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Abstract

�is note presents my current understanding of (multisorted/essential/generalized) algebraic theories
via what I call KEML-diagrams. Algebraic theories can be represented as monads to which we can as-
sociate a Kleisli category, an Eilenberg-Moore category and a Lawvere-style category. KEML-diagrams
show clearly how these correspond.

No particular novelty is claimed, except perhaps the presentational novelty of KEML-diagrams.
Additionally, our precise de�nition of Lawvere theories for multisorted and essentially algebraic theo-
ries seems to diverge slightly from the literature. Finally, we think there is value in contrasting Arkor
and McDermo�’s higher-order algebraic theories (HOATs) with a much simpler and already powerful
notion of HOATs given by extensions of the simply-typed lambda calculus.
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1 Overview
A�er some introductory remarks and prerequisites in sections 2 and 3, we continue to study simple (i.e.
un(i)sorted) algebraic theories (SATs, section 4), multisorted algebraic theories (MATs, section 5), essential
and (brie�y) generalized algebraic theories (EATs andGATs, section 6), extensions ofmultisorted algebraic
theories (section 7) and higher-order algebraic theories (HOATs, section 8).

Each time, we consider three perspectives on the given class of algebraic theories:

• the presentation perspective, where a theory is described very syntactically by listing its operations
and the equation axioms they satisfy,

• themonadic perspective, where a theory is described as a monad𝑀 on a given category C, such that
𝑀𝑋 is the free model over 𝑋 (collection of terms containing metavariables from 𝑋 ) of the theory
at hand,

• the Lawverian perspective, where a theory is described as a categoryL whose objects are – roughly
– the relevant notion of arities and whose morphisms are tuples of terms of the theory.
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Each time, we show that monadic and Lawverian theories are actually equivalent notions and that pre-
sentations of theories give rise to monadic/Lawverian theories. Moreover, we learn

• that the Kleisli category Kl(𝑀) of a monadic theory 𝑀 is equivalent to the opposite of the corre-
sponding Lawvere theory L,1

• that the Eilenberg-Moore category EM(𝑀) of a monadic theory 𝑀 is equivalent to the category
Model(L) of models of L, which are certain functors L → Set,

• that the monad 𝑀 : C → C factors over the canonical functor Kl(𝑀) → EM(𝑀) and equivalently
over the Yoneda-embedding y = HomL : Lop → Model(L).

�is information is then summarized in what I call a Kleisli-Eilenberg-Moore-Lawvere diagram (KEML-
diagram, sections 4.5, 5.5, 6.5, 7.5 and 8.4).

HOATs (section 8) are treated a bit less in-depth. We give our own formulation of what we call
𝜆HOATs (de�ning them as MAT extensions of the simply-typed lambda calculus) and then use a thor-
ough understanding of 𝜆HOATs to develop a conceptual understanding of what is going on in Arkor and
McDermo�’s paper on HOATs [AM20].

2 Introductory remarks
• We ignore size issues.

• We don’t require our monads to be container functors of �nite arity, and correspondingly we don’t
work with �nite products/limits in Lawvere theories.

3 Prerequisites
Notation 3.1. Given a set 𝑋 and an object 𝑎 ∈ C, we write 𝑋 · 𝑎 for the coproduct ∑𝑥 ∈𝑋 𝑎.

De�nition 3.2. Given a monad𝑀 on C, its Kleisli category Kl(𝑀) has

• objects 𝑥 where 𝑥 ∈ Obj(C),

• morphisms 𝜑 : 𝑥 → 𝑦 where 𝜑 : 𝑥 → 𝑀𝑦,

• id𝑥 := 𝜂𝑥 ,

• 𝜒 ◦ 𝜑 := 𝜒 <=< 𝜑 .

�ere is a functor 𝐽𝑀 : C → Kl(𝑀) such that 𝐽𝑥 = 𝑥 and 𝐽𝜑 = 𝜂 ◦ 𝜑 , and a functor 𝑃𝑀 : Kl(𝑀) → C such
that 𝑃𝑀𝑥 = 𝑀𝑥 and 𝑃𝑀𝜑 = bind𝜑 . Clearly 𝑃𝑀 𝐽𝑀 = 𝑀 .

�eorem 3.3 (Unused). �e functorMonad(C) → C/Cat : 𝑀 ↦→ (Kl(𝑀), 𝐽𝑀 ) is fully faithful.

Proof. Given a monad morphism 𝜁 : 𝑀 → 𝑁 , a functor 𝑍 : Kl(𝑀) → Kl(𝑁 ) is given by 𝑍𝑥 = 𝑥 and
𝑍𝜑 = 𝜁 ◦ 𝜑 .

Faithfulness is obvious: 𝜁 can be retrieved from 𝑍 because 𝑍 id𝑀𝑥 = 𝜁𝑥 .
To see fullness, pick a morphism 𝑍 : Kl(𝑀) → Kl(𝑁 ) of coslices under C. We de�ne an (a priori

unnatural) transformation 𝜁 : 𝑀 → 𝑁 by 𝜁𝑥 = 𝑍 id𝑀𝑥 . �en it is immediate that

𝑍𝜑 = 𝑍 (id𝑀𝑦 ◦ 𝐽𝑀𝜑) = 𝜁𝑦 ◦ 𝐽𝑁𝜑 = 𝜁𝑦 ◦ 𝜑.

We show that 𝜁 is a natural transformation and a monad morphism:
1In the case of MATs and EATs we seem to diverge a li�le from the literature when de�ning the Lawverian formulation in order

for this to be true.
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• To see naturality, pick 𝜑 : 𝑥 → 𝑦. �en

𝑁𝜑 ◦ 𝜁𝑥 = 𝐽𝑁𝜑 ◦ 𝜁𝑥 = 𝐽𝑁𝜑 ◦ 𝑍 id𝑀𝑥 = 𝑍 (𝐽𝑀𝜑 ◦ id𝑀𝑥 ) = 𝑍 (𝑀𝜑) = 𝜁𝑦 ◦𝑀𝜑.

• To see preservation of unit:

𝜁𝑥 ◦ 𝜂𝑀𝑥 = 𝑍 (𝜂𝑀𝑥 ) = 𝑍 id𝑥 = id𝑥 = 𝜂𝑁𝑥 .

• To see preservation of Kleisli composition:

𝜁𝑥 ◦ (𝜒 <=<𝑀 𝜑) = 𝑍 𝜒 <=<𝑀 𝜑

= 𝑍 (𝜒 ◦ 𝜑)
= 𝑍 𝜒 ◦ 𝑍𝜑
= 𝜁𝑧 ◦ 𝜒 ◦ 𝜁𝑦 ◦ 𝜑

= (𝜁𝑧 ◦ 𝜒) <=<𝑁 (𝜁𝑧 ◦ 𝜑). �

4 Simple Algebraic �eories (SATs)
We de�ne SAT presentations (de�nition 4.1), monadic SATs (de�nition 4.2) and Lawverian SATs (de�ni-
tion 4.5). We prove:

• Every SAT presentation gives rise to a monadic SAT (proposition 4.3) with the same models (propo-
sition 4.4).

• Every SAT presentation gives rise to a Lawverian SAT (proposition 4.6) with the same models
(proposition 4.8).

• Every monadic SAT gives rise to a Lawverian SAT (proposition 4.7) with the same models (propo-
sition 4.9).

• Monadic and Lawverian SATs are essentially the same thing (proposition 4.10).

We summarize in a diagram (section 4.5).

4.1 SAT Presentations
De�nition 4.1. A simple or single-sorted algebraic theory presentation [nLa22a] 𝔄 consists of

• for each arity 𝑛 ∈ N, a set of operators 𝑂𝔄 (𝑛),

𝑂𝔄 : N→ Set,

• for each arity 𝑛 ∈ N, a set of 𝑛-ary axioms, which are pairs (𝑡1, 𝑡2) of 𝑛-ary terms, denoted as 𝑡1 = 𝑡2:

𝐸𝔄 : (𝑛 ∈ N) → P(𝑇𝔄 (𝑛)2).

