 2 dz [(s*—w?) dr}
+ MR + g M [ 2%ds (23 +48)
= }M [ (vzdz [v*dz) + M [(uz dz [v? dz)
+ §MeA%2 + f,M/ﬁdm(b’ +u%)...(c).



103

By now permuting the three points, s0 as to obtain every position and com-
bination, the sum of the areas is 6 /f [[/ ( ); and as each point traverses
the area M, the number of positions is M3. Therefore the average area is

Q_/_‘-/f_{_{?f_(_); and when expressed in parts of the total area, it is (A) =
i‘/'Z.//:_l{{_'(_z. Hence, substituting y, y’, respectively, for v, #, conformably

with the notation in the question, we finally get

e Y I Ay

- 8B+_It_’£+1.£_b’lc’+c
MU M? O3 ME M?
which establishes the formulee first stated.
To determine (A%), the average value of A? divided by M?, we have
A= 4 —2) (" —B) = 49 (#—2)~dy (¢ —2") iy (@' ~2)
= 4" (& =) 32" (9 + } oy —9)
S BT Y —gf Ry (@ 0 (oY — P
+Hz" + Ky’ + La'y" ....(e),
where H, K, L are factors independent of the point (2”’, ¥”’), which factors

will go out on integration with respect to that point. The average value of
A? when one point (¢”y”’) alone varies is

,[/‘A' dz"’ dy" N ‘[/'(e) dx" dy:
M M

:
A=

.Now, as A, % are the radii of gyratiop round the axes of z, y, we have

Jfrds"dy = M .15, [fy?da’dy’ = M . k%;

.and, as the figure is referred to its centre of gravity and the principal axes of
rotation through that centre as axes of coordinates, we shall also have

.[/.dld@”dy"- 0, _[/y’dz”dy” 0, .[/ll”y”dl'”dy”a 0.
Therefore from () we immediately find
= =20y Rt 1) Aty )

Similarly the average value of A3, when two points vary on the surface,
' dy'
Al = [_/Lf)__. = LR +9%) + 1h? (B + 2) + § (Ria%y + A%T)

_ b y’
>G5 1) S ) X
And, when all three points vary on the surface,

J@ dzdy lm

Ay = TR+ = 2R ).
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Hence, dividing -by M3, we get (A% =g.’i_‘;’ ererreeneen(B)e

Now suppose four points P, Q, R, 8 to be taken on the surface. If the
fourth point S be taken at random, since it may indiscriminately fall upon -
any point of the surface (M), the probability that it shall fall within the

triangle PQR is evidently accurately expressed by the fraction t.ri_‘"‘;:_PQR..
And when P, Q, R take all positions on the given surface, this probability
obviously becomes = "lmg__et"l‘&ih.l’_qf = (A). Hence, as each point _

may be separately considered as the fourth, we have, generally,
(a) = prob. of S falling in PQR,
= » P ” QRSn
= » Q » RSPo
s » R ”» SPQ.

These separate probabilities are identical in value, since the points admit
of being permuted. The four conditions implied are also individually exclu-
sive, and the sum of the values obviously makes up the complete probability
that the quadrilateral shall be reentrant. Therefore if four points be taken
at random on the given surface, the probability that the quadrilateral shall
be reentrant = 4 (A); that is, four times the average triangle expressed in
parts of the total area. -

Lastly, suppose that five points P,Q, R, S, T are taken at random on the
given surface. Four assigned points P,Q, R, S will be the corners of a
quadrilateral that is either convex or reentrant. If PQRS be convex, its
area will be half the sum of the component triangles, viz.

area =} (PQR+ QRS+ RSP +SPQ) ...ecvvveenas. (D,
and the fifth point T will be reentrant if it fall within this area. If PQRS
be a reentrant quadrilateral, the area expressed by (Z) will be that of the
triangle which includes the reentrant point ; and again the fifth point T will
also be reentrant if it fall within this particular area. Hence the proba-
bility of the fifth point T being reentrant is in all cases equal to the area (7)
diviged by the total area; and when the points P, Q, R, S severally take all
positions on the surface, this last-mentioned quotient becomes =2 (A).
The other four points having each of them the same probability of beiu
reentrant, we find by collecting these several probabilities that the to

bability that one of the points shall be reentrant plus twice the proba-
g?dgty that a pair of points shall be reentrant is equal to 10(A).
Again, the probability that S, T shall be a pair of reentrant points is evi-

dently % x P.—;I—B = .(_P%I’L), . When P,Q,R take all positions, this be-
comes = (A®); and a like probability will obtain for every pair of the five
points. Therefore the probability of a pair of reentrant points is = 10(A?).

