
Introduction
As a bona fide dabbler, in this paper I will attempt to find out just how far one project can go in rejecting 
tradition for the sake of whimsy. Not content to cast aside the standard map projections, in this paper we 
will do away with the expected shape of a map, the standard geographical coordinate system, rectangular 
coordinates themselves, the definitions of “hexagon” and “polyhedron”, the base ten number system, and 
the concept of a “curve.” Or in short, we will see how many of my favorite mathematical objects and ideas 
we can mash together by tiling a sphere with hexagons, tweaking each hexagon’s boundary into the fractal 
Gosper island shape, and covering each with a flowsnake fractal curve. This will allow us to make new maps 
of the globe onto puzzle-like interlocking pieces, and design 3-dimensional sculptures of squiggly curves 
which fill a spherical surface.

Coordinates, Tilings & Grids
At the heart of the connection between these seemingly disparate ideas is the notion of a coordinate system, 
a link between arithmetic and geomety, representing geometric points using numbers so that we can compare, 
measure, and transform geometric spaces using discrete calculuations.

The standard coordinate system on the sphere is the latitude/longitude grid, which uses angle measures 
from the sphere’s center relative to some distinguished polar axis and distinguished arc from pole to pole 
(the “prime meridian”). On the Earth or any other spinning sphere, the axis of rotation is a natural choice to 
define the poles, and we conventionally pick the prime meridian to pass through London, England.

Considered as a map from a sphere to a rectangle (see Figure 10), this coordinate system does not pre-
serve shapes, has scale which varies dramatically, and includes singularities at the poles which do not map 
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Figure 1: Earth + Flowsnake
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uniquely to points on the rectangle. To mitigate these defects, a 
wide variety of map projections and coordinate systems have been 
designed, usually based on mapping the sphere to a planar disk or 
polygon, a cylinder, or a polyhedron. For an overview of related 
topics, see Snyder [1] and Popko [2]. A flippant summary is that 
spheres, being curved, are tricky to map. To understand grids on 
the sphere the easiest place to start is the plane.

Planar Tilings. Three types of regular polygon can single-handedly 
tile the plane: the regular triangle, square, and hexagon. Of these, 
the square grid is by far the dominant choice throughout human art, 
mathematics, and engineering, but a tiling of hexagons has much to 
recommend it: it gives each cell more directly adjacent neighbors 
(6 vs. 4), reduces the total lengths of cell walls (hence its use in 
honeycombs and chicken wire), is closer to uniform with respect to 
angle measure, and in a discrete sampling problem such as image 
representation reduces the severity of grid-aligned aliasing artifacts. A vibrant niche has sprung up around 
image-processing with hexagonal pixels, see e.g. Middleton and Sivaswamy’s monograph [3].

Square grids do however have three striking advantages: they are entrenched in the culture, ubiquitous 
and familiar; they easily separate into two perpendicular components, a property which generalizes nicely 
to any dimension; and every square can easily be recursively subdivided.

Triangle Grids & Löschian Numbers. As every high school student learns, the Pythagorean Theorem 
relates the squared magnitude of any arbitrary displacement vector on a square grid with unit vectors x and 
y separated by a quarter turn: given any coefficients a and b, (ax + by)2 = a2 + b2.

In the case of a triangular grid a similar relation holds. If we use two unit vectors x and y which are 
separated by a third of a full turn, then the analogous expression is (ax + by)2 = a2 + b2 − ab.

Natural numbers of this form are called Löschian numbers, after Lösch [4], a geographer and economist 
who used various triangular grids as an abstract model for geographic networks and distribution of econom-
ically important places. The first few are shown at the left of Figure 3. The OEIS [5] lists other connections.

In either a square grid or a triangle grid, any displacement between two grid points defines a new grid 
of a coarser scale. Given any hexagonal tiling, we can create a finer tiling with n times as many hexagons 
for any Löschian number n, as seen in Figure 3. This is the idea behind Goldberg polyhedra [6], which typ-
ically start with a dodecahedron and then make a Löschian refinement of the grid. For instance the classic 
soccer ball shape is the result of a factor-of-3 refinement to the dodecahedron. As we will see, the recursive 
factor-of-7 refinement of the hexagon is the basis of our fractal shapes in this paper.