An 𝑛-ary term of 𝔄 (𝑛 ∈ N) is inductively de�ned to be either a metavariable m𝑖 (𝑖 ∈ {1, . . . , 𝑛}) or an
expression of the form 𝑜 (𝑡1, . . . , 𝑡𝑘 ) where 𝑜 is an operator of arity 𝑘 and all 𝑡𝑖 are also 𝑛-ary terms. As
such, the set of 𝑛-ary terms 𝑇𝔄 (𝑛) is the least �xpoint

𝑇𝔄 (𝑛) = {m1, . . . ,m𝑛} ]
∑︁

𝑘∈N,𝑜∈𝑂𝔄 (𝑘)
𝑇𝔄 (𝑛)𝑘 .

An algebra or model 𝐴 of 𝔄 is a set 𝐴 equipped with a function È𝑜É : 𝐴𝑘 → 𝐴 for every 𝑛-ary
operator 𝑜 , satisfying all the axioms. Given ®𝑎 = (𝑎1, . . . , 𝑎𝑛) ∈ 𝐴𝑛 , the interpretation of an 𝑛-ary term 𝑡 is
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de�ned recursively by È𝑜 (𝑡1, . . . , 𝑡𝑘 )É®𝑎 = È𝑜É(È𝑡1É®𝑎, . . . , È𝑡𝑘É®𝑎) and Èm𝑖É®𝑎 = 𝑎𝑖 . We say that 𝐴 satis�es
the 𝑛-ary axiom 𝑡1 = 𝑡2 if È𝑡1É®𝑎 = È𝑡2É®𝑎 for all ®𝑎 ∈ 𝐴𝑛 .

A morphism of algebras/models is a function 𝑓 : 𝐴 → 𝐵 such that 𝑓 ◦ È𝑜É = È𝑜É ◦ 𝑓 𝑘 : 𝐴𝑘 → 𝐵

for every 𝑘-ary operator 𝑜 .
�e syntax of 𝔄 is the initial object of the category of 𝔄-models. It is the set of nullary terms of 𝔄,

divided by the equivalence relation generated by the axioms.

We do not consider equality, equivalence, or homomorphism of SAT presentations. Instead, before
relating di�erent SATs, we more towards a more extensional means of de�ning them. A �rst one is using
monads (section 4.2).

4.1.1 Type Analogy

SATs can be thought of as quotient inductive types (of the SAT’s terms) in a simply typed language.
Simply typed, so we do not get to assume any equalities dependent on arguments. �otient, so we can
have axioms.

4.1.2 Examples

�e following are examples of theories that can be presented as SATs:

• Monoids, groups, rings, �elds, . . .

• Modules over a �xed ring, vector spaces over a �xed �eld, actions of a �xed group, . . .
In the case of e.g. vector spaces overK, we will have a binary addition operator and for every 𝑘 ∈ K
a unary scalar multiplication operator.

• Typed arithmetic in the sense of TAPL [Pie02] with only booleans.

4.2 Monadic SATs
De�nition 4.2. Amonadic SAT is a monad on C := Set.

Proposition 4.3. Every SAT presentation 𝔄 gives rise to a monadic SAT𝑀𝔄 .

Construction. We �rst de�ne a syntax endofunctor 𝐹𝔄 : C → C by

𝐹𝔄 𝑋 =
∑︁

𝑘∈N,𝑜∈𝑂𝔄 (𝑘)
𝑋𝑘 .

Next, let 𝐹 ∗
𝔄
be the free monad over 𝐹𝔄 𝑋 . E�ectively, 𝐹 ∗𝔄 𝑋 is now the set of 𝑋 -ary terms.

�is is a model of 𝔄∗, the SAT presentation obtained from 𝔄 by removing all axioms. Now let ∼
be the strictest re�exive and transitive 𝑋 -indexed congruence on 𝐹 ∗

𝔄
𝑋 that satis�es all the axioms. By

congruence we mean that𝑀𝔄 𝑋 := 𝐹 ∗
𝔄
𝑋/∼𝑋 de�nes a monad. �en we take this as the monad associated

to 𝔄. E�ectively,𝑀𝔄 𝑋 is now the set of 𝑋 -ary terms modulo the axioms. �

Proposition 4.4. �e category EM(𝑀𝔄) of Eilenberg-Moore algebras of𝑀𝔄 is isomorphic to the category
Model(𝔄) of models of 𝔄, and the isomorphism commutes with the forgetful functors to C on the nose.

Proof. We �rst establish the following:

EM(𝑀𝔄) ⊆1 EM(𝐹 ∗𝔄) �2 Alg(𝐹 ) �3 Model(𝔄∗) ⊇4 Model(𝔄),

where the inclusions denote fully faithful embeddings injective on objects.

1. �e quotient morphism [xy] : 𝐹 ∗
𝔄
→ 𝑀𝔄 constitutes a monad morphism so that every EM-algebra

of 𝑀𝔄 is trivially an EM-algebra of 𝐹 ∗
𝔄
, and similar for morphisms. Injectivity on objects follows

from surjectivity of [xy]. �e embedding is faithful as both categories are faithful subcategories of
C. Fullness follows from surjectivity of [xy].
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2. �is is a well-known property of free monads.

3. �is is trivial.

4. �e inclusion of objects is trivial. �e de�nition of a morphism of models bears no mention of the
set of axioms, so the inclusion of morphisms is automatically fully faithful.

So it remains to be shown that an object of the central three isomorphic categories is an EM-algebra of
𝑀𝔄 (i.e. respects ∼) if and only if it is a model of 𝔄 (i.e. respects the axioms that generate ∼). �is is
automatic as equality of terms’ interpretation in the carrier is automatically a re�exive and transitive
congruence. �

4.3 Lawverian SATs from Monadic SATs
De�nition 4.5. A Lawverian SAT is a category L satisfying the following properties:

• it has products, algebraically,

• it contains a designated object ★,

• every object is an (algebraically obtained) product of★’s up to a designated isomorphism (i.e. there
is an algebraic operation for factorizing any object as an algebraically obtained product of ★’s up
to a designated isomorphism).

A morphism of Lawverian SATs is a product-, ★- and factorization-preserving functor L → L ′.
�is constitutes a 2-category Law.

Amodel of L is a product-preserving functor L → Set. �e forgetful functor𝑈 : Model(L) → C is
de�ned by𝑈 𝑇 = 𝑇 ★.

Proposition 4.6. Every SAT presentation 𝔄 gives rise to a Lawverian SAT L𝔄 .

Construction. �is follows immediately from the following proposition. �

Proposition 4.7. Every monadic SAT𝑀 gives rise to a Lawverian SAT L𝑀 , functorially.

Construction. We de�ne L𝑀 := Kl(𝑀)op, the opposite Kleisli category of𝑀 :

• Products are given by coproducts in Kl(𝑀), which are in turn given by coproducts in C = Set,
which are disjoint unions.

• We de�ne ★ = > where > = {()}.

• �e object 𝑋 can be wri�en as
𝑋 � 𝑋 · > = ★𝑋 . �

Let us consider what this means. By the universal property of the product, the full Hom-structure of
L𝑀 is given by the Hom-sets with codomain ★. �ere we have:

HomL𝑀

(
★𝑋 ,★

)
� HomL𝑀

(
𝑋,★

)
= HomKl(𝑀)

(
>, 𝑋

)
= HomC (>, 𝑀𝑋 ) � 𝑀𝑋,

which we interpreted before as the set of 𝑋 -ary terms modulo equality. Hence, more generally, we have

HomL𝑀

(
★𝑌 ,★𝑋

)
� (𝑀𝑌 )𝑋 ,

the set of 𝑋 -tuples of 𝑌 -ary terms. �e identity (monadic unit) corresponds to the tuple of all variables,
and composition (Kleisli composition) amounts to substitution. �e functor 𝐽 op

𝑀
: Cop → L𝑀 creates pure

morphisms (i.e. morphisms without monadic e�ects), which are the renamings.

Proposition 4.8. �e category Model(L𝔄) of models of L𝔄 is equivalent to the category Model(𝔄) of
models of 𝔄, and the equivalence commutes with the forgetful functors to C.
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Proof. �is follows immediately from the following proposition. �

Proposition 4.9. �e category Model(L𝑀 ) of models of L𝑀 is equivalent to the category EM(𝑀) of
EM-algebras of𝑀 , and the equivalence commutes with the forgetful functors to C.

