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Abstract : 
 
Plastics debris, especially microplastics, have been found worldwide in all marine compartments. Much 
research has been carried out on adsorbed pollutants on plastic pieces and hydrophobic organic 
compounds (HOC) associated with microplastics. However, only a few studies have focused on plastic 
additives. These chemicals are incorporated into plastics from which they can leach out as most of them 
are not chemically bound. As a consequence of plastic accumulation and fragmentation in oceans, 
plastic additives could represent an increasing ecotoxicological risk for marine organisms. The present 
work reviewed the main class of plastic additives identified in the literature, their occurrence in the 
marine environment, as well as their effects on and transfers to marine organisms. This work identified 
poly-brominated diphenyl ethers (PBDE), phthalates, nonylphenols (NP), bisphenol A (BPA) and 
antioxidants as the most common plastic additives found in marine environments. Moreover, transfer of 
these plastic additives to marine organisms has been demonstrated both in laboratory and field studies. 
Upcoming research focusing on the toxicity of microplastics should include these plastic additives as 
potential hazards for marine organisms, and a greater focus on the transport and fate of plastic 
additives is now required considering that these chemicals may easily leach out from plastics. 

Highlights 

► PBDEs, phthalathes, nonylphenol, BPA and antioxidants are common plastic additives. ► Evidence 
for transfer and uptake of plastic additives by marine organisms. ► Plastic additives have negative 
effects on marine organisms. ► New research on microplastics should include their additives as a 
potential hazard. 
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1. Introduction 33 

Due to their numerous societal benefits, plastics hold an important place in human society 34 

(Andrady and Neal, 2009). Plastic, a man-made material, is inexpensive, strong, durable, 35 

lightweight and easy to produce (Thompson et al., 2009). As a consequence, plastic 36 

production has been increasing since the 1950s, and notably rose from 225 million tons in 37 

2004 to 322 million tons in 2015, representing a 43% increase over the last decade 38 

(PlasticsEurope, 2016). However, this estimate does not take into account the proportion of 39 

synthetic fibers which are widely used in the textile and fishery industries (Dris et al., 2016) 40 

and there is an underestimation of 15% to 20% depending on the year (Industrievereinigung 41 

Chemiefaser, 2013). Low estimates predicted that floating marine plastic weigh between 42 

70,000 and 270,000 tons (Cózar et al., 2014; Eriksen et al., 2014; Van Sebille et al., 2015). 43 

Small pieces of plastics called microplastics (MP) account for a total of 51 trillion plastic 44 

debris (Van Sebille et al., 2015). 45 

Microplastics have been defined as plastics particles smaller than 5 mm (Arthur et al., 46 

2009). Growing attention has been accorded to microplastics during the last decade, since the 47 

publication by Thompson et al. (2004). Micro-sized plastic pieces originate from two distinct 48 

pathways: primary and secondary sources. Primary sources of MP correspond to (i) plastics 49 

that are directly manufactured at micrometric size, including plastic pellets (Barnes et al., 50 

2009; Cole et al., 2011), (ii) MP from exfoliating cosmetics (Chang, 2015; Fendall and 51 

Sewell, 2009; Napper et al., 2015; Zitko and Hanlon, 1991) and (iii) clothing fibers found in 52 

wastewater treatment plants (Browne et al., 2011; Carr et al., 2016). Secondary MP results 53 

from the breakdown of larger pieces due to mechanical abrasion and photochemical oxidation 54 

in the environment (Andrady, 2011; Bouwmeester et al., 2015; Lambert and Wagner, 2016). 55 

MP can also degrade into smaller pieces called nanoplastics (Gigault et al., 2016; Koelmans 56 

et al., 2015; Lambert and Wagner, 2016). 57 
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Due to their small size, MP can be ingested by a wide range of marine organisms such as 58 

zooplankton, bivalves and worms (De Witte et al., 2014; Devriese et al., 2015; Graham and 59 

Thompson, 2009; Rochman et al., 2015; Sussarellu et al., 2016; Van Cauwenberghe and 60 

Janssen, 2014; Van Cauwenberghe et al., 2015) and by organisms from higher trophic levels 61 

such as fish (Boerger et al., 2010; Carpenter et al., 1972; Dantas et al., 2012; Foekema et al., 62 

2013; Lusher et al., 2013; Neves et al., 2015; Possatto et al., 2011; Rochman et al., 2015) and 63 

marine mammals (Eriksson and Burton, 2003; Lusher et al., 2015). This ingestion of MPs can 64 

result in physical damage such as obstruction or internal abrasions (Wright et al., 2013). In 65 

addition to these physical threats, MP can potentially transfer chemicals adsorbed on their 66 

surface (Mato et al., 2001; Teuten et al., 2007; Teuten et al., 2009) or plastic additives. 67 

However, less attention has been paid to the transfer of plastic additives to marine organisms 68 

in comparison with hydrophobic organic compounds (HOC), despite the fact that many 69 

additives have been recognized as hazardous (Lithner et al., 2011). Therefore, the transport 70 

and fate of plastic additives leaching out from plastic debris should definitely be carefully 71 

addressed in future field, laboratory and modelling works. 72 

Plastics are made by polymerizing monomers and other substances (Lithner et al., 2011) 73 

including plastic additives. Plastic additives are chemical compounds, like plasticizers, which 74 

provide required properties to a plastic polymer or are incorporated to facilitate the 75 

manufacturing process (OECD, 2004). Moreover, some plastic additives are used as 76 

monomers, for example bisphenol A is the monomer of polycarbonate (PC) but also a 77 

stabilizer in other polymers. Plastic additives are mainly used as plasticizers, flame retardants, 78 

stabilizers, antioxidants and pigments. Phthalates, BPA, nonylphenols, and brominated flame 79 

retardants (BFR) are the most common additives recovered from the environment (Bergé et 80 

al., 2012; David et al., 2009; de Boer et al., 1998; de los Ríos et al., 2012; Mackintosh et al., 81 

2004; Net et al., 2015; Xie et al., 2005; Xie et al., 2007) and represent a hazard to the 82 
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environment and organisms (Lithner et al., 2011; Meeker et al., 2009; Oehlmann et al., 2009). 83 

These plastic additives are released into the marine environment by numerous pathways 84 

including industrial and municipal wastewater, atmospheric deposition, runoff and river 85 

transport resulting from application of sewage sludge in agriculture. In addition leaching of 86 

plastic additives from macro and microplastics is known to occur in the marine environment. 87 

Thus, the accumulation and degradation of plastic debris might represent another major input 88 

of these chemical compounds in oceans. As a consequence, more research is needed on the 89 

hazards of plastic additives associated with microplastics.  90 

The aim of this review is to (i) list and describe the most predominant plastic additives 91 

used worldwide in the plastic industry, (ii) present an overview of the occurrence of plastics 92 

additives in the marine environment, and (iii) document the effects of plastic additives on 93 

marine organisms. Lastly, recommendations will be made in order to identify the polymer-94 

additives pairs of major concern on which further research should focus. 95 

2. Chemicals used as plastic additives 96 

Multiple types and families of chemicals are mixed with polymers to produce plastics. 97 