The Gosper Island & The Flowsnake. As 
mentioned, a square can be recursively subdi-
vided into smaller squares, for example in half 
in each dimension. Each division increases the 
total number of smallest-scale squares by a fac-
tor of 4. Such subdivisions of squares are used 
frequently in science and engineering, with 
cells usually ordered either by interleaving bits 
of the two coordinates (Z order), or by using a 
fractal Hilbert curve. See Figure 4. 

Grids of hexagonal cells have one apparent 
problem as a coordinate system for the plane: 
it is impossible to subdivide a single hexagon 

Figure 2: Circles arranged in a 
hexagonal pattern (right) tile more 
efficiently than circles in a square 
pattern (left).

Figure 3: The simplest few refinements of a hexagon til-
ing of the plane. Each collection of small shaded hexa-
gons has the same area as one of the larger hexagons.
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into congruent smaller hexagons. 
If we try, either some of the small-
er hexagons must overlap, or gaps 
are left in the larger hexagon.

The Gosper island shape is a 
way to work around this problem. 
Instead of using a hexagon as our 
base shape, we instead start with 
a grid of hexagons, but as we re-
cursively subdivide each hexagon 
into 7, we modify the original 
shape to match the boundaries of 
the smaller tiles. If we carry this 
process out to its infinite limit, the 
shape we are left with is a fractal, 
the so-called Gosper island. Like 
hexagons, Gosper island shapes 
can be used to tile the plane, and 
when the centers of each tile are 
connected, the resulting network is 
a triangular lattice. Unlike hexagons, however, the Gosper island shape can be recursively subdivided into 
7 congruent pieces similar to the original. See Figure 5, and also Figure 11.

Analogous to the Z order in square subdivision, the most obvious ordering for points in the Gosper island 
is the so-called spiral order. Like with the square case, any point inside the Gosper island can be described 
with arbitrary precision using a numeral, this time in base 7. A book [3] and dozens of academic papers 
have been written using this spiral representation of points, primarily for applications in image processing.

Just as with the Hilbert curve in the square case, it is possible to order the points in the subdivided Gosper 
island shape such that they form a continuous curve. Bill Gosper, the inventor of this curve, called it the 
flowsnake as a play on the word (and shape of a) snowflake, as described by Gardner [7]. My favorite book 
about the Hilbert curve, the flowsnake, and other similar fractal curves is Ventrella’s [8].

Folding Up Hexagons
We can cover a sphere by drawing several hexagons on a flat, sufficiently elastic sheet, cutting them out, 
gluing their edges together until they form a closed shape, and then stretching them over a rigid sphere.

To make our resulting polyhedron topologically equivalent to the sphere, we must match one defining 
topological feature: the sum of angular defects at each vertex must be equal to 2 full turns.

We can see this property in action by examining the cube (8 corners, each with 1/4 turn defect) or the 
icosahedron (12 corners, each with 1/6 turn of defect). Or easiest, we can start with any planar polygon and  
its mirror image: Glue the two halves together along their matching edges, then blow up the interior to obtain 
a topological sphere. The total angular defect will be twice the sum of the exterior angles of each polygon 
half, or two full turns.

If we want to arrive at two full turns of angular defect in a shape constructed from regular hexagons, 
which have 1/3 turn interior angles, then we must attach exactly 1, 2, or 3 hexagons at each vertex, and the 
total defect at the corners must add up to 6 missing hexagons. See Figure 6.

The simplest case is to glue two hexagons back to back so that each hexagon borders the other along all 
six of its edges. We can map this shape to a sphere by mapping each hexagon to one hemisphere. This gives 
us the symmetry of a hexagonal dihedron.

The next simplest case is to make one hexagon into a two-faced triangle by folding three of the corners 
to meet at the center. We can map the central triangle to one hemisphere, and the triangle formed by the 
three corners to the other hemisphere. This symmetry is the triangular dihedron.