Proof. → Given a model 𝑇 ∈ Model(L𝑀 ), i.e. a product-preserving functor L𝑀 → Set, we build an
EM-algebra 𝐴. For the carrier, we (must) take 𝐴 := 𝑇 ★. Recall that

𝜄 : (𝑀𝑌 )𝑋 � HomL (★𝑌 ,★𝑋 ) : 𝑓 ↦→ 𝑓

so that the functorial action of 𝑇 creates an operation

>=>𝐴 : (𝑀𝑌 )𝑋 → 𝐴𝑌 → 𝐴𝑋 ,

i.e.𝑇 𝑓 𝑔 = 𝑓 >=>𝐴𝑔. By functoriality and product preservationw.r.t. ★𝑋 (functoriality and coproduct
preservation w.r.t. 𝑋 ), >=>𝐴 is a componentwise application of some ‘𝐴-speci�c bind’ operation

�=𝐴 : 𝑀𝑌 → 𝐴𝑌 → 𝐴,

i.e. (𝑓 >=>𝐴 𝑔) (𝑥) = 𝑓 (𝑥) �=𝐴 𝑔.

• Since 𝑇 preserves the identity, we know that 𝜂 >=>𝐴 𝑔 = 𝑔 and hence, applying to 𝑥 , that
𝜂 (𝑥) �=𝐴 𝑔 = 𝑔(𝑥),

• Since 𝑇 preserves composition, we know that

(𝑓 >=> 𝑔) >=>𝐴 ℎ = 𝑓 >=>𝐴 (𝑔 >=>𝐴 ℎ)

and hence, considered componentwise, that

(𝑚𝑦 �= 𝑔) �=𝐴 ℎ =𝑚𝑦 �=𝐴 (𝑔 >=>𝐴 ℎ).

• By naturality w.r.t. 𝑌 , we know that

(𝑀𝑔 ◦ 𝑓 ) >=>𝐴 ℎ = 𝑓 >=>𝐴 (ℎ ◦ 𝑔)

and hence, considered componentwise, that

(𝑀𝑔) (𝑚𝑦) �=𝐴 ℎ =𝑚𝑦 �=𝐴 (ℎ ◦ 𝑔).

We now de�ne the algebra morphism

𝛼 : 𝑀𝐴→ 𝐴 :𝑚𝑎 ↦→𝑚𝑎�=𝐴 id,

i.e. 𝛼 = id𝑀𝐴 >=>𝐴 id𝐴. �en we have

𝛼 (𝜂 (𝑎)) = 𝜂 (𝑎) �=𝐴 id = 𝑎,

𝛼 (𝜇 (𝑚𝑚𝑎)) = (𝑚𝑚𝑎�= id) �=𝐴 id
=𝑚𝑚𝑎�=𝐴 (id >=>𝐴 id)
=𝑚𝑚𝑎�=𝐴 𝛼 = 𝑀𝛼 (𝑚𝑚𝑎) �=𝐴 id = (𝛼 ◦𝑀𝛼) (𝑚𝑚𝑎),

so indeed we have an EM-algebra for 𝑀 . To see that this constitutes a functor Model(L𝑀 ) →
EM(𝑀), assume a natural transformation 𝜃 : 𝑇 → 𝑇 ′ and write 𝑓 = 𝜃★ : 𝐴→ 𝐴′. We have

𝑓 (𝛼 (𝑚𝑎)) = 𝑓 (𝑚𝑎�=𝐴 id) =𝑚𝑎�=𝐴′ (𝑓 ◦ id) = 𝑀𝑓 (𝑚𝑎) �=𝐴′ id = 𝛼 ′(𝑀𝑓 (𝑚𝑎)) .
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← Given an EM-algebra𝐴 ∈ EM(𝑀), we build a product-preserving functor𝑇 : L𝑀 → Set. We de�ne
𝑇★𝑋 := 𝐴𝑋 . To make this functorial, we require an operation >=>𝐴 as above, satisfying the identity
and composition laws proven above. (�e naturality law follows automatically as naturality w.r.t.
𝑌 is just composition with a pure morphism.)
We de�ne

𝑓 >=>𝐴 𝑔 := 𝛼 ◦𝑀𝑔 ◦ 𝑓
⇒ 𝑚𝑥 �=𝐴 𝑔 = (𝛼 ◦𝑀𝑔) (𝑚𝑥).

�en we have

𝜂 (𝑥) �=𝐴 𝑓 = (𝛼 ◦𝑀𝑓 ◦ 𝜂) (𝑥) = (𝛼 ◦ 𝜂 ◦ 𝑓 ) (𝑚𝑥) = 𝑓 (𝑚𝑥),
(𝑓 >=> 𝑔) >=>𝐴 ℎ = 𝛼 ◦𝑀ℎ ◦ 𝜇 ◦𝑀𝑔 ◦ 𝑓

= 𝛼 ◦ 𝜇 ◦𝑀𝑀ℎ ◦𝑀𝑔 ◦ 𝑓
= 𝛼 ◦𝑀 (𝛼 ◦𝑀ℎ ◦ 𝑔) ◦ 𝑓
= 𝑓 >=>𝐴 (𝛼 ◦𝑀ℎ ◦ 𝑔) = 𝑓 >=>𝐴 (𝑔 >=>𝐴 ℎ),

so indeed we have a model of L𝑀 . To see that this constitutes a functor EM(𝑀) → Model(L𝑀 ),
assume an algebra morphism 𝑓 : 𝐴→ 𝐴′. We shall construct a natural transformation 𝜃 : 𝑇 → 𝑇 ′.
On objects, we set 𝜃★𝑋 = 𝑓 𝑋 : 𝐴𝑋 → (𝐴′)𝑋 . On morphisms, we have

𝑓 ◦ (𝑔 >=>𝐴 ℎ) = (𝑓 ◦ 𝛼 ◦𝑀ℎ ◦ 𝑔) = (𝛼 ′ ◦𝑀 (𝑓 ◦ ℎ) ◦ 𝑔) (𝑚𝑥) = 𝑔 >=>𝐴′ 𝑓 ◦ ℎ.

' It is straightforward to check that the two functors constructed above constitute an equivalence of
categoriesModel(L𝑀 ) ' EM(𝑀). �

4.4 Monadic SATs from Lawverian SATs
Proposition 4.10. �e functorMonad(Set) → Law : 𝑀 ↦→ L𝑀 is a 2-equivalence.

Proof. ← To a Lawverian SAT L, we associate a monad𝑀L on C = Set given by

• 𝑀L𝑋 := HomL (★𝑋 ,★),
• (𝑀L 𝑓 ) (𝑚𝑥) :𝑚𝑥 ◦★𝑓 =𝑚𝑥 ◦ (𝜋𝑓 (𝑥) )𝑥
• 𝜂 (𝑥) := 𝜋𝑥 ,
• 𝜇 (𝑚𝑚𝑥) :=𝑚𝑚𝑥 ◦ (𝑚𝑥)𝑚𝑥 .

�e unit and multiplication are indeed natural:

(𝑀L 𝑓 ◦ 𝜂) (𝑥) = (𝑀L 𝑓 ) (𝜋𝑥 ) = 𝜋𝑥 ◦ (𝜋𝑓 (𝑥) )𝑥 = 𝜋𝑓 (𝑥) = (𝜂 ◦ 𝑓 ) (𝑥),
(𝑀L 𝑓 ◦ 𝜇) (𝑚𝑚𝑥) = (𝑀L 𝑓 ) (𝑚𝑚𝑥 ◦ (𝑚𝑥)𝑚𝑥 )

=𝑚𝑚𝑥 ◦ (𝑚𝑥)𝑚𝑥 ◦ (𝜋𝑓 (𝑥) )𝑥 ,
(𝜇 ◦𝑀L𝑀L 𝑓 ) (𝑚𝑚𝑥) = 𝜇 (𝑚𝑚𝑥 ◦ (𝜋 (𝑀L 𝑓 ) (𝑚𝑥) )𝑚𝑥 )