The type of additive depends on the plastic polymer and the requirements of the final product 98 

(Table 1).  99 

 100 
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Table 1: List of the most commonly produced polymers and their associated plastic additives. Adapted from Hansen et al. (2013) 101 

Polymer 

Consumption in 

the EU27 (in 

million tons) in 

2015 
1
 

Additive types 

Amount in 

polymers (% 

w/w) 

Hazardous substances 
2
 

PP 9 

Antioxidant 0.05 – 3 
Bisphenol A; Octylphenol; 

Nonylphenol 

Flame retardant (cable insulation and electronic 

applications) 
12 – 18 

Brominated flame retardant; Boric 

acid; Tris(2-chloroethyl)phosphate 

HDPE 8 

Antioxidant 0.05 - 3 
Bisphenol A; Octylphenol; 

Nonylphenol 

Flame retardant (cable insulation application) 12 -18 
Brominated flame retardant; Boric 

acid; Tris(2-chloroethyl)phosphate 

LDPE 6 

Antioxidant 0.05 – 3 
Bisphenol A; Octylphenol; 

Nonylphenol 

Flame retardant (cable insulation application) 12 – 18 
Brominated flame retardant; Boric 

acid; Tris(2-chloroethyl)phosphate 

PVC 5 
Plasticizer 10 – 70 Phthalate 

Stabilizer 0.5 – 3 Bisphenol A; Nonylphenol 

PUR 3.5 Flame retardant 12 - 18 
Brominated flame retardant; Boric 

acid; Tris(2-chloroethyl)phosphate 
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1
 According to PlasticsEurope (2016); PP: Polypropylene; HDPE: High Density Polyethylene; LDPE: Low Density Polyethylene; PVC: 

Polyvinyl Chloride; PUR: Polyurethane. 

2
 Hazardous substances refer to chemicals that pose a risk to the environment and to human health as defined by the REACH regulation in the 

European Union according to the European Chemical Agency (2017). 

 102 
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The following section describes the most common additive types used in the 103 

manufacturing processes (Table 2) that have been reported in macro- and microplastic debris 104 

collected in environmental surveys: brominated flame retardants, phthalates used as 105 

plasticizers, nonylphenols, bisphenol A and antioxidants.  106 

Table 2: List of common plastic additives and their associated functions and potential effects 107 

Additives Function Effects 

Brominated 

Flame 

Retardants 

(BFR) 

Reduce flammability in plastic. Also 

adsorbed on plastic from the surrounding 

environment. 

Potential endocrine disruptors 

Phthalates Plasticizers to soften plastic mainly in 

polyvinyl chloride. 

Endocrine disruptors 

Nonylphenol Antioxidant and plasticizer in some plastics Endocrine disruptors 

Bisphenol A 

(BPA) 

Monomer in polycarbonate and epoxy 

resins. 

Antioxidant in some plastics. 

Endocrine disruptors  

Estrogen mimic 

Irganox® Antioxidant in some plastics.  

 108 

The main plastic additives described are listed in Table 3 with their associated octanol-109 

water partition coefficient (Kow). Kow has been used for predicting how a chemical will 110 

concentrate in marine organisms and an increase in log Kow indicates an increase in the 111 

potential bioconcentration in organisms (Net et al., 2015). 112 

  113 



9/45 

 

Table 3: Plastic additives and their associated octanol-water partition coefficients (Log Kow). Data were extracted 114 
from the following reviews: Bergé et al. (2012), Espinosa et al. (2016), Net et al. (2015) and Oehlmann et al. (2008) 115 

Full name Abbreviation Log Kow 

butyl benzyl phthalate BBP 4.70 

di(2-ethylexyl) phthalate DEHP 7.73 

diethyl phthalate DEP 2.54 

diisobutyl phthalate DiBP 4.27 

diisodecyl phthalate DiDP 9.46 

diisononyl phthalate DiNP 8.60 

dimethyl phthalate DMP 1.61 

di-n-butyl phthalate DnBP 4.27 

di-n-octyl phthalate DnOP 7.73 

hexabromocyclododecane HBCD 5.07 – 5.47 

polybrominated diphenyl ether PBDE 5.52 – 11.22 

tetrabromobisphenol A TBBPA 4.5 

bisphenol A BPA 3.40 

nonylphenol NP 4.48 – 4.80 

2.1. Brominated flame retardants 116 

Brominated flame retardants (BFR) are a class of additives used in plastic products to 117 

reduce flammability. These BFR are used in a variety of consumer products ranging from 118 

electronic devices to insulation foams. BFRs include a wide range of chemicals, of which 119 

polybrominated diphenyl ethers (PBDE), hexabromocyclododecane (HBCD – Pubchem ID: 120 

18529) and tetrabromobisphenol A (TBBPA – Pubchem ID: 6618) (Talsness et al., 2009) 121 

represent the main BFRs used in the plastic industry. These 3 classes (PBDE, HBCD and 122 

TBBPA) are described in details below. Lately, attention has been given to other emerging 123 

BFRs such as 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE – Pubchem ID: 37840), 124 

decabromodiphenylethane (DBDPE – Pubchem ID: 10985889) and hexabromobenzene (HBB 125 

– Pubchem ID: 6905) as these have been identified in many environmental compartments, 126 

organisms, food and humans (European Food Safety Authority, 2012). As they are not 127 

chemically bound to the polymer matrix, they can leach into the surrounding environment 128 
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(Engler, 2012; Meeker et al., 2009) with an exception for TBBPA which is chemically bound 129 

to the polymer (Morris et al., 2004). 130 

PBDEs are hydrophobic substances that include numerous formulations used in plastics as 131 

flame retardants. Indeed, there are three main commercial formulations called penta-, octa- 132 

and deca-BDEs (Chua et al., 2014). These additives are ubiquitous, toxic, persistent and 133 

bioaccumulate in the environment and are of great concern for human health (Engler, 2012). 134 

As a result, penta- and octa-BDEs have been banned by the European Union since 2004 135 

(European Directive, 2003), while deca-BDE was banned only in 2009 from electronic and 136 

electrical applications in the European Union (European Council Decision, 2009). These 137 

formulations can no longer be used in mixtures or products with a concentration higher than 138 

0.1% by mass. In addition, tetra- to hepta-BDEs are listed for elimination in the Annex A of 139 

the Stockholm Convention on persistent organic pollutant (POP) (Stockholm Convention, 140 

2016). Moreover, in Canada the use of tetra- to deca- BDE has been restricted under the 141 

SOR/2008-218 Regulations (Consolidated Regulation, 2008). Since 2006, penta- to octa- 142 

BDE have been subjected to a 90 day notification before importation or production in the US. 143 

Finally, deca-BDE importation and production have been entirely stopped (US Environmental 144 

Protection Agency, 2006, 2012) since 2013. 145 

HBCD has three dominant stereoisomers: α-, β-, and γ-HBCD (European Food Safety 146 

Authority, 2011a). These BFRs are listed as POPs in the Stockholm Convention (Stockholm 147 