Hence also the probability of only one reentrant point =10(A)—20(A®).
And the probability of a convex pentagon = 1-10(A)+10(A%).
Norr.—When the axis of z is diametral, then

A -%ﬂzw, = ;iﬁ-da;

A= n% fierda, | B= ﬁ. Jfyeds fyrd,
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And in the formula for B, since fyzds.c =0, the inner integral may be

estimated from any epoch.

If the axis of y be also diametral, the calculation of the integrals may be
further simplified by taking them for only one quadrant and doubling the

results just stated.

Since the values depend upon the distribution of areas alone, it is evident
that they will remain nnchanged when the figure is modified in any way by

orthogonal projection.

* As examples of the practical application of the formule, a table is annexed
showing the uumerical results for four principal figures.

Prob. of one reentrant point....

ExamprEs.
Form of Boundary. Triangle. [3AusTe or  Reguiar Gircle or
Valuo of (8) coeverrerrrnn..| & | 2| 289 ) 85
12 - 144 3888 48x3
Value of (A vevervnrrennnenn| = | — 2% | _8_
72 96 2592 82x2
1 11 289 85
Prob. of i I = —
ofa roeut. quadrilatersl 8 36 972 | 12=*
2 25 683 85
Piob. of i . - —_— —_— -
10b. of a convex quadrilateral 3 3% 973 1 T
. 11 49 1373 305
Prob. of a convex pentagon .... 3% 14, —_— 1—&;;
20
36
5
36

Prob. of two reentrant points ..

RERILS
g
g

Value of (A) eveevnvennnannns
Value of (A% ..ovvviinnnnnnn

07639 | 07438 | -07388
01042 | -00964 | -00950

Prob. of a reent. quadrilateral ..

Prob. of a convex quadrilateral.. |

8056 | -2978 | 2955
6944 | 7027 | -7045

Prob. of a convex pentagon ....
Prob. of one reentrant point. ..
Prob. of two reentrant points ..

13889 1042 0965 +0950

3403 | -8531 | -3562
5555 | ‘5504 | ‘5488

2472, (Proposed by Professor CaYLEY.)—Through four points on &

circle to draw, a conic, such that an axis m

circle.
VIIL.

N

ay pass through the centre of the
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Solution by the PROPOSER.

Let the equation of the conic be (g, &, ¢, f; g, ) (2,9,1)? = 0, then if as
usual the invérse coefficients are represented by (A, B, C, F, G, H), the
equation of the two axes is

(a=b) (C2—G) (Cy—F) + h[(Ca—G)*—(Cy—F)] =0,
whence if an axis pass through the origin
(a—b) FG + A (G*~F%) = 0.
Consider now the circle 22+ y*—1 = 0 and on it the four points in which it
is intersected by the conic (q, 3, ¢, f, g, 3) (, y, 1)® = O; then for any conics
through the four points we have :
(@b, 0.1, 0 k) (2,9, 1) +A(2*+y2~1)=0;
s0 that, taking this for the equation of the required conic, and representing
it b

Y (@, 6,0,/ ¢, K) (®,9,1)* =0,

the values of the coefficients are

@ =a+A, ¥ =b+A, dmec—A, f'=f, =g, ¥ = &,
and we thence have

Fe=F-Af,  =G-rg, =V =a-b, V=5
The required relation is (a’—b’) F'G' + 4’ (G’*~F") = 0,
thatis (a—b) (F—2Af) (G—Ag) +h {(G-Ag)—(F-af)} =0,
a quadric equation in A; and substituting for A each of its two values, we
have the two required conics
(a,5,¢, 1, 9, k) (x’ Y 1)’ +A (" +y*=1) =0,

for each of which an axis passes through the centre of the circle.