=𝑚𝑚𝑥 ◦ (𝜋 (𝑀L 𝑓 ) (𝑚𝑥) )𝑚𝑥 ◦ (𝑚𝑦)𝑚𝑦

=𝑚𝑚𝑥 ◦ (𝜋 (𝑀L 𝑓 ) (𝑚𝑥) ◦ (𝑚𝑦)𝑚𝑦)𝑚𝑥

=𝑚𝑚𝑥 ◦ ((𝑀L 𝑓 ) (𝑚𝑥))𝑚𝑥

=𝑚𝑚𝑥 ◦ (𝑚𝑥 ◦ (𝜋𝑓 (𝑥) )𝑥 )𝑚𝑥

=𝑚𝑚𝑥 ◦ (𝑚𝑥)𝑚𝑥 ◦ (𝜋𝑓 (𝑥) )𝑥 ,
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and satisfy the monad laws:

(𝜇 ◦ 𝜂) (𝑚𝑥) = 𝜇 (𝜋𝑚𝑥 ) = 𝜋𝑚𝑥 ◦ (𝑚𝑥 ′)𝑚𝑥 ′ =𝑚𝑥,

(𝜇 ◦𝑀L𝜂) (𝑚𝑥) = 𝜇 (𝑚𝑥 ◦ (𝜋𝜂 (𝑥) )𝑥 )
=𝑚𝑥 ◦ (𝜋𝜂 (𝑥) )𝑥 ◦ (𝑚𝑥 ′)𝑚𝑥 ′

=𝑚𝑥 ◦ (𝜋𝜂 (𝑥) ◦ (𝑚𝑥 ′)𝑚𝑥 ′)𝑥
=𝑚𝑥 ◦ (𝜂 (𝑥))𝑥 =𝑚𝑥 ◦ (𝜋𝑥 )𝑥 =𝑚𝑥 ◦ id =𝑚𝑥,

(𝜇 ◦ 𝜇) (𝑚𝑚𝑚𝑥) = 𝜇 (𝑚𝑚𝑚𝑥 ◦ (𝑚𝑚𝑥)𝑚𝑚𝑥 )
=𝑚𝑚𝑚𝑥 ◦ (𝑚𝑚𝑥)𝑚𝑚𝑥 ◦ (𝑚𝑥)𝑚𝑥

(𝜇 ◦𝑀L𝜇) (𝑚𝑚𝑚𝑥) = 𝜇 (𝑚𝑚𝑚𝑥 ◦ (𝜋𝜇 (𝑚𝑚𝑥) )𝑚𝑚𝑥 )
=𝑚𝑚𝑚𝑥 ◦ (𝜋𝜇 (𝑚𝑚𝑥) )𝑚𝑚𝑥 ◦ (𝑚𝑥)𝑚𝑥

=𝑚𝑚𝑚𝑥 ◦ (𝜋𝜇 (𝑚𝑚𝑥) ◦ (𝑚𝑥)𝑚𝑥 )𝑚𝑚𝑥

=𝑚𝑚𝑚𝑥 ◦ (𝜇 (𝑚𝑚𝑥))𝑚𝑚𝑥

=𝑚𝑚𝑚𝑥 ◦ (𝑚𝑚𝑥 ◦ (𝑚𝑥)𝑚𝑥 )𝑚𝑚𝑥

=𝑚𝑚𝑚𝑥 ◦ (𝑚𝑚𝑥)𝑚𝑚𝑥 ◦ (𝑚𝑥)𝑚𝑥 .

Law Wecan nowobserve thatL ' Kl(𝑀L)op = L𝑀L . Indeed, we haveHomL (★𝑌 ,★𝑋 ) � HomL (★𝑌 ,★)𝑋 =

(𝑀L𝑌 )𝑋 . Under this isomorphism,

• the identity morphism at ★𝑋 is sent to (𝜆𝑥.𝜋𝑥 ) = 𝜂,
• for 𝑓 ∈ HomL (★𝑌 ,★𝑋 ) and 𝑔 ∈ HomL (★𝑍 ,★𝑌 ), the composite morphism 𝑓 ◦ 𝑔 is sent to
(𝜆𝑥 .𝜋𝑥 ◦ 𝑓 ◦𝑔) which should be equal to the Kleisli composition of (𝜆𝑥.𝜋𝑥 ◦ 𝑓 ) and (𝜆𝑦.𝜋𝑦 ◦𝑔).

(𝜆𝑥 .𝜋𝑥 ◦ 𝑓 ) >=> (𝜆𝑦.𝜋𝑦 ◦ 𝑔)
= 𝜇 ◦𝑀L (𝜆𝑦.𝜋𝑦 ◦ 𝑔) ◦ (𝜆𝑥.𝜋𝑥 ◦ 𝑓 ) (Def. >=>)
= 𝜆𝑥.(𝜇 ◦𝑀L (𝜆𝑦.𝜋𝑦 ◦ 𝑔) ◦ (𝜆𝑥 ′.𝜋𝑥 ′ ◦ 𝑓 )) (𝑥) (𝜂-expand function)
= 𝜆𝑥.(𝜇 ◦𝑀L (𝜆𝑦.𝜋𝑦 ◦ 𝑔)) (𝜋𝑥 ◦ 𝑓 ) (Apply last function)

= 𝜆𝑥.𝜇

(
𝜋𝑥 ◦ 𝑓 ◦ (𝜋𝜋𝑦◦𝑔)𝑦

)
(Map over𝑀L)

= 𝜆𝑥.𝜋𝑥 ◦ 𝑓 ◦ (𝜋𝜋𝑦◦𝑔)𝑦 ◦ (𝑚𝑧)𝑚𝑧 (Def. 𝜇)
= 𝜆𝑥.𝜋𝑥 ◦ 𝑓 ◦ (𝜋𝜋𝑦◦𝑔 ◦ (𝑚𝑧)𝑚𝑧)𝑦 (Precompose componentwise)
= 𝜆𝑥.𝜋𝑥 ◦ 𝑓 ◦ (𝜋𝑦 ◦ 𝑔)𝑦 (Projection from tuple)
= 𝜆𝑥.𝜋𝑥 ◦ 𝑓 ◦ 𝑔. (𝜂-contract tuple)

So indeed L ' Kl(𝑀L)op = L𝑀L .
�is equivalence is natural w.r.t. L: if we have a morphism of Lawverian SATs 𝐿 : L → L ′, then
we get a monad morphism 𝜔𝐿 : 𝑀L → 𝑀L′ : C → C such that 𝜔𝐿 (𝑚𝑥) = 𝐿𝑚𝑥 . �is leads to a
functor 𝐿𝜔𝐿

: L𝑀L → L𝑀L′ which is easily seen to �t in a commutative diagram

L ' //

𝐿

��

L𝑀L

𝐿𝜔𝐿

��
L ′ ' // L𝑀L′ .

Monad(Set) For any monadic SAT𝑀 , we have an isomorphism of monads𝑀 � 𝑀L𝑀
. Indeed, we have

𝜄 : 𝑀L𝑀
𝑋 = HomL𝑀

(★𝑋 ,★) = HomKl(𝑀) (>, 𝑋 · >) � 𝑀𝑋 .
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Writing a prime (′) for the operations of𝑀L𝑀
, we have

𝜄 (𝜂 ′(𝑥)) = 𝜄 (𝜋L𝑀
𝑥 ) = 𝜄 (𝜄

Kl(𝑀)
𝑥 ) = 𝜂 (𝑥) ∈ 𝑀𝑋 .

𝜄 (𝑚𝑥 �=′ 𝑓 ) = (𝜄 ◦ 𝜇 ′ ◦𝑀 ′𝑓 ) (𝑚𝑥)
= (𝜄 ◦ 𝜇 ′) (𝑚𝑥 ◦ (𝜋𝑓 (𝑥) )𝑥 )
= 𝜄 (𝑚𝑥 ◦ (𝜋𝑓 (𝑥) )𝑥 ◦ (𝑚𝑦)𝑚𝑦)
= 𝜄 (𝑚𝑥 ◦ (𝜋𝑓 (𝑥) ◦ (𝑚𝑦)𝑚𝑦)𝑥 )
= 𝜄 (𝑚𝑥 ◦ (𝑓 (𝑥))𝑥 )
= 𝜄 ( [𝑓 (𝑥)]𝑥 ◦𝑚𝑥) dualize
= 𝜄 (𝑚𝑥) �= (𝜄 ◦ 𝑓 ).