Convention, 2016) and the three isomers are subject to a request for authorization in the 148 

European Union (European Council Regulation, 2006). HBCDs are found in expanded PS 149 

(EPS) and extruded PS (XPS) up to 4-7% by weight (Al-Odaini et al., 2015). Its use has been 150 

subjected to authorization in the European Union since 2006 in the annex XIV of the 151 

Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) regulation 152 

(European Food Safety Authority, 2011a). Moreover, in 2013 HBCD was listed for 153 



11/45 

 

elimination in the Annex A of the Stockholm Convention with specific exemption for use and 154 

production in EPS and XPS (Cruz et al., 2015; Stockholm Convention, 2016). In the US, 155 

Environmental Protection Agency conducted a risk assessment for HBCD according to the 156 

2010 “Toxic Substances Control Act” action plan (US Environmental Protection Agency, 157 

2010b). 158 

TBBPA is produced by brominating bisphenol A (European Food Safety Authority, 159 

2011b). According to the European Food Safety Authority (2011b), TBBPA is the most 160 

commonly produced BFR in the world and represents 60% of the BFR market. This BFR is 161 

used in acrylonitrile butadiene styrene (ABS) and in other plastic such as high impact PS and 162 

phenolic resin (Cruz et al., 2015). Until now, no legislation concerning TBBPA has been 163 

applied in the European Union (Vandermeersch et al., 2015). 164 

2.2. Phthalates 165 

Phthalic acid esters (PAE) or phthalates are a family of plastic additives used as 166 

plasticizers, mainly in PVC production (Arbeitsgemeinschaft PVC und Umwelt e.V, 2006). 167 

As a result, PVC can contain 10% to 60% phthalates by weight (Net et al., 2015). As 168 

phthalates are not chemically bound to the polymer matrix, they can easily leach into the 169 

environment during manufacturing, use and disposal (Net et al., 2015). PAEs have been found 170 

in a wide range of environments (as reviewed by Net et al. (2015)) and this is of concern, 171 

since some phthalates have been defined as endocrine disruptors, even at low concentrations 172 

(Oehlmann et al., 2009). 173 

In 2015, 8.4 million tons of plasticizers were used around the world, and di(2-ethylexyl) 174 

phthalate (DEHP – Pubchem ID: 8343) was the most commonly used plasticizer, representing 175 

37.1% of the global plasticizer market (ECPI, 2016). Europe accounted for 1.3 million tons of 176 

the global plasticizer market in 2015 (ECPI, 2016), but DEHP was not the most commonly 177 
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used plasticizer in Europe, as suggested by its 20% decrease in consumption between 1999 178 

and 2004. DEHP has gradually been replaced by diisononyl phthalate (DiNP – Pubchem ID: 179 

590836), diisodecyl phthalate (DiDP – Pubchem ID: 33599) and di(2-Propyl Heptyl) 180 

phthalate (DPHP – Pubchem ID: 92344), which represented 57% of plasticizer consumption 181 

in Europe in 2015 (Arbeitsgemeinschaft PVC und Umwelt e.V, 2006; ECPI, 2016). 182 

2.3. Bisphenol A 183 

BPA (Pubchem ID: 6623) is the most representative chemical of the bisphenol group and 184 

is one of the most commonly produced chemicals worldwide, with over three million tons 185 

produced annually (Laing et al., 2016). BPA is mainly used as a monomer for polycarbonate 186 

(PC) plastics (65% of volume used) and epoxy resins (30% of volume used), which are for 187 

instance the main component of the lining layer of aluminum cans (Crain et al., 2007; ICIS, 188 

2003). BPA can also be used as an antioxidant or as a plasticizer in other polymers (PP, PE 189 

and PVC) (Rani et al., 2015). Leaching of BPA can occur (Sajiki and Yonekubo, 2003), 190 

leading to the release of this additive from food and drink packaging, which is considered as a 191 

source of exposure for human beings (Vandermeersch et al., 2015). Despite its potential to 192 

leach from food packaging and the fact that it has been identified as a significant endocrine 193 

disruptor (Oehlmann et al., 2009), BPA is still allowed in the European Union for use in food 194 

contact material (European Council Regulation, 2011). Other bisphenol analogs, such as 195 

bisphenol B, bisphenol F and bisphenol S are used in plastics and may represent a threat to the 196 

environment even though their toxicity is still unknown (Chen et al., 2016). 197 

2.4. Nonylphenols 198 

Nonylphenols (NP) are intermediate products of the degradation of a widely used class of 199 

surfactants and antioxidants: nonylphenol ethoxylates (NPE) (Engler, 2012). NP and NPE are 200 

organic chemicals used for many applications such as paints, pesticides, detergents and 201 



13/45 

 

personal care products (US Environmental Protection Agency, 2010a). They can also be used 202 

as antioxidants and plasticizers for the production of plastics (Rani et al., 2015; US 203 

Environmental Protection Agency, 2010a). Furthermore, NP have been found to leach out 204 

from plastic bottles to their water content (Loyo-Rosales et al., 2004). Moreover, effluents 205 

from wastewater treatment plants are the major source of NP and NPE in the environment 206 

(Soares et al., 2008). NP are considered as endocrine disruptors and their use is prohibited in 207 

the European Union due to their effects on the environment and human health (Rani et al., 208 

2015). 209 

2.5. Antioxidants 210 

Antioxidants are used as additives in many synthetic polymers including polyolefins 211 

(mainly PE and PP) which represent 60% of global demand for antioxidant additives (Höfer, 212 

2012). Antioxidants are used to prevent the ageing of plastics and to delay oxidation (Lau and 213 

Wong, 2000). However, as with other plastic additives, antioxidants can leach out of the 214 

plastic and can migrate to food from plastic packaging and pose a threat in terms of food 215 

safety (Lau and Wong, 2000). Antioxidants from the Irganox® series are commonly used in 216 

plastics and they include Octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate 217 

(Irganox® 1076 – Pubchem: 16386), Pentaerythrityl-tetrakis-3-(3,5-di-tert-butyl-4-218 

hydroxyphenyl)propionate (Irganox® 1010 – Pubchem ID: 64819) and 2,4-di-tert-219 

butylphenol (Irgafos® 168 – Pubchem ID: 91601) (Lau and Wong, 2000). 220 

Owing to the variety of plastic additives (BFR, phthalates, BPA, NP and antioxidants) 221 

used for plastic products conception and their detection in macro- and microplastic debris 222 

collected in environmental surveys, their occurrence in environmental matrices (water, 223 

sediment, biota) is expected and may pose major environmental concern as described below. 224 
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3. Plastic additives in the environment 225 

3.1. Marine waters 226 

Marine waters are affected by anthropogenic pressures as this natural compartment is the 227 

final receptacle of all discharge waters. Consequently, chemical pollutants including plastics 228 

additives have been detected in worldwide marine waters (Tables 4, 5 and 6) (Bergé et al., 229 

2013; Net et al., 2015). Of all BFR, PBDE are the most commonly studied molecules in 230 

marine environments. PBDE have been widely found and multiple congeners have been 231 

monitored (Table 4). Concentrations varied from a few ng L
-1

 to more than 10 ng L
-1 

and 232 

congeners varied among the studied sites (Table 4).  233 

Table 4: Concentrations of polybrominated diphenyl ether (PBDE) in seawater in ng L-1 234 

Location ΣPBDE 

(ng L
-1

) 

Range 

(ng L
-1

) 

BDE congeners 

detected 

Dominant 

congener 

References 

Port sea, 

Mediterranean Sea, 

Spain 

23.2 4.2 – 19 BDE-28, -47 BDE-28 Sánchez-Avila 

et al. (2012) 

Surface microlayer, 

China Sea, Hong-

Kong 

 

0.33 0.004 – 

0.056 

BDE-28, -47, -

99, -100, -156, -

183 

BDE-156 Wurl et al. 