2473. (Proposed by Professor SyLvesTER.)—Show (1) how to plant 81
trees so a8 to form 800 rows of 8 trees in a row; (2) how to plant 10 trees °
80 a8 to form 10 rows of three trees in a row.

Solmtion by the PROPOSER.

1. Take any cubic curve and P any pointon it. Draw PQ a tangent at P
cutting the curve in Q, QR a tangent at Q cutting the curve in R, join PR
cutting the curve in 8, QS cutting it in T, PT cutting it in U, QU catting
it in V, and so on, until m points are obtained at which trees are supposed
to be planted. Then according as m is of the form 4% +3, 4k+2, 4k +1,
4k, the number (k) of collineations between the points taken 8 and 8 to-
i{ether may, by the Theory of Unicursal Derivation (laid before the London

athematical Society by the Proposer), be shown to be 2%°+2k, 2k*+FK,
2%3, 2k3—k respectively, In the first case proposed, we have ¥ = 20, and
m = 4k +1; therefore u = 2k = 800.

2. Another interesting case pointed out by Professor CAYLEY is where
k=2,m=4k+2=10,and p =2k*+% = 10. This is the case of 10 trees
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planted so as to form 10 rows, a variation upon the old problem of planti
trees so as to form 9 rows. ) P cld problem of planting 9

N.o'nl.—If we give to P. Q, R, S, T, &c., the names 1, 3, 4, 5, 7, &c.,
leaving out multiples of 8, then any 8 points whose numerical names A, , »
::::n‘n.iiy l&hfi:qmtmn Al pt A — 2032 — 2u%2 — 2)0\3 = O will lie in the same

e.

[In the Matkematician, Vol. 11., p. 278, Mr. WoOLEOUSE has shown that
15 points may be placed 50 as to form 26 rows of 8 in a row.]

1927. (Proposed by W. 8. BurNsiE, M.A.)—To find the eonic of least
eccentricity that can be drawn through four given points. :

1. Solution by H. R. GREER, B.A,

Let the points be defined by the intersections of two conies U

and V which are given - in the form £+’3+’_‘-0, and
y

£+';v+%'-0; and let the coordinates of their fourth point of inter-
section be proportional to 2=, g1, -y'l) ; 80 that we shall have
la+mB+wy =0, la+w'B+n'y =0, Now it is demonstrable that there
exists a method of geometrical derivation ueordmi to which a line being
represented by a conic through three fixed points, the line at infinity shall
be represented by the circle through the same; and farthermore, that if the
perpendiculars from any point on the sides of the fixed triangle be (a, 8, ¥),
those from the corresponding point will be proportiénal to (¢‘1, 81, -y"l) R
and also, that the angle between the asymptotes of any conic through the
fundamental points will be equal to that in the segment cut off from the
circumscribing circle by the line corresponding to the conic. Assuming these
grinciples, which are built upon a particular method of Quadric Inversion, it

evident that, in the case before us, we must proceed as follows. Form the
equation of the shortest chord of the circumscribing circle through (a, 8, 7),
and in the result write for (z,y, £) their reciprocals. Now the equation of
the line joining (a, B,7) to the centre of the circumscribing circle is

2 a cosA
y B cosB

=0, say Lr+My+Nz=0; and that of the line through
%z 7y cosC

o aA
(=, B, 7) perpendicular to this is, say, | ¥ 8 u | =0, where A = L~McosC
sy v] .

=—N cos B, and cyclically for uand ». But L = g cos C—1 cos B, and cycli-

cally for M and N; therefore, after a little reduction,
A = a(sin? B—sin?C)+ B .sin Asin B—ysin AsinC;
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therefore, writing sin A ; sinB :sinC = a : b : ¢, the equation of the re-
quired shortest chord is

o a a(B3—c%)+abB—eay
y B B(c2—a®)+boy—abda
z v y(a®—b)+caa—bcB

. The equation of the sought conic is got, consequently, by writing in the above
for x,y,% yz,%x,zy respectively; and for a, B,y, mn'—m's, &c. &c.

=0.