�is isomorphism of monads is easily seen to be natural w.r.t. 𝑀 . �

4.5 �e KEML-diagram for SATs
We can summarize our �ndings about SATs in a diagram. Assume that a monadic SAT𝑀 and a Lawverian
SAT L correspond. �en we obtain a commuting diagram as follows:

Set 𝑀 //

𝐽𝑀 ##
𝑋 ↦→★𝑋

��

Set

Kl(𝑀)
𝑋 ↦→(𝑀𝑋,𝜇) // EM(𝑀)

𝑈

88

'

Lop

'

HomL
// Model(L)

𝑈 :𝑇 ↦→𝑇★

OO

�e existence of each of the arrows is clear; in the case of the equivalence Lop ' Kl(𝑀) it follows from
the correspondence of L and𝑀 (propositions 4.7 and 4.10). �e commutation of the triangle on the le� is
clear by construction of L𝑀 (proposition 4.7). Commutation of the upper trapezium is a general theorem
about monads. Commutation of the right triangle follows from proposition 4.9, and commutation of the
lower trapezium follows from its proof.

4.6 Discussion
4.6.1 �e Empty SAT presentation

A SAT presentation with zero operators gives rise to the identity monad.

• �en 𝐽Id : Set � Kl(Id) is an isomorphism,

• In the Lawverian SAT, all morphisms are tuples of projections, so that 𝑋 ↦→ ★𝑋 : Set ' Lop is an
equivalence,

• Being an EM-algebra is void, so𝑈 : EM(Id) � Set is an isomorphism,

• Product preservation determines 𝑇 ∈ Model(L) fully from 𝑇★ so 𝑈 : Model(L) ' Set : 𝑇 ↦→ 𝑇★

is an equivalence,

• �en HomL : Lop ' Model(L) is also an equivalence.

5 Multisorted Algebraic �eories (MATs)
We de�ne MAT presentations (de�nition 5.1), monadic MATs (de�nition 5.2) and Lawverian MATs (de�-
nition 5.5). We prove:
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• Every MAT presentation gives rise to a monadic MAT (proposition 5.3) with the same models
(proposition 5.4).

• Every MAT presentation gives rise to a Lawverian MAT (proposition 5.6) with the same models
(proposition 5.8).

• Every monadic MAT gives rise to a Lawverian MAT (proposition 5.7) with the same models (propo-
sition 5.9).

• Monadic and Lawverian MATs are essentially the same thing (proposition 5.10).

We summarize in a diagram (section 5.5).

5.1 MAT Presentations
De�nition 5.1. Amultisorted algebraic theory presentation [nLa22a] 𝔄 consists of:

• a set 𝑆𝔄 of sorts,

• for each arity ®𝑟 ∈ List 𝑆 and output sort 𝑠 ∈ 𝑆 , a set of operators 𝑂𝔄 (®𝑟, 𝑠),

𝑂𝔄 : List 𝑆 × 𝑆 → Set,

• for each arity ®𝑟 ∈ List 𝑆 and output sort 𝑠 ∈ 𝑆 , a set of ®𝑟 -ary axioms of sort 𝑠 , which are pairs (𝑡1, 𝑡2)
of ®𝑟 -ary terms of sort 𝑠 , denoted as 𝑡1 = 𝑡2:

𝐸𝔄 : ((®𝑟, 𝑠) ∈ List 𝑆 × 𝑆) → P(𝑇𝔄 (®𝑟, 𝑠)2).

An ®𝑟 -ary term of output sort 𝑠 is inductively de�ned to be either a metavariable m𝑖 where 𝑟𝑖 = 𝑠 , or an
expression of the form 𝑜 (𝑡1, . . . , 𝑡𝑘 ), where 𝑜 has arity ®𝑞 of length 𝑘 and output sort 𝑠 and every 𝑡𝑖 is an
®𝑟 -ary term of output sort 𝑞𝑖 :

𝑇𝔄 (®𝑟, 𝑠) = {m𝑖 | 𝑟𝑖 = 𝑠} ]
∑︁

®𝑞∈List𝐴,𝑜∈𝑂𝔄 ( ®𝑞,𝑠)

∏
𝑖

𝑇𝔄 (®𝑟, 𝑞𝑖 ).

An algebra ormodel 𝐴 of 𝔄 consists of a set 𝐴𝑠 for every sort 𝑠 , and functions È𝑜É : (∏𝑖 𝐴𝑟𝑖 ) → 𝐴𝑠

for every ®𝑟 -ary operator 𝑜 of output sort 𝑠 , satisfying the axioms. Given ®𝑎 = (𝑎1, . . . , 𝑎𝑛) ∈
∏

𝑖 𝐴𝑟𝑖 , the
interpretation of an ®𝑟 -ary term 𝑡 is de�ned recursively by È𝑜 (𝑡1, . . . , 𝑡𝑘 )É®𝑎 = È𝑜É(È𝑡1É®𝑎, . . . , È𝑡𝑘É®𝑎) and
Èm𝑖É®𝑎 = 𝑎𝑖 . We say that 𝐴 satis�es the axiom 𝑡1 = 𝑡2 of arity ®𝑟 if È𝑡1É®𝑎 = È𝑡2É®𝑎 for all ®𝑎 ∈

∏
𝑖 𝐴𝑟𝑖 .

A morphism of algebras/models is a pointwise function 𝑓𝑠 : 𝐴𝑠 → 𝐵𝑠 such that 𝑓𝑠 ◦ È𝑜É = È𝑜É ◦∏
𝑖 𝑓𝑟𝑖 :

∏
𝑖 𝐴𝑟𝑖 → 𝐵 for every ®𝑟 -ary operator 𝑜 of sort 𝑠 .

�e syntax of 𝔄 is the initial object of the category of 𝔄-models. It is the 𝑆-indexed set of nullary
terms of 𝔄, divided by the equivalence relation generated by the axioms.

We do not consider equality, equivalence, or homomorphism of MAT presentations. Instead, before
relating di�erent MATs, we more towards a more extensional means of de�ning them. A �rst one is using
monads (section 5.2).

5.1.1 Type Analogy

MATs can be thought of as mutual quotient inductive types (of the MAT’s terms for every sort) in a
simply typed language. Simply typed, so we do not get to assume any equalities dependent on arguments.
�otient, so we can have axioms.
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5.1.2 Examples

�e following are examples of theories that can be presented as MATs:

• Examples of two-sorted algebraic theories are dependent pairs of:

– A �eld and a vector space over it,
– A ring and a module over it,
– A group and an action of it on a set.

• Presheaves over a �xed base categoryW (one sort for every object ofW and one unary operator
for every morphism),

• Typed arithmetic in the sense of TAPL [Pie02], where the sorts are the types,

• �e simply type 𝜆-calculus (STLC) with variables formalized as de Bruijn indices and with an ex-
plicit substitution operator. �ere is a set of types Ty and a set of contexts Ctx and the sorts are

{Sub(Γ,Δ) | Γ,Δ ∈ Ctx} ] {Tm(Γ,𝑇 ) | Γ ∈ Ctx,𝑇 ∈ Ty}.

5.2 Monadic MATs
De�nition 5.2. A monadic MAT with set of sorts 𝑆 is a monad on C := Set𝑆 .

Proposition 5.3. Every MAT presentation 𝔄 gives rise to a monadic MAT𝑀𝔄 .

Construction. We �rst de�ne a syntax endofunctor 𝐹𝔄 : C → C by

𝐹𝔄 𝑋 𝑠 =
∑︁

𝑜∈𝜔−1 (𝑠)

∏
𝑖

𝑋 𝛼 (𝑜)𝑖 .

Next, let 𝐹 ∗
𝔄
be the free monad over 𝐹𝔄 𝑋 . E�ectively, 𝐹 ∗𝔄 𝑋 𝑠 is now the set of 𝑠-sorted terms with 𝑟 -sorted

variables from 𝑋 𝑟 .
�is is a model of 𝔄∗, the MAT presentation obtained from 𝔄 by removing all axioms. Now let ∼

be the strictest re�exive and transitive (𝑋, 𝑠)-indexed congruence on 𝐹𝔄 𝑋 𝑠 that satis�es all the axioms.
By congruence we mean that 𝑀𝔄 𝑋 𝑠 := 𝐹𝔄 𝑋 𝑠/∼𝑠 de�nes a monad. �en we take this as the monad
associated to 𝔄. E�ectively, 𝑀𝔄 𝑋 𝑠 is now the set of 𝑠-sorted terms with 𝑟 -sorted variables from 𝑋 𝑟 ,
modulo the axioms. �

Proposition 5.4. �e category EM(𝑀𝔄) of Eilenberg-Moore algebras of𝑀𝔄 is isomorphic to the category
Model(𝔄) of models of 𝔄, and the isomorphism commutes with the forgetful functors to C on the nose.