(2006) 

Subsurface water, 

China Sea, Hong-

Kong 

0.1 0.002 – 

0.082 

BDE-28, -47, -

99, -100, -183 

BDE-47 Wurl et al. 

(2006) 

 235 

Many studies on the contamination of the marine environment by phthalates showed 236 

concentrations ranging from a few pg L
-1

 to around 10 µg L
-1

,
 
with DEHP being the most 237 

concentrated phthalate found in marine waters (Table 5).  238 
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Table 5: Concentrations of phthalates in seawater in µg L-1 239 

Location DMP DEP DnBP DiBP BBP DEHP DnOP Reference 

Tees Bay, UK < 1 x 10
-3

 0.025 – 0.5 0.47 – 0.55 0.66 – 1.1  0.98 – 2.2 

 

 Law et al. (1991) 

North Sea, 

Germany 

0.2 x 10
-3

 0.67 x 10
-2

 1.7 x 10
-3

  0.05 x 10
-3

 2.2 x 10
-3 

 

 Xie et al. (2005) 

Surface waters, 

the Netherlands 

0.004 – 

0.49 

0.07 – 2.3 <0.066 – 3.1  0.001 – 1.8 0.9 - 5 0.002 – 

0.078 

Vethaak et al. (2005) 

Bay of Biscay, 

Spain 

(7.5 ± 0.4) 

x 10
-3

 

(33 ± 3) x 

10
-3

 

(83 ± 7) x 10
-

3
 

 (8 ± 1) x 

10
-3

 

(64 ± 4) x 

10
-3 

(3.6 ± 0.4) 

x 10
-3

 

Prieto et al. (2007) 

Coastal seawater, 

Mediterranean 

Sea, Spain 

 

0.003 – 

0.14 

0.024 – 

0.48 

  0.001 – 

0.10 

0.03 – 0.62  Sánchez-Avila et al. 

(2012) 

Port sea, 

Mediterranean 

Sea, Spain 

 

0.004 – 

0.012 

0.024 – 

0.87 

  0.003 – 

0.80 

0.06 – 5.97  Sánchez-Avila et al. 

(2012) 

River – sea 

interface, 

Mediterranean 

0.005 0.07 – 0.16   0.003 – 

0.07 

0.02 – 0.21  Sánchez-Avila et al. 

(2012) 
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Sea, Spain 

Liguarian Sea, 

Mediterranean 

Sea, Italy 
1
 

     18.38 ± 

44.39 

 Fossi et al. (2012) 

Sardinian Sea, 

Mediterranean 

Sea, Italy 
1
 

     23.42 ± 

32.46 

 Fossi et al. (2012) 

Barkley Sound, 

Canada 

  0.18 – 3.0   0.01 – 0.95  Keil et al. (2011) 

Puget Sound, USA      0.06 – 0.64  Keil et al. (2011) 

Klang River 

estuary, Australia 

     3.10 – 64.3  Tan (1995) 

Caspian Sea, Iran 0.49 0.52 

 

     Hadjmohammadi et 

al. (2011) 

Arctic 40 x 10
-6

 138 x 10
-6

 51 x 10
-6

 22 x 10
-6

 8 x 10
-6

 448 x 10
-6 

 Xie et al. (2007) 
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Nonylphenol was detected in marine waters of Europe, Asia and North America (Bergé et 240 

al., 2012; David et al., 2009) (Table 6) and concentrations ranged from 0.2 x 10
-5

 µg L
-1 

in the 241 

Sea of Japan to 4.6 µg L
-1

 in the Mediterranean Sea (Table 6). BPA, as for other additives, has 242 

been globally quantified in marine waters all around the world and concentrations ranged 243 

from ng L
-1

 in China to µg L
-1

 in coastal waters of Singapore (Table 6). 244 

Table 6: Ranges of concentrations of nonylphenol and BPA in seawater in µg L-1 245 

Chemicals Location 
Concentrations (µg 

L
-1

) 
References 

Nonylphenol 

German Bight, North Sea, 

Germany 

0.006 – 0.033 Bester et al. (2001) 

9 x 10
-5

 – 0.0014 Xie et al. (2006) 

Estuaries, the Netherlands 0.031 – 0.934 Jonkers et al. (2003) 

Estuaries, UK 0.1 – 2.6 
Blackburn et al. 

(1999) 

Mediterranean Sea, Spain 0.3 – 4.1 
Petrovic et al. 

(2002) 

Venetian Lagoon, Italy 0.004 – 0.211 Pojana et al. (2007) 

Jamaica Bay, US 0.077 – 0.416 
Ferguson et al. 

(2001) 

Masan Bay, South Korea 0.0097 – 0.928 Li et al. (2008) 

Sea of Japan, Japan 
0.2 x 10

-5
 – 9.3 x 

10
-5

 
Kannan et al. (1998) 

BPA 

Surface waters, the 

Netherlands 

0.009 - 1 
Vethaak et al. 

(2005) 

<0.012 – 0.33 
Belfroid et al. 

(2002) 

Venetian Lagoon, Italy <0.001 – 0.145 Pojana et al. (2007) 

Jiaozhou Bay, China 0.001 – 0.092 Fu et al. (2007) 

Estuaries, Japan 0.036 – 0.058 
Kawahata et al. 

(2004) 

Coastal waters, Singapore 0.01 – 2.47 Basheer et al. (2004) 

 246 
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Overall, plastic additives have been detected worldwide in estuarine and marine waters at 247 

concentrations ranging from pg/L to µg/L with PBDE and DEHP being the most commonly 248 

reported congeners among BFR and phthalates, respectively. In addition to BPA and NP are 249 

also frequently detected in seawater. As most of the plastic additives exhibit high Kow, higher 250 

concentrations are expected in sediment and marine organisms. 251 

3.2. Sediment 252 

As for marine waters, sediments are also affected by anthropogenic discharges and chemicals 253 

including plastic additives. Regarding BFRs, multiple BDE congeners have been found in 254 

marine sediments with BDE-209 being the major PBDE quantified in most studies at 255 

concentrations ranging from ng/kg to mg/kg (Table 7). In the Netherlands, HBCD were also 256 

found in sediments from the North Sea and Scheldt Estuary, respectively, at levels of 0.76 to 257 

6.9 µg kg
-1 

dry weight (dw) and 30 to 71 µg kg
-1

 dw (Klamer et al., 2005; Verslycke et al., 258 

2005). 259 

 260 
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Table 7: Concentrations of polybrominated diphenyl ether (PBDE) in marine sediments in µg kg-1 dry weight 261 

Location 

ΣPBDE 

(µg kg
 -1

 

dry 

weight) 

Range (µg 

kg
 -1

 dry 

weight) 

BDE congeners detected 
Most abundant 

congener 
References 

North Sea, the 

Netherlands 
126.3 0.4 - 32 

BDE-28, -47, -66, -71, -75, -77, -85, -99, -100, -119, -

138, -153, -190, -209 
BDE-209 Klamer et al. (2005) 

Scheldt Estuary, 

the Netherlands 
2198 0.2 – 1650 

BDE-28, -47, -66, -85, -99, -100, -138, -153, -154, -

209 
BDE-209 

Verslycke et al. 