~ ——

IL. Solution by the PROPOSER.
If the four points do not form a reentrant quadrilateral, an ellipse can be
described through the points. This being so, let
= (a' b, cf 9 k) (3, Y z)’ =0, and V=(ay, b, clv.flr [N 7‘1)(#.3!,2)’=0
be the equations of any two conics passing through these points, then the

egnation of any other conic of the system is of the form U+ AV = 0.
Now, put A = be—f?, &e.,
0 = A sin? A + B ¢in? B+ C sin? C+2F sin B gin C+2G gin Csin A
. +2 H sin A sin B,
¢ =a+b+c—2fcos A—2g cos B~2i cos C;

also let 6, and @) be the similar quantities relative to V, and @, @’ relative
to U+%kV. Then we have

0 =0+kp+k%, € =0+kd),

wiere ¢= (bt,+b,c—-2[f0 8in? A + (ca, +c,a—290y) sin’ B

+ (aby + a,6—2khy) 8in® C + 2 (gh + gih—afi—a, f) sin B sin C

+2 (bfy + by f—bg—byg) sin C sin A + 2 (fy, + /19 — chy—cyh) sin A sinB.®
Now, from the identity (a, d,:¢,/, g, B) (2, y, 2)* = A (X3+ Y3—¢?Z '), where
Z =0 is the equation of the directrix, and e the eccentricity, we have
¢ =2 (2=¢, 6=2(1-¢), giving W;“ = 1%:; whence we deter-
mine &, so that the eccentricity of the conic U+ 2V =0 shall be a minimum
by equating to zero the differential of gej with respect to %. This being
done, we find i

(0 + k6") (¢ +2k6) = 20, (0+ k¢ +5%0)),

or 0'p—200,=k (¢,¢—2¢'6,), which determines ¥ when the eccentricity e
of the conic U + £V =0 is a minimum,

Note.—The condition that the four points (U=0, V=0) lie on & circle
m?' be readily expressed in terms of 6, ¢, 6,, ¢y, ¢, as follows : —

n general if U =0 represents a circle ¢’ =46 ; therefore when U+ 4V =0

is the equation of a circle, &3 (6,/2—448,) + 2k (6'0',—2¢) + 6"3— 40 = O deter-

mine_s k, .and it is plain that & can have but one value, whence the condition

uired is
T (@9—46) (8= 48) = (F0,— 20",

[* The geometrical meaning of ¢ is that the conics U=0, V=0 cut the
line at infinity harmonically.]
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9418, (Proposed by Dr. Smaw.)—If the vertices of a pentagon be
A, B, (85, D(, E; and if ya, b,e,d, e be) the areas of the triauglespI?JAB, ABC,
BCD, CDE, DEA ; show that the area P of the pentagon is given by the
quadratic equation .

. P*—(a+b+c+d) P+(ad+bct+ed+de+ea) =0.

1. Solution by STEPHEN WATEOX.

Produce any two of the sides, as BA, DE, to meet in O, and draw CG
rallel to AB and CH to DE. Put OA=a), OB=a,, OE=b,, OD=0,,
G =a, CH=g, and sin ZO=m. Then

P == ’B + b - b
= 3’,'.'.?2,6,_:‘;‘5,)‘1‘ W o .

Also @ = jmb, (ag—a
g=§:ﬂl(a:-63 g ceee ()

d= bg—
6= gz:l ((1':-2]3

From (2) we easily get F H
ea aB ea , 2b aB , 24
= b B = —_— = -_—
o d ' b'a’ d+mﬂ'b° b+m'

hence by substitution (1) becomes

P=bsd+y (9+be—ae - 2bd

: }( 7 afm = a+c+e+ P

whence eliminating a8m, we have, as required,
P2—(a+b+c+d+e)P+(ab+bc+cd+de+ea)=0.

1I. Solution by Jamrs DALE.