Proof. �e proof could literally be copy-pasted from proposition 4.4. �

5.3 Lawverian MATs from Monadic MATs
De�nition 5.5. A LawverianMATwith set of sorts 𝑆 is a categoryL satisfying the following properties:

• it has products, algebraically,

• it is equipped with a function 〈xy〉 : 𝑆 → Obj(L),

• every object is an (algebraically obtained) product of objects in the image of 〈xy〉 up to a designated
isomorphism (i.e. there is an algebraic operation for factorizing any object as an algebraically ob-
tained product of 〈xy〉’s up to a designated isomorphism).

A morphism of Lawverian MATs with set of sorts 𝑆 is a product-, 〈xy〉- and factorization-preserving
functor L → L ′. �is constitutes a 2-category Law(𝑆).

Amodel of L is a product-preserving functor L → Set. �e forgetful functor𝑈 : Model(L) → C is
de�ned by𝑈 𝑇 𝑠 = 𝑇 〈𝑠〉.
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Other authors [nLa22a] instead simply consider categories that have (�nite) products. We force things
a bit to make Lop equivalent to the Kleisli category of the corresponding monadic MAT.

Proposition 5.6. Every MAT presentation 𝔄 gives rise to a Lawverian MAT L𝔄 .

Construction. �is follows immediately from the following proposition. �

Proposition 5.7. Every monadic MAT𝑀 gives rise to a Lawverian MAT L𝑀 .

Construction. We de�ne L𝑀 := Kl(𝑀)op, the opposite Kleisli category of𝑀 :

• We de�ne 〈𝑠〉 = 𝛿𝑠 where 𝛿𝑠 𝑟 = {refl | 𝑟 = 𝑠}.

• Products are given by coproducts in Kl(𝑀), which are in turn given by coproducts in C, which are
pointwise disjoint unions.

• �e object 𝑋 can be wri�en as

𝑋 �
∑︁
𝑠∈𝑆

𝑋 𝑠 · 𝛿𝑠 =
∏
𝑠∈𝑆
〈𝑠〉𝑋 𝑠 . �

Let us consider what this means. By the universal property of the product, the full Hom-structure of
L𝑀 is given by the Hom-sets with codomain 〈𝑠〉 for some 𝑠 ∈ 𝑆 . �ere we have:

HomL𝑀

(∏
𝑟 ∈𝑆
〈𝑟 〉𝑋 𝑟 , 〈𝑠〉

)
� HomL𝑀

(
𝑋, 〈𝑠〉

)
= HomKl(𝑀)

(
𝛿𝑠 , 𝑋

)
= HomC (𝛿𝑠 , 𝑀𝑋 ) � 𝑀𝑋 𝑠,

which we interpreted before as the set of terms of sort 𝑠 with 𝑟 -sorted variables in 𝑋 𝑟 , modulo equality.
More generally, we have

HomL𝑀

(∏
𝑟 ∈𝑆
〈𝑟 〉𝑌 𝑟 ,

∏
𝑠∈𝑆
〈𝑠〉𝑋 𝑠

)
�

∏
𝑠∈𝑆
(𝑀𝑌 𝑠)𝑋 𝑠 = HomC (𝑋,𝑀𝑌 ).

�e identity corresponds to the the tuple of variables, and composition amounts to substitution. �e
functor 𝐽 op

𝑀
: Cop → L𝑀 creates pure morphisms (i.e. morphisms without monadic e�ects), which are

the renamings.

Proposition 5.8. �e category Model(L𝔄) of models of L𝔄 is equivalent to the category of models
Model(𝔄) of 𝔄, and the equivalence commutes with the forgetful functors to C.

Proof. �is follows immediately from the following proposition. �

Proposition 5.9. �e category Model(L𝑀 ) of models of L𝑀 is equivalent to the category EM(𝑀) of
EM-algebras of𝑀 , and the equivalence commutes with the forgetful functors to C.

Proof. → Given a model 𝑇 ∈ Model(L𝑀 ), i.e. a product-preserving functor L𝑀 → Set, we build an
EM-algebra 𝐴. For the carrier, we (must) take 𝐴𝑠 := 𝑇 〈𝑠〉 so that

𝑇

(∏
𝑠∈𝑆
〈𝑠〉𝑋 𝑠

)
�

∏
𝑠∈𝑆

𝑇 〈𝑠〉𝑋 𝑠 =
∏
𝑠∈𝑆
(𝐴𝑠)𝑋 𝑠 = HomC (𝑋,𝐴).

Recall that

𝜄 : HomC (𝑋,𝑀𝑌 ) � HomL

(∏
𝑟 ∈𝑆
〈𝑟 〉𝑌 𝑟 ,

∏
𝑠∈𝑆
〈𝑠〉𝑋 𝑠

)
: 𝑓 ↦→ 𝑓

so that the functorial action of 𝑇 creates an operation

>=>𝐴 : HomC (𝑋,𝑀𝑌 ) → HomC (𝑌,𝐴) → HomC (𝑋,𝐴),
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i.e.𝑇 𝑓 𝑔 = 𝑓 >=>𝐴𝑔. By functoriality and coproduct preservation w.r.t. 𝑋 , >=>𝐴 is a componentwise
application of some ‘𝐴-speci�c bind’ operation

�=𝐴 :
∏
𝑠∈𝑆

𝑀𝑌 𝑠 → HomC (𝑌,𝐴) → 𝐴𝑠,

i.e. (𝑓 >=>𝐴 𝑔) (𝑠, 𝑥) = 𝑓𝑠 (𝑥) �=𝐴𝑠 𝑔.

• Since 𝑇 preserves the identity, we know that 𝜂 >=>𝐴 𝑔 = 𝑔 and hence, applying to 𝑥 , that
𝜂𝑠 (𝑥) �=𝐴𝑠 𝑔 = 𝑔𝑠 (𝑥),

• Since 𝑇 preserves composition, we know that

(𝑓 >=> 𝑔) >=>𝐴 ℎ = 𝑓 >=>𝐴 (𝑔 >=>𝐴 ℎ)

and hence, considered componentwise, that

(𝑚𝑦 �=𝑠 𝑔) �=𝐴𝑠 ℎ =𝑚𝑦 �=𝐴𝑠 (𝑔 >=>𝐴 ℎ).

• By naturality w.r.t. 𝑌 , we know that

(𝑀𝑔 ◦ 𝑓 ) >=>𝐴 ℎ = 𝑓 >=>𝐴 (ℎ ◦ 𝑔)

and hence, considered componentwise, that

(𝑀𝑔)𝑠 (𝑚𝑦) �=𝐴𝑠 ℎ =𝑚𝑦 �=𝐴𝑠 (ℎ ◦ 𝑔).

We now de�ne the algebra morphism

𝛼 : HomC (𝑀𝐴,𝐴) : (𝑠,𝑚𝑎) ↦→𝑚𝑎�=𝐴𝑠 id,

i.e. 𝛼 = id𝑀𝐴 >=>𝐴 id𝐴. �en we have

𝛼𝑠 (𝜂𝑠 (𝑎)) = 𝜂𝑠 (𝑎) �=𝐴𝑠 id = 𝑎,

𝛼𝑠 (𝜇𝑠 (𝑚𝑚𝑎)) = (𝑚𝑚𝑎�=𝑠 id) �=𝐴𝑠 id
=𝑚𝑚𝑎�=𝐴𝑠 (id >=>𝐴

𝑠 id)
=𝑚𝑚𝑎�=𝐴𝑠 𝛼 = (𝑀𝛼)𝑠 (𝑚𝑚𝑎) �=𝐴𝑠 id = (𝛼 ◦𝑀𝛼)𝑠 (𝑚𝑚𝑎),

so indeed we have an EM-algebra for 𝑀 . To see that this constitutes a functor Model(L𝑀 ) →
EM(𝑀), assume a natural transformation 𝜃 : 𝑇 → 𝑇 ′ and write 𝑓 = 𝜃 〈xy〉 : HomC (𝐴,𝐴′). We have

𝑓𝑠 (𝛼𝑠 (𝑚𝑎)) = 𝑓𝑠 (𝑚𝑎�=𝐴𝑠 id) =𝑚𝑎�=𝐴′𝑠 (𝑓 ◦ id) = (𝑀𝑓 )𝑠 (𝑚𝑎) �=𝐴
′

𝑠 id = 𝛼 ′𝑠 ((𝑀𝑓 )𝑠 (𝑚𝑎)) .