(2005) 

Coastal waters, 

South Korea 
27.8 

0.0037 – 

27.4 

BDE-3, -7, -15, -28, -47, -49, -66, -71, -77, -85, -99, -

100, -119, -126, -138, -153, -154, -183, -209 
BDE-209 Moon et al. (2007b) 

Industrialized 

bays, South 

Korea 

357.8 
0.0012 - 

283 

BDE-3, -7, -15, -28, -47, -49, -66, -71, -77, -85, -99, -

100, -119, -126, -138, -153, -154, -183, -209 
BDE-209 Moon et al. (2007a) 
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TBBPA was also found in the Scheldt Estuary at levels below 0.1 µg kg
-1

 dw (Verslycke et 262 

al., 2005). In their study, Klamer et al. (2005) also reported the presence of phthalates in 263 

North Sea sediments, namely dimethyl phthalate (DMP – Pubchem ID: 8554), diethyl 264 

phthalate (DEP – Pubchem ID: 6781), DBP, BBP, DEHP and DOP with DEHP being the 265 

most concentrated phthalate with 170 to 3,390 µg kg
-1

. Phthalates in marine sediments from 266 

the Gulf of Mexico were detected on average at 7.6 and 6.6 µg kg
-1

 dw for di-n-butyl 267 

phthalate (DnBP – Pubchem ID: 3026) and DEHP respectively (Giam et al., 1978). In 268 

Singapore Bay, phthalates reached 890 to 2,790 µg kg
-1

 dw for DEHP (Chee et al., 1996). For 269 

nonylphenol (Bergé et al., 2012; David et al., 2009), concentrations ranged from less than 1 270 

µg kg
-1

 dw in estuaries in the Netherlands to more than 20,000 µg kg
 -1

 dw in the sediments of 271 

Tokyo Bay (Table 8). Like BFRs, NP and phthalates, BPA has also been found worldwide in 272 

sediments (Table 8). Indeed, BPA concentrations ranged from a few µg kg
-1

 dw in Japan and 273 

China to hundreds of µg kg
-1

 dw in the Venetian Lagoon (Table 8).  274 

Whether the plastic additives detected in marine sediments come from diffuse sources 275 

(wastewater, atmospheric deposition, sewage sludge, etc.) or leachate from plastic debris is 276 

unclear even though an increasing amount of evidence (Al-Odaini et al., 2015) suggests that 277 

microplastic and plastic debris in general likely constitute sources of plastic additives in the 278 

marine environment. 279 

  280 
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Table 8: Ranges of concentrations of nonylphenol and BPA in marine sediments in µg kg -1 dry weight. nd: not 281 
detected. 282 

Localization 

Nonylphenol 

range (µg kg
 -1

 

dry weight) 

BPA range (µg kg
 -

1
 dry weight) 

Reference 

North Sea, Germany 13 – 55  Bester et al. (2001) 

Estuaries, the Netherlands 0.9 – 1080  Jonkers et al. (2003) 

Mediterranean Sea, Spain 18 – 590  Petrovic et al. (2002) 

Venetian Lagoon, Italy 47 – 192  Pojana et al. (2007) 

Jamaica Bay, US 7 – 13,700  Ferguson et al. (2001) 

Southern California Bight, 

US 
130 – 3200 

 
Schlenk et al. (2005) 

Masan Bay, South Korea 92 – 557  Li et al. (2008) 

Tokyo Bay, Japan 
142 – 20,700  Kurihara et al. (2007) 

120 - 640  Isobe et al. (2001) 

The Netherlands  <1.1 - 43 Vethaak et al. (2005) 

Venetian Lagoon, Italy  <2.0 – 118 Pojana et al. (2007) 

Jiaozhou Bay, China  0.7 – 17 Fu et al. (2007) 

Estuaries, Japan  nd – 2.7 Kawahata et al. (2004) 

3.3. Microplastics 283 

To date, only a few studies have focused on the detection of plastic additives from MP 284 

collected in marine environments (Faure et al., 2015; Fries et al., 2013; Hirai et al., 2011; 285 

Mato et al., 2001; Rani et al., 2015; Rochman et al., 2014). Mato et al. (2001) detected 286 

nonylphenols in PP pellets deployed in Tokyo Bay and suggested that these compounds came 287 

from plastic additives found in the PP pellets themselves. In another study, Hirai et al. (2011) 288 

measured high concentrations of PBDEs, BPA and nonylphenols in PE and PP fragments 289 

collected on remote or urban beaches and in the open ocean. It was stated that they originated 290 

from plastic additives used for the manufacture of PP and PE. A wide range of plastic 291 

additives were also identified using Pyrolysis-GC/MS with thermal desorption in MP 292 

collected from sediment of Norderney Island (Fries et al., 2013). MP particles were identified 293 
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as PE, PP, PS and polyamide-6 (PA-6). They were associated with DEHP, DnBP, diisobutyl 294 

phthalate (DiBP – Pubchem ID: 6782), and 2,4-di-tert-butylphenol (2,4-DTBP – Pubchem ID: 295 

7311), used here as antioxidant additives for PE and PP, DnBP, DiBP, DEP and DMP for PS, 296 

and DEHP, and DiBP and DEP for PA-6 (Fries et al., 2013). Moreover, Rani et al. (2015) 297 

detected multiple plastic additives in plastic marine debris found on a beach in Geoje, South 298 

Korea. Indeed, the authors found BPA and phthalates in PP and PE plastic marine debris as 299 

well as antioxidants including Irganox 76 and 2,4-DTBP in PP and PE plastic marine debris. 300 