Figure 5: Spiral and flowsnake pixel ordering. 

Figure 4: Z and Hilbert curve pixel ordering.
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We can place three hexagons edge to 
edge in a loop and then fold down the top 
and bottom corners to make a squat trian-
gular prism. On the sphere, each hexagon 
corresponds to a 1/3 turn slice of longitudes.

With four hexagons, we can connect a 
hexagon to each of the other three along 
two adjacent edges. On the sphere, each of 
these hexagons corresponds to one face of 
a spherical tetrahedron, with the centers of 
its edges bent into additional corners. Alter-
nately we can consider the central triangle 
of each hexagon to correspond to one octant 
of the sphere. If we crease and fold these flat 
hexagons into a polyhedron, we can make 
either a (non-convex) tetrakis hexahedron 
(a shape formed by gluing a square pyramid 
to each face of a cube, see Figure 6), or an 
octahedron, depending on where we place 
the creases. Unfortunately neither of these 
shapes is easy to visualize from line draw-
ings; I urge readers to make paper models.

This four-folded-hexagon octahedron 
case is especially noteworthy beyond the 
scope of this paper because it admits a nice 
recursive subdivision by powers of 4, allowing us to make a 2n × 2n grid of hexagonal pixels over the sphere 
for any natural number n (computer memory is usually designed to efficiently handle blocks of 2n numbers 
rather than powers of 7), making it a potentially effective interchange format for spherical imagery or video, 
as I intend to describe in detail in a future paper.

The only place I’ve ever seen all of these symmetries suggested for grids on the sphere is Purser and 
Rančić’s NOAA office note [9], though the grids they construct are somewhat different than those here.

It is of course possible to go beyond four hexagons, but as far as I can tell these four symmetry systems 
are the only ones yielding nicely symmetrical maps. The obvious way to glue five hexagons together is to 
place three edge-to-edge in a loop as in the three-hexagon case, and then glue the fourth and fifth hexagons 
to the exposed top and bottom edges, centering one on each pole. The result is a taller triangular prism.

Given any of our tilings we can also use the Löschian subdivisions shown in Figure 3 to make a finer 
mesh. For example, we might start with our dihedral two-hexagon shape, and divide each face into 13 parts, 
for a total of 26 hexagons or 26 Gosper island shapes tiling the sphere. The way we subdivide grids—centered 
on vertices of our initial hexagons rather than face centers—sets the present paper apart from Goldberg’s 
construction [6] and other commonly used refinements of grids on a sphere.

Conformal Maps
After we have settled on a basic symmetry pattern for our map we must fill in other details of the projection. 
for instance we can choose to preserve the area scale of the map across the projection, or we can try to op-
timize for preserving a distance scale between arbitrary points on the map.

As an alternative, conformal maps—except possibly along a boundary or isolated singular points—pre-
serve angles and local shapes. That is, an infinitessimal circle in the domain of the map will be projected 
onto an infinitessimal circle in the codomain.

The earliest conformal map is the stereographic projection, known to the ancient Greeks two thousand 
years ago. Given an arbitrary n-sphere, the stereographic projection is a perspective projection through one 

Figure 6: One, two, three, or four hexagons folded and glued into 
a closed shape. In each case, the angular defect sums to 2 turns.
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pole on the sphere onto an n-dimensional hyperplane through the equator. It maps the surface of the sphere 
minus a single point onto the entirety of the hyperplane. (To see how the formulae relate to this geometrical 
idea look at the one-dimensional case. See Figure 8.)

The Mercator projection, developed in the 16th century, is an even more famous conformal map. Instead 
of projecting the sphere onto a plane the Mercator projection maps the sphere minus the poles onto an infinite 
two-ended cylinder. The projection is defined so that north always points along the cylinder and angles are 
preserved, turning rhumb lines (paths with constant compass bearing) into straight helix shapes on the cyl-
inder. This made it an essential tool for maritime navigation before GPS. See Pérez-Duarte and Swart [10].