← Given an EM-algebra 𝐴 ∈ EM(𝑀), we build a product-preserving functor 𝑇 : L𝑀 → Set. We
de�ne 𝑇

(∏
𝑠∈𝑆 〈𝑠〉𝑋 𝑠

)
:= HomC (𝑋,𝐴). To make this functorial, we require an operation >=>𝐴 as

above, satisfying the identity and composition laws proven above. (�e naturality law follows
automatically as naturality w.r.t. 𝑌 is just composition with a pure morphism.)
We de�ne

𝑓 >=>𝐴 𝑔 := 𝛼 ◦𝑀𝑔 ◦ 𝑓
⇒ 𝑚𝑥 �=𝐴𝑠 𝑔 = (𝛼 ◦𝑀𝑔)𝑠 (𝑚𝑥).

�en we have

𝜂𝑠 (𝑥) �=𝐴𝑠 𝑓 = (𝛼 ◦𝑀𝑓 ◦ 𝜂)𝑠 (𝑥) = (𝛼 ◦ 𝜂 ◦ 𝑓 )𝑠 (𝑚𝑥) = 𝑓𝑠 (𝑚𝑥),
(𝑓 >=> 𝑔) >=>𝐴 ℎ = 𝛼 ◦𝑀ℎ ◦ 𝜇 ◦𝑀𝑔 ◦ 𝑓

= 𝛼 ◦ 𝜇 ◦𝑀𝑀ℎ ◦𝑀𝑔 ◦ 𝑓
= 𝛼 ◦𝑀 (𝛼 ◦𝑀ℎ ◦ 𝑔) ◦ 𝑓
= 𝑓 >=>𝐴 (𝛼 ◦𝑀ℎ ◦ 𝑔) = 𝑓 >=>𝐴 (𝑔 >=>𝐴 ℎ),
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so indeed we have a model of L𝑀 . To see that this constitutes a functor EM(𝑀) → Model(L𝑀 ),
assume an algebra morphism 𝑓 : HomC (𝐴,𝐴′). We shall construct a natural transformation 𝜃 :
𝑇 → 𝑇 ′. On objects, we set 𝜃∏

𝑠∈𝑆 〈𝑠 〉𝑋 𝑠 = (𝑓 ◦ xy) : HomC (𝑋,𝐴) → HomC (𝑋,𝐴′). On morphisms,
we have

𝑓 ◦ (𝑔 >=>𝐴 ℎ) = (𝑓 ◦ 𝛼 ◦𝑀ℎ ◦ 𝑔) = (𝛼 ′ ◦𝑀 (𝑓 ◦ ℎ) ◦ 𝑔) (𝑚𝑥) = 𝑔 >=>𝐴′ 𝑓 ◦ ℎ.

' It is straightforward to check that the two functors constructed above constitute an equivalence of
categoriesModel(L𝑀 ) ' EM(𝑀). �

5.4 Monadic MATs from Lawverian MATs
Proposition 5.10. �e functorMonad(Set𝑆 ) → Law(𝑆) : 𝑀 ↦→ L𝑀 is a 2-equivalence.

Proof. ← To a Lawverian MAT L, we associate a monad𝑀L on C = Set𝑆 given by

• 𝑀L𝑋 𝑠 := HomL
(∏

𝑟 ∈𝑆 〈𝑟 〉𝑋 𝑟 , 〈𝑠〉
)
,

• (𝑀L 𝑓 )𝑠 (𝑚𝑥) :=𝑚𝑥 ◦
∏

𝑟 ∈𝑆 〈𝑟 〉 𝑓 𝑟 =𝑚𝑥 ◦ (𝜋 (𝑟,𝑓𝑟 (𝑥)) ) (𝑟,𝑥)
• 𝜂𝑠 (𝑥) := 𝜋 (𝑠,𝑥) ,
• 𝜇𝑠 (𝑚𝑚𝑥) :=𝑚𝑚𝑥 ◦ (𝑚𝑥) (𝑟,𝑚𝑥) .

�e unit and multiplication are indeed natural:

(𝑀L 𝑓 ◦ 𝜂)𝑠 (𝑥) = (𝑀L 𝑓 )𝑠 (𝜋𝑠,𝑥 ) = 𝜋𝑠,𝑥 ◦ (𝜋𝑟,𝑓𝑟 (𝑥 ′) )𝑟,𝑥 ′ = 𝜋𝑠,𝑓𝑠 (𝑥) = (𝜂 ◦ 𝑓 )𝑠 (𝑥),
(𝑀L 𝑓 ◦ 𝜇)𝑠 (𝑚𝑚𝑥) = (𝑀L 𝑓 )𝑠 (𝑚𝑚𝑥 ◦ (𝑚𝑥)𝑟,𝑚𝑥 )

=𝑚𝑚𝑥 ◦ (𝑚𝑥)𝑟,𝑚𝑥 ◦ (𝜋𝑓𝑞 (𝑥) )𝑞,𝑥 ,
(𝜇 ◦𝑀L𝑀L 𝑓 )𝑠 (𝑚𝑚𝑥) = 𝜇𝑠 (𝑚𝑚𝑥 ◦ (𝜋𝑟,(𝑀L 𝑓 )𝑟 (𝑚𝑥) )𝑟,𝑚𝑥 )

=𝑚𝑚𝑥 ◦ (𝜋𝑟,(𝑀L 𝑓 )𝑟 (𝑚𝑥) )𝑟,𝑚𝑥 ◦ (𝑚𝑦)𝑞,𝑚𝑦

=𝑚𝑚𝑥 ◦ (𝜋𝑟,(𝑀L 𝑓 )𝑟 (𝑚𝑥) ◦ (𝑚𝑦)𝑞,𝑚𝑦)𝑟,𝑚𝑥

=𝑚𝑚𝑥 ◦ ((𝑀L 𝑓 )𝑟 (𝑚𝑥))𝑟,𝑚𝑥

=𝑚𝑚𝑥 ◦ (𝑚𝑥 ◦ (𝜋𝑞,𝑓 (𝑥) )𝑞,𝑥 )𝑟,𝑚𝑥

=𝑚𝑚𝑥 ◦ (𝑚𝑥)𝑟,𝑚𝑥 ◦ (𝜋𝑞,𝑓 (𝑥) )𝑞,𝑥 ,

and satisfy the monad laws:

(𝜇 ◦ 𝜂)𝑠 (𝑚𝑥) = 𝜇𝑠 (𝜋𝑠,𝑚𝑥 ) = 𝜋𝑠,𝑚𝑥 ◦ (𝑚𝑥 ′)𝑟,𝑚𝑥 ′ =𝑚𝑥,

(𝜇 ◦𝑀L𝜂)𝑠 (𝑚𝑥) = 𝜇𝑠 (𝑚𝑥 ◦ (𝜋𝑟,𝜂𝑟 (𝑥) )𝑟,𝑥 )
=𝑚𝑥 ◦ (𝜋𝑟,𝜂𝑟 (𝑥) )𝑟,𝑥 ◦ (𝑚𝑥 ′)𝑞,𝑚𝑥 ′

=𝑚𝑥 ◦ (𝜋𝑟,𝜂𝑟 (𝑥) ◦ (𝑚𝑥 ′)𝑞,𝑚𝑥 ′)𝑟,𝑥
=𝑚𝑥 ◦ (𝜂𝑟 (𝑥))𝑟,𝑥 =𝑚𝑥 ◦ (𝜋𝑟,𝑥 )𝑟,𝑥 =𝑚𝑥 ◦ id =𝑚𝑥,