In a study dealing with plastic debris in the Atlantic Ocean, BPA, PBDEs and 4-nonylphenol 301 

were detected in plastic samples found at sea and the authors suggested that this chemical 302 

came mainly from plastic additives (Rochman et al., 2014). Moreover, some plastic additives 303 

were detected at concentrations up to 6 orders of magnitude higher than the concentrations 304 

measured in the surrounding water (Rochman et al., 2014). In a more recent study, Faure et 305 

al. (2015) quantified MP pollution in Swiss lakes and detected MP associated with plastic 306 

additives including PBDEs, NPs, BPA and phthalates at concentrations comparable to those 307 

reported in marine studies (from 10
-1

 to 10
6
 ng g

-1
) (Faure et al., 2015).  308 

These six studies demonstrated that plastic additives, some of which are known to be 309 

potential endocrine disruptors, are quantifiable in MPs found in sediments or in marine 310 

waters, suggesting that leaching of additives occurs in the environment. This is clearly of 311 

great concern as microplastics exhibit a high propensity to enter all trophic levels due to their 312 

small size and ubiquity in marine environments, and given the fact that leaching may also 313 

occur in the digestive conditions of organisms upon MP ingestion. 314 
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4. Transfer and toxicity of plastics additives for marine organisms 315 

4.1. Contamination of marine organisms by plastic additives 316 

PBDE have been detected in tissues of numerous marine organisms such as bivalves 317 

(Σ13BDE ranged from 6.6 to 440 µg kg
-1

 lipid weight) (Bellas et al., 2014; Johansson et al., 318 

2006; Ramu et al., 2007), fish (Σ7BDE ranged from 30.6 to 281 µg kg
-1

 lipid weight) (Peng et 319 

al., 2007) and mammals (around 100 µg kg
-1

 wet weight (ww) in sperm whale (Physeter 320 

microcephalus) blubber) (de Boer et al., 1998), suggesting that transfer from seawater, food 321 

or plastics to organisms occurs. In their work on the contamination of the Scheldt Estuary, 322 

Verslycke et al. (2005) found PBDE in sediment and in mysid shrimp (Neomysis integer) 323 

living in this estuary (Σ10BDE: 2095 to 3562 ng g
-1

 lipid weight), and they highlighted that 324 

bioaccumulation was highest for BDE-47, -99 and -100 and lowest for BDE-209 because (i) 325 

highest brominated accumulate slower than lowest brominated congeners in the marine 326 

environment and (ii) they can be debrominated photolytically or biologically (Verslycke et 327 

al., 2005). Phthalates (DMP, DEP, DiBP, DnBP, BBP, DEHP, DnOP, DnNP) were found in a 328 

wide range of organisms, including 18 different species ranging from primary producers 329 

(plankton and macroalgae) to picked dogfish (Squalus acanthias), but no biomagnification of 330 

the studied phthalates was observed through the food web (Mackintosh et al., 2004). 331 

Recently, Cheng et al., (2013) also detected phthalates (DMP, DEP, dipropyl phthalate 332 

(DPRP – PubChem ID: 8559), DiBP, DnBP, 2-Methoxyethyl phthalate (DMEP – PubChem 333 

ID: 8344), DHP, BBP, DEHP, DOHP, DnOP, DNP+DiDP) in fish at concentrations ranging 334 

from 0.2 to 1.23 µg g
-1

 ww (Cheng et al., 2013). NP has been detected in many organisms 335 

commonly consumed as seafood products including oysters (Crassostrea gigas) (Cheng et al., 336 

2006), mussels (Perna perna) (Isobe et al., 2007) and fishes (Ferrara et al., 2008). For 337 

instance, Basheer et al. (2004) found NP and BPA in multiple fresh seafood products, 338 

including prawns (Penaeus monodon), crabs (Portunus pelagicus), blood cockles (Anadara 339 
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granosa), white clams (Meretrix meretrix), squid (Loligo sp.) and fish (Decapterus russelli), 340 

from a supermarket in Singapore.  341 

Overall, these results suggest that contamination of marine organisms by plastic additives 342 

may occur via natural pathways (i.e. waterborne or foodborne exposure) or via ingestion of 343 

plastic debris including MP. 344 

4.2. Plastics additive transfer to marine organisms 345 

4.2.1. Evidence from laboratory experiments 346 

To investigate the potential leaching of additives from MP in environments characterized 347 

by different conditions (pH, temperature, salinity, etc), several laboratory studies have been 348 

conducted over the last years. First, the influence of gut surfactant was tested on the 349 

desorption of adsorbed chemicals, including perfluorooctanoic acid (PFOA – Pubchem ID: 350 

9554) and DEHP, from PVC and PE in a study undertaken by Bakir et al. (2014). Desorption 351 

was higher in gut surfactant at 38°C (i.e. warm blooded animals) than in gut surfactant at 352 

18°C (i.e. cold blooded animals) and in seawater at 18°C for DEHP. PFOA exhibited low 353 

affinity for PVC or PE regardless of the surfactant (Bakir et al., 2014). The same authors 354 

suggested that the passage of plastic through the gut could enhance desorption of pollutants 355 

and act as a transfer route for accumulation of these pollutants. However, in a more recent 356 

study, Bakir et al. (2016) demonstrated, using a one-compartment model, that MP do not 357 

provide an additional pathway for the transfer of adsorbed chemicals, including DEHP and 358 

PFOA, from seawater to marine organisms even if MP transits through the gut. Some 359 

laboratory studies have used MP in the presence of additives to determine if these chemicals 360 

can transfer to organisms. For instance, Chua et al. (2014) exposed the marine amphipod 361 

Allorchestes compressa to PBDE in the presence or absence of microbeads with PBDEs 362 

adsorbed on microbeads. Both microbead ingestion and PBDE transfer via the microbeads 363 
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were demonstrated at the end of the exposure. However, concentrations of PBDEs were lower 364 

in amphipods exposed to PBDE adsorbed on microbeads than in amphipods exposed to 365 

PBDEs without microbeads (Chua et al., 2014) suggesting that transfer of PBDE adsorbed on 366 

MP can occur but at a lesser extent than the transfer via water. Similarly, Wardrop et al. 367 

(2016) exposed rainbow fish (Melanotaenia fluviatilis) to microbeads spiked with PBDEs 368 

(BDE-28, -47,-100, -99, -153, -154, -183 and -209) and compared them to control fish and 369 

fish exposed to microbeads alone. Here, PBDEs were analyzed in fish tissues excluding the 370 

stomach, liver, gall bladder and gonads to exclude spiked microbeads from the PBDEs 371 

analyses. During exposure, fish exposed to microbeads spiked with PBDEs showed higher 372 

concentrations than the two controls, and lower brominated congeners were better transferred 373 

in fish tissues than higher brominated congeners. On the other hand control fish and fish 374 

exposed to PBDE-free microbeads showed the same low levels of PBDEs concentration in 375 

their tissues suggesting that MP do not reduce contaminant body burden as it was previously 376 

hypothesized (Koelmans et al., 2013a, b; Koelmans et al., 2016). More realistic experiments 377 

have been performed using plastics incubated or collected in natural environments. For 378 

instance Rochman et al. (2013) used low-density polyethylene (LDPE) pellets deployed in 379 

seawater for two months and showed that the LDPE pellets adsorbed chemicals from the 380 

surrounding environment. Exposure of Japanese medaka (Oryzias latipes) to these pellets 381 

resulted in the accumulation of significant amounts of PBDEs and was associated with liver 382 

toxicity and pathology including glycogen depletion and cell necrosis for example (Rochman 383 

et al., 2013). Bioaccumulation of PBDEs was also demonstrated in a terrestrial invertebrate, 384 

the house cricket (Acheta domesticus), as a result of PUR foam ingestion (Gaylor et al., 385 