The six angles made at A by the lines AB, AC, AD, AE have their sines
connected by the following well-known relation,

sin BAC. sin DAE + sin BAE . sin CAD = sin BAD . sin CAE;
whence, multiplying each term by (3AB. AC. AD . AE), we get
AABC.AADE + AABE,AACD = A ABD. AACE;
or putting ay, by, ¢, dy, ¢, for the areas of the triangles CAD, DB E, ECA,
ADB, BEC, we have the following conditions :— )
am+be=0dy......(0) | a+d+e=P ..c..a(6)
bhytea =digyeeees.(2) | Bitota=P .cie. (D)
co+db=¢ea......(8) q+d+b=P ......(8)
ddi+eo=ady.e....(8) | i+ete =P «.e0(9)
eey+ad =bey. «...(8) ] a+a+d=P......(10).
From(s)and(9),c,d,-P’—(b+c+d+e)P+(bo+cd+dc+bc)
= aay + be, by (1)
" = aP—ab—ea+be, by (6);
therefore Pi—(a+b+c+d+e) P+(ab+Bo+cd+detea) = 0.
[For another solution see Hymer's Trigonometry, 8rd ed., p. 146.]
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_2378, (Proptped by T CorErIinn, M.A.)—1. If ABC is a self-conjugate
triangle of a conic, to which DP, DQ are tangents at P and Q, then any
conic thn:ongh ABCD cats PQ harmonically. 2. Hence, if DM, DM’ are the
perpendiculars on the axes, DM, DM bisect the angles PMQ, PM'Q.

Solution by JAMES DALE,

1. Let the chord PQ cut
BC,CA, AB in a, b, ¢
join DA, DB, DC cutting

Q in a’, ¥, ¢; then the
points aa’, B, c¢’ form &
system in involution ; and
as each of the triangles
Daa’, Db¥’, Doc’ is self-
conjugate with respect to
the conie, it follows that
P, Q are the double points &
of the system aa’bb’cc’. . :
If now any conic through ABCD cut PQ in'P, @', then these points also
belong to the system aa’ b’ ¢/, and therefore form a harmonic range with
the double points P, Q.

2. Suppose mow that AB, AC are
the axes, then BC passes to infinity.
Let PQ cut the axes in 3, c,l-nd lzng,
DM’ perpendicular respectively to y
AB cll)xetr PQ in ¥,¢; join ;M, QM;
PM’, QM’; then PQ is divided harmo-
nically in 4, 4’; and as the conjugate
rays Mb, M’b’ are at right angles, it
foﬁows that MP, MQ make equal
angles with MD; so also M'C, M'C/
make equal angles with M'D.

1973. (Proposed by the Rev. R. TowNsEND, M.A.)—Draw a chord of
one of two given circles o as to touch and be cut in a given ratio at its
point of contact with the other.

Solution by Wirriam Horps.

Let A, B be the centres of the
given circles, and suppose the tan-
gent to the circle (A) at D, to
meet the circle (B) at C and F, so
that CD : DF=m : n, the given
ratio. Draw AB, AD, and through
C draw a line parallel to AD to
meet BA produced at M, and the
circle (B) at H ; also draw AL,
BK each perpendicular to CF. Then CD : DF=m : », by hypothesis,
therefore CD: (CD+DF)=AL : CF=mn: (m+n),
therefore AL : } COF (or BK)=MA : MB=m : § (m+9);
hence  MA : MB~MA (or AB)=m : } (s—~m)=a given ratio.
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But AB is given, therefore MA is also given, and likewise a semicircle
thereon passes through L, because MLA is a right angle; moreover
LC=AD, which is given. We have, therefore, to draw a line from M to
cut the semicircle on MA in L, and the circle (B) in C, so that the part LC
intercepted by their circumferences shall be equal to AD, the radius of the
given circle (A). .

Produce MH until HI=LC or AD; at I draw a line perpendicular to MI
to meet AB produced at N, and let O, P be the intersections of the circle
(B) with MN. Then HI=LC and KH=CK ; hence KI=LK, and there-
fore BN=AB; consequently N is a given point. Draw CO, HP, and
divide MA at R, so that MN : MP=MA : MR; also draw RS parallel to
HP, as in the diagram. Then wehave R
MI: MN=ML : MA,MP : MH=MR : MS,MN : MP=MA : MR(Con.);
hence compounding these equal ratios we get

MI : MH=ML : MS, therefore HI (or LC) : MH=SL : MS;
therefore LC :SL=MH : MS=MP : MR. :

Now LC, MR, MP are given, therefore SL is also given, consequentl
SC or MC—MS is given. But £ MRS=MPH=MCO, hence S, R, O,
are in the circumference of a circle, therefore MC . MS=MO . MR =a given
space. That is, the difference and rectangle of MC, MS are given to deter-
mine them, which is a well-known elementary problem.