But conformal projections can also map between arbitrary two-dimensional shapes. The celebrated Rie-
mann mapping theorem, a gem of 19th century mathematics, states roughly that there is a conformal map 
between any two simply connected shapes in the complex number plane, unique up to trivial transformations.

We can thus develop such projections straight-forwardly using known complex-valued functions. In each 
case we need to make a conformal map from the complex plane onto the appropriate domain treated as a 
portion of the complex plane, and we are guaranteed to have the correct map from the sphere by composing 
it with the stereographic projection. See Needham [11], and Figure 10.

Two decades after Riemann, Schwarz and Christoffel independently showed how to explicitly construct 
conformal projections from an infinite half-plane to any planar polygon. Such projections are now called 
Schwarz–Christoffel maps. Driscoll and Trefethen [12] have built software for constructing even difficult 
examples of these maps.

To develop our desired map projections to Gosper island shapes, we first project the sphere onto a collec-
tion of hexagons. One straight-forward way to make these maps is to find a “slice” of the sphere from pole 
to pole between two longitudes which we can map onto a polygon representing part of one of our hexagons. 
In particular, we can form maps from the hemisphere to a regular hexagon, and from the hemisphere to two 
orientations of rhombuses with a 1/3 turn corner. See Figure 10.

Sphere-Filling Curves
Once we have a map projection from the sphere to some collection of planar shapes which we can cover 
with some grid in the plane, we can easily invert that map and project our grid back onto the sphere. Indeed, 
this is how every spherical coordinate system works. Since our grids are recursively refinable, this provides 
a way to number points on the sphere to arbitrary precision. This is the principle behind so-called discrete 
global grid systems [13], which typically start with the symmetry of the icosahedron.

If we know how to make an area-filling fractal curve in our planar shapes, we can project the curve 
back onto the sphere. We might call such a curve sphere-filling. Six Hilbert curves projected onto the faces 

Figure 8: The tangent 
(square) and stereographic 
projection or half-angle 
tangent (circle).

Figure 7: The “basic triangles” for each map in Figure 11, showing 
how spherical triangles map to planar polygons. The angular defect 
at a vertex is the difference between the angle on the sphere and the 
angle in the plane.
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Figure 10: Projecting from the sphere to parts of hexagons using conformal mappings.
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Figure 11: Projections of the globe onto one, two, three, or four Gosper Island 
shapes. These maps have the symmetries of the triangular dihedron, hexagonal 
dihedron, triangular prism, and octahedron, respectively.
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of a cube and thence projected to the sphere have been used in both engineering and art, as in Google’s S2 
geography library and Segerman’s 3D-printed sculptures [14]. Other fractal curves have been projected onto 
parts of a sphere, as in Robert Fathauer’s lovely sculpture “Radial Development” [15]. This paper may be 
the first to suggest projecting a collection of flowsnake curves onto a sphere or making world maps from 
Gosper islands.

Beyond Spheres. A sphere isn’t the only surface a collection of Gosper island shapes might tile. By gluing 
opposite ends, a single hexagon can be turned into a topological torus. Embedding it in three-dimensional 
space gets a bit tricky however (see Sullivan [16]); if two or more hexagons are used—or two Gosper island 
shapes—to tile the torus, it can be made into a familiar donut shape, now with a fractal glaze.  See Figure 12.

Other  Possible Art Applications

Figure 12: Two flowsnakes 
covering the surface of a 
torus can be connected 
into a single continuous 
loop. Top: the planar torus 
shown in a rectangle. Bot-
tom: the torus conformally 
embedded in 3-dimen-
sional space, with orien-
tation chosen so that the 
flowsnakes are congruent. 

Beyond puzzle-like world maps and sculptures of spherical fractal curves, these 
tools could be used for other art projects. Spherical illustrations, photographs, or 
videos could be projected onto hexagons or Gosper islands, the way German et al. 
[17] and others have suggested with various other map projections. A flowsnake 
might be painted onto a spherical or torroidal lampshade to project fractal shadows 
on the wall. Every crater on the moon could be assigned a numerical code in base 
7 using the flowsnake grid, and turned into a diatonic-scale melody.
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