(𝜇 ◦ 𝜇)𝑠 (𝑚𝑚𝑚𝑥) = 𝜇𝑠 (𝑚𝑚𝑚𝑥 ◦ (𝑚𝑚𝑥)𝑟,𝑚𝑚𝑥 )
=𝑚𝑚𝑚𝑥 ◦ (𝑚𝑚𝑥)𝑟,𝑚𝑚𝑥 ◦ (𝑚𝑥)𝑞,𝑚𝑥

(𝜇 ◦𝑀L𝜇)𝑠 (𝑚𝑚𝑚𝑥) = 𝜇𝑠 (𝑚𝑚𝑚𝑥 ◦ (𝜋𝑟,𝜇𝑟 (𝑚𝑚𝑥) )𝑟,𝑚𝑚𝑥 )
=𝑚𝑚𝑚𝑥 ◦ (𝜋𝑟,𝜇𝑟 (𝑚𝑚𝑥) )𝑟,𝑚𝑚𝑥 ◦ (𝑚𝑥)𝑞,𝑚𝑥

=𝑚𝑚𝑚𝑥 ◦ (𝜋𝑟,𝜇𝑟 (𝑚𝑚𝑥) ◦ (𝑚𝑥)𝑞,𝑚𝑥 )𝑟,𝑚𝑚𝑥

=𝑚𝑚𝑚𝑥 ◦ (𝜇𝑟 (𝑚𝑚𝑥))𝑟,𝑚𝑚𝑥

=𝑚𝑚𝑚𝑥 ◦ (𝑚𝑚𝑥 ◦ (𝑚𝑥)𝑞,𝑚𝑥 )𝑟,𝑚𝑚𝑥

=𝑚𝑚𝑚𝑥 ◦ (𝑚𝑚𝑥)𝑟,𝑚𝑚𝑥 ◦ (𝑚𝑥)𝑞,𝑚𝑥 .

15



Law(𝑆) We can now observe that L ' Kl(𝑀L)op = L𝑀L . Indeed, we have

HomL

(∏
𝑟 ∈𝑆
〈𝑟 〉𝑌 𝑟 ,

∏
𝑠∈𝑆
〈𝑠〉𝑋 𝑠

)
�

∏
𝑠∈𝑆

HomL

(∏
𝑟 ∈𝑆
〈𝑟 〉𝑌 𝑟 , 〈𝑠〉

)
𝑋 𝑠 =

∏
𝑠∈𝑆
(𝑀L𝑌 𝑠)𝑋 𝑠 = HomC (𝑋,𝑀L𝑌 ).

Under this isomorphism,

• the identity morphism at
∏

𝑠∈𝑆 〈𝑠〉𝑋 𝑠 is sent to (𝜆𝑠.𝜆𝑥 .𝜋 (𝑠,𝑥) ) = 𝜂,
• for

𝑓 ∈ HomL

(∏
𝑟 ∈𝑆
〈𝑟 〉𝑌 𝑟 ,

∏
𝑠∈𝑆
〈𝑠〉𝑋 𝑠

)
, 𝑔 ∈ HomL

(∏
𝑟 ∈𝑆
〈𝑟 〉𝑍 𝑟 ,

∏
𝑠∈𝑆
〈𝑠〉𝑌 𝑠

)
,

the composite morphism 𝑓 ◦ 𝑔 is sent to (𝜆𝑠.𝜆𝑥 .𝜋 (𝑠,𝑥) ◦ 𝑓 ◦ 𝑔) which should be equal to the
Kleisli composition of (𝜆𝑠.𝜆𝑥 .𝜋 (𝑠,𝑥) ◦ 𝑓 ) and (𝜆𝑡 .𝜆𝑦.𝜋 (𝑡,𝑦) ◦ 𝑔).

(𝜆𝑠.𝜆𝑥 .𝜋 (𝑠,𝑥) ◦ 𝑓 ) >=> (𝜆𝑡 .𝜆𝑦.𝜋 (𝑡,𝑦) ◦ 𝑔)
= 𝜇 ◦𝑀L (𝜆𝑡 .𝜆𝑦.𝜋 (𝑡,𝑦) ◦ 𝑔) ◦ (𝜆𝑠.𝜆𝑥 .𝜋 (𝑠,𝑥) ◦ 𝑓 ) (Def. >=>)
= 𝜆𝑠.𝜆𝑥 .(𝜇 ◦𝑀L (𝜆𝑡 .𝜆𝑦.𝜋 (𝑡,𝑦) ◦ 𝑔) ◦ (𝜆𝑠 ′.𝜆𝑥 ′.𝜋 (𝑠′,𝑥 ′) ◦ 𝑓 ))𝑠 (𝑥) (𝜂-expand function)
= 𝜆𝑠.𝜆𝑥 .(𝜇 ◦𝑀L (𝜆𝑡 .𝜆𝑦.𝜋 (𝑡,𝑦) ◦ 𝑔))𝑠 (𝜋 (𝑠,𝑥) ◦ 𝑓 ) (Apply last function)

= 𝜆𝑠.𝜆𝑥 .𝜇𝑠

(
𝜋 (𝑠,𝑥) ◦ 𝑓 ◦ (𝜋𝑡,𝜋 (𝑡,𝑦)◦𝑔) (𝑡,𝑦)

)
(Map over𝑀L)

= 𝜆𝑠.𝜆𝑥 .𝜋 (𝑠,𝑥) ◦ 𝑓 ◦ (𝜋𝑡,𝜋 (𝑡,𝑦)◦𝑔) (𝑡,𝑦) ◦ (𝑚𝑧) (𝑢,𝑚𝑧) (Def. 𝜇)
= 𝜆𝑠.𝜆𝑥 .𝜋 (𝑠,𝑥) ◦ 𝑓 ◦ (𝜋𝑡,𝜋 (𝑡,𝑦)◦𝑔 ◦ (𝑚𝑧) (𝑢,𝑚𝑧) ) (𝑡,𝑦) (Precompose componentwise)
= 𝜆𝑠.𝜆𝑥 .𝜋 (𝑠,𝑥) ◦ 𝑓 ◦ (𝜋 (𝑡,𝑦) ◦ 𝑔)𝑡,𝑦 (Projection from tuple)
= 𝜆𝑠.𝜆𝑥 .𝜋 (𝑠,𝑥) ◦ 𝑓 ◦ 𝑔. (𝜂-contract tuple)

So indeed L ' Kl(𝑀L)op = L𝑀L .
�is equivalence is natural w.r.t. L: if we have a morphism of Lawverian MATs 𝐿 : L → L ′, then
we get a monad morphism 𝜔𝐿 : 𝑀L → 𝑀L′ : C → C such that (𝜔𝐿)𝑠 (𝑚𝑥) = 𝐿𝑚𝑥 . �is leads to a
functor 𝐿𝜔𝐿

: L𝑀L → L𝑀L′ which is easily seen to �t in a commutative diagram

L ' //

𝐿

��

L𝑀L

𝐿𝜔𝐿

��
L ′ ' // L𝑀L′ .

Monad(Set𝑆 ) For any monadic MAT 𝑀 , we have an isomorphism of monads 𝑀 � 𝑀L𝑀
. Indeed, we

have

𝜄𝑠 : 𝑀L𝑀
𝑋 𝑠 = HomL𝑀

(∏
𝑟 ∈𝑆
〈𝑟 〉𝑋 𝑟 , 〈𝑠〉

)
= HomKl(𝑀)

(
𝛿𝑠 ,

∑︁
𝑟 ∈𝑆

𝑋 𝑟 · 𝛿𝑟

)
� 𝑀𝑋 𝑠.
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Writing a prime (′) for the operations of𝑀L𝑀
, we have

𝜄𝑠 (𝜂 ′𝑠 (𝑥)) = 𝜄𝑠 (𝜋L𝑀
𝑠,𝑥 ) = 𝜄 (𝜄

Kl(𝑀)
𝑠,𝑥 ) = 𝜂𝑠 (𝑥) ∈ 𝑀𝑋 .

=𝑚𝑚𝑥 >=> [𝑚𝑥]𝑟,𝑚