It may be observed that to draw from M a line to cut the semicircle on
MA in L, and meet the circle B at C, so that LC shall be of given length, is
a problem in Apollonius’s lost treatise .De Inclinationibus, restored by
Ghetaldus and others. (See Bonnycastle’s Geeometry, 6th edition, p. 367 ;
?;so Hutton’s or Barlow’s Mathematical Dictionary, under the name Apol-

nius. )

NoTE oN A CrITERION OF DivisrsiritTy. By M. JENKINS, B.A.

The rule for finding a criterion of divisibility by continued subtraction of
digits, beginning at the left hand ( given on p. 69 of this volame of the Re-
print), may give rise to inconveniently high numbers to be considered as
digits of the scale of notation: e.g. if t{\e digits situated at the requisite in-
terval be 9,1,9,1,9,1, &c. The continued subtraction then gives succes-
sively —8, +17, —16, + 26, &c.

The rule, however, may be put in a different form, and generalized thus :—

Let r be the base of the scale of notation ; p the proposed divisor, supposed
prime to r; N the dividend, a criterion of whose divisibility by p is required ;
and let #T~-a be divisible by p, or #* =4 (mod p), where a may be sup-
posed positive or negative, but of absolute magnitude not greater than 4p;
and T may be taken to be the least value of gl?; index consistent with the
congruence. )

Mark off from the right hand of N divisions of T digits, and let

8, 8,15+ 8, & be the magnitudes of the divisions standing by themselves

s, the extreme left-hand division, consisti ibly of less than T digits):
'n , possl

then c”a"+c“_la""1 + o. +83+8 is a criterion of the divisibility of

N by p.

This criterion might be expressed to be the magnitude of the divisions
considered as digits in the scale of a.

The correctness of the rule is evident from the fact that if #,, be the local

magnitade of the (m + 1)th division,
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#, = 2,s™; and therefore ¢, =4, 0™ [mod. (r"—d) )3
therefore N=4,0" + ... +#,0,+8 [mod. ('"—a)]; afortiori (mod. p).

Let ¢ be the number of digits in the period of 1, expressed as an #-mal:
then if T=¢#, a= +1; and we have the rule, “Add all the divisions together
for a criterion.”

If ¢ be even, and T=4¢, a=—1; then the rule becomes:—Subtract the
sum of the divisions of even rank from the sum of those of uneven rank; the
difference with the proper sign is congruential to the given number N.

The analogy of these two rules to the ordinary ones for 9 and 11 is ob-
vious: by the continued application of them a number of not greater than ¢ or §¢
digits, as the case may be, can always, if ¢ be known, be speedily found con-
gruential to N. But the utility of the further application of the general rule
to a number of # digits, where ¢’ is not > ¢ (¢ odd) or }¢ (¢ even) is the proba-

bility of finding a congruence r=a (mod. p) such that a and the greatest
integer in ¢’ == T shall both be small.

Ezamples.— Find a criterion of divisibility by 7 and 13, and one for divisi

bility by 87 of
67, 002 | 637, 095 | 430, 019
637, 09

57, 002
10*=—1 (mod. 7 or 13) 1124 116
116

1,008
1
. § 7
The given number is therefore divisible by 7, and leaves a least residue
~7, or a remainder 6, after division by 13. For the divisor 87, we bave,
since 108= +1 (mod. 37),
N=1124+116=124 x 10=18 x 10=19 (mod. 87).
Find g criterion of divisibility by 17 of
68 | 7826 | 5918 | 4379 | 6210 | 4389
+58 17826 - -

6264 12215
—56918 4379

245 78,36
ar e
89 —-120
166

86
The original number is first reduced to 8 digits, since 108= -1
{mod. 17) ; then, since 103= —2, and 10*= +4 (mod. 17), we multiply
8 by —2 and add to 46; 78 by —2 and add to 86 ; 39 by 4and add to ~120;
this process gives the criterion 36.
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