2012). Another laboratory study demonstrated that the transfer of nonylphenol, triclosan and 386 

PBDE-47 can occur via MP ingestion in the lugworm (Arenicola marina) with possible 387 

effects on lugworm behavior (Browne et al., 2013). 388 



26/45 

 

Overall, these laboratory experiments demonstrated transfer of plastic additives upon MP 389 

ingestion, sometimes in association with toxicity or behavior change. 390 

4.2.2. Evidence from field studies 391 

Levels of accumulated plastic additives in the environment or organisms have often been 392 

considered as a proxy indicator of plastic exposure in the marine environment as a 393 

consequence of the release of additives from plastic debris. For instance, a study on Puffinus 394 

tenuirostris showed that this bird ingested plastics at sea and that these plastics transferred 395 

flame retardant additives (PBDE) including BDE-209, which is specific to plastic (Tanaka et 396 

al., 2013). In another study, the authors demonstrated that the transfer of PBDE may occur 397 

mainly by plastic ingestion through exposure by prey ingestion (Tanaka et al., 2015). In 398 

another study, Rochman et al. (2014) examined the possible relationship between plastic 399 

densities at sea and levels of chemicals in fish inhabiting those areas. The results showed that 400 

PBDEs, especially the highest brominated congeners (BDE-209), may be an indicator of 401 

plastic pollution as previously suggested (Tanaka et al., 2013). In the North Pacific Gyre, 402 

yellowtail (Seriola lalandi) were sampled to evaluate levels of plastic in the stomach and 403 

concentrations of pollutants and additives in their tissues (Gassel et al., 2013). Ten percent of 404 

the yellowtail had ingested plastics, and PBDE and nonylphenol were concomitantly found in 405 

the fish tissues (Gassel et al., 2013). Gassel et al. (2013) suggested that contamination of fish 406 

by nonylphenol and PBDE-209 could originate from the ingested plastic as mentioned above 407 

(Hirai et al., 2011; Rochman et al., 2014; Tanaka et al., 2013; Teuten et al., 2009). Other 408 

chemicals are also used as proxies for MP contamination such as DEHP (Fossi et al., 2012; 409 

Fossi et al., 2014; Fossi et al., 2016). More recently, a study showed a higher accumulation of 410 

HBCDs in mussels (Mytilus galloprovincialis) inhabiting styrofoam debris (EPS) in 411 

comparison with mussels living on other plastic debris or rocks (Jang et al., 2016). The 412 
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authors also suggested that the isomeric profiles of detected HBCDs support the transfer of 413 

this flame retardant from the styrofoam debris to mussels through ingestion of EPS particles. 414 

Field surveys showed that MP ingestion may constitute another route of transfer of plastic 415 

additives in marine organisms, leading to the use of plastic additives tissue content (mainly 416 

BDE-209 and DEHP) as a proxy for plastic exposure or ingestion. 417 

4.3. Toxicity of plastic additives demonstrated by leaching experiments 418 

Evidence for plastic toxicity has been rising in the last years. While direct toxicity can 419 

occur due to the physical impacts of plastic ingestion (for a review, see Wright et al. (2013)), 420 

indirect toxicity may be observed in relation to the release of hazardous chemicals from 421 

plastics. As most plastic additives are not chemically but physically bound to the plastic, they 422 

can be released into the environment and become available to organisms. Recent studies 423 

demonstrated, using leaching experiments, that various plastics are toxic to a wide range of 424 

organisms (Table 9). 425 

 426 
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Table 9: list of aquatic species, plastic polymer types, exposure times and endpoints used in various leaching experiments 427 

Species Plastic type Exposure time Exposure level Endpoints Reference 

Daphnia magna 

PC, PVC, PU, PE, 

LDPE, PMMA, PET, 

HDPE, PTFE, ABS, PP, 

MDPE 

24 and 48 hours 70 – 100 g L
-1

 Mortality Lithner et al. (2009) 

Daphnia magna 
PP, HDPE, PVC, ABS, 

Epoxy resin 
24 and 48 hours Up to 250 g L

-1
 Mortality Lithner et al. (2012) 

Nitroca sinipes 

PP, PVC, PS, PET, PUR, 

LDPE, HDPE, ABS, 

PLA, Unknown 

96 hours 100 g L
-1

 Mortality Bejgarn et al. (2015) 

Amphibalanus 

amphitrite 

PET, HDPE, PVC, 

LDPE, PP, PS, PC 

24, 48, 72 and 96 

hours 
0.1 – 0.5 m² L

-1
 Settlement Li et al. (2016) 

Perna perna 
Virgin (PP) and beached 

pellets 
48 hours 25% of pellets (v/v) Embryo development 

Gandara e Silva et al. 

(2016) 

Pseudochromis 

fridmani 

PE (two different 

origins) 
48 hours - Mortality Hamlin et al. (2015) 

ABS: Acrylonitrile butadiene styrene; PC: Polycarbonate; PE: Polyethylene; LDPE: Low-Density Polyethylene; MDPE: Medium-Density 

Polyethylene; HDPE: High-Density Polyethylene; PET: Polyethylene terephthalate; PLA: Poly Lactic Acid; PMMA: Polymethyl Methacrylate; 

PP: Polypropylene; PTFE: Polytetrafluoroethylene; PU: Polyurethane; PVC: Polyvinyl Chloride 
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Li et al. (2016) used the seven categories of recyclable plastics (High Density PE (HDPE), 428 

LDPE, PP, PVC, Polycarbonate (PC), PET and PS) to quantify the impact of their leachate on 429 

the survival and settlement of barnacle Amphibalanus amphitrite larvae. Leachates were 430 

prepared by placing 1 x 1 cm pieces of each plastic in 20 mL of filtered seawater for 24h at 431 

28°C (Li et al., 2016). Survival was significantly lowered at the highest leachate 432 

concentration (0.10 and 0.50 m² of plastic material L
-1

) for all plastics and PVC was the most 433 

toxic plastic for A. Amphitrite larvae. Additionally, settlement was also inhibited with all 434 

plastics leachates (Li et al., 2016). Similarly, Bejgarn et al. (2015) exposed the copepod 435 

Nitocra sinipes to the leachate of weathered or non-weathered plastics. Here, leaching 436 

experiments were performed with leachates prepared with 10 g of each plastic placed in 100 437 

mL of brackish seawater from the Baltic rotating at 6-21 rpm for 72h in the dark (Bejgarn et 438 

al., 2015). Of the twenty-one plastics tested, eight (DVD-case (PP), biodegradable bag, 439 

costume- (PVC), flyswatter packaging (PVC), computer housing (unknown), garden hose 440 

(PVC), car dashboard (unknown) and phone cover (PUR)) demonstrated toxicity (mortality 441 

after 96h) to N. sinipes, and after weathering, toxicity either increased or decreased depending 442 

on the plastics (Bejgarn et al., 2015). Two leaching studies were carried out on the copepod 443 

Daphnia magna (Lithner et al., 2012; Lithner et al., 2009), a common organism used in 444 

ecotoxicological studies. Lithner et al. (2009) prepared their leachates by placing plastic 445 

pieces in deionized water to obtain a liquid to solid ratio of 10 L kg
-1 

which was horizontally 446 

shaken at 60 rpm for 24h (16h of fluorescent light and 8h of darkness) at 20°C. Out of the 447 

thirty-two plastics tested only nine, including five composed of PVC, showed acute toxicity 448 

(immobility after 24 and 48h ; EC50 ranging from 5 to 80 g plastic material L
-1

) to D. magna 449 

and it has been suggested that the toxicity of PVC was due to the phthalate content (Lithner et 450 

al., 2009). In a second study, Lithner et al. (2012) used PP, PE, PVC, acrylonitrile-butadiene-451 

styrene (ABS) and epoxy resin, and they prepared their leachates by adding 250 g of plastic in 452 
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1 L of deionized water shaken at 90 rpm at 50°C for 3 days. As previously demonstrated, 453 

PVC caused acute toxicity (immobility after 24 and 48h ; EC50 ranging from 2-235 g plastic 454 

material L
-1

) probably in relation to its phthalate leachates, however the acute toxicity 455 

observed with the epoxy resin was not attributed to a specific chemical compound (Lithner et 456 

al., 2012). A more recent study evaluated the toxicity of virgin and beached pellets on the 457 

embryo development of brown mussels (Perna perna) (Gandara e Silva et al., 2016). Here, 458 

the authors exposed the brown mussel embryo to 2 mL of virgin (PP) or beached (42% PE 459 

and 58% unknown composition) pellets in 8 mL of seawater, and toxicity was assessed by 460 

determining the percentage of dead or abnormal embryos (Gandara e Silva et al., 2016). The 461 

leaching experiment led to 23.5% and 100% dead or abnormal embryos for virgin and 462 

beached pellets, respectively. It has been suggested that the difference in toxicity was mainly 463 

due to the difference in the chemical load of the pellets used (Gandara e Silva et al., 2016). 464 

Beached pellets were exposed to in situ contamination leading to adsorption of pollutants and 465 

to additives already found inside the polymeric matrix. These leaching experiments showed 466 

that plastic leachates and especially PVC leachates (i.e. phthalates) can lead to adverse effects 467 

on organisms. However, the toxicity highlighted in these five experiments was not attributed 468 

to specific chemical compounds (Bejgarn et al., 2015; Gandara e Silva et al., 2016; Li et al., 469 

2016; Lithner et al., 2012; Lithner et al., 2009). As suggested by Li et al. (2016), chemical 470 

identification should be undertaken during leaching experiments with a focus on plastic 471 

additives in order to identify the compound or its degradation products responsible for the 472 

observed toxicity. For instance, a more recent leaching study focused on the effects of 473 

nonylphenol on the coral reef fish Pseudochromis fridmani by exposing single fish to the 474 

leachate of plastic bags made of two PE (PE1 and PE2) from different manufacturers for 48h 475 

(Hamlin et al., 2015). Nonylphenol leached in the water at higher concentrations for PE2 than 476 

for PE1; with respectively 41.0 ± 5.5 and 2.5 ± 0.2 µg L
-1

, and 60% and 11% of the fish died 477 
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after 48 hours of exposure to leachates from PE2 and PE1, respectively. However, Hamlin et 478 

al. (2015) only focused their work on nonylphenol and did not study PE1 and PE2 479 

compositions in terms of other additive contents. This study demonstrated that exposing fish 480 

to two identical plastic polymers (PE) may result in drastically different outcomes, as the 481 

plastic additives incorporated in each plastics are dependent on the plastic manufacturer and 482 

most of the time, their exact compositions remain unknown (Hamlin et al., 2015). Studies are 483 

required to explore potential differences between plastics from different manufacturers and 484 

toxicity related to the diversity of chemicals used in the plastic industry. 485 

Exposure experiments based on leaching processes conducted on a wide range of 486 

polymers and target organisms confirmed toxicity of plastics additives, which highlights the 487 

need for non-target screening analysis covering a broad range of chemicals in order to better 488 

identify the main compound(s) responsible for the toxicity. 489 

4.4. Relative importance of HOC in comparison with plastic additives: case 490 

of modelling studies 491 

The high affinity of plastic polymers for HOC has been demonstrated in numerous 492 

laboratory experiments (Bakir et al., 2014; Teuten et al., 2007), and an increasing number of 493 

studies have focused on the role of MP as a vector for HOC in marine organisms (Besseling et 494 

al., 2013; Rochman et al., 2013). However, recent studies have suggested that given (i) 495 

baseline contamination levels of seawater and marine organisms, and (ii) the low abundance 496 

of plastic particles relative to other suspended particles found in oceans (such as organic 497 

matter, plankton, detritus etc), exposure to HOC via plastic may be negligible compared to 498 

natural pathways (Bakir et al., 2016; Beckingham and Ghosh, 2017; Koelmans et al., 2013a, 499 

b; Koelmans et al., 2016; Paul-Pont et al., 2016). Moreover, Koelmans et al. (2016) suggested 500 

that MPs ingestion by marine biota does not increase their exposure to HOCs and could have 501 

a cleaning effect while concerns have arisen regarding risk due to plastic additives.  502 
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So far most modelling studies have focused their work on adsorbed HOC (Bakir et al., 503 

2016; Koelmans et al., 2016). However, no model is yet available on the transport and fate of 504 

plastic additives leaching from plastic debris although (i) plastic additives can be added in 505 

very high concentration depending on the application; and (ii) transfer of plastic additives to 506 

marine organism upon plastic ingestion has been demonstrated both in laboratory experiments 507 

and in field studies. It highlights the need to include these chemicals in future modelling work 508 

in order to better clarify their potential for transfer. 509 

5. Conclusion 510 

Plastic additives associated with MP have received less attention than HOC adsorbed on 511 

MPs and the present review highlighted the need for upcoming studies to better characterize 512 

plastic additives associated with microplastics found at sea as well as their potential release in 513 

environmental matrices. As PE and PP are the main plastic debris found at sea, these two 514 

polymers should be investigated alongside with PVC due to its particularly high concentration 515 

in hazardous additives. Non-target screening analysis is required to identify the broad range of 516 

plastic additives leaching from these polymers and to better identify the main compound(s) 517 

responsible for toxicity. In addition, special attention should definitely be paid to hazardous 518 

plastic additives known to be major endocrine disruptor, namely bisphenol A and phthalates. 519 

Experimental and modelling studies are required to better characterize (i) the transfer of 520 

plastic additives upon MP ingestion relative to waterborne and foodborne exposure, and (ii) 521 

the effects of plastic additives on marine organisms. Such experiments should be realized 522 

using standardized “laboratory-made” MP, in which plastic additives are well characterized 523 

and introduced in controlled amounts reflecting industrial processes. The impacts of ageing 524 

plastic under realistic conditions on the transfer of plastic additives also need to be evaluated 525 

to investigate more environmentally relevant scenarios. 526 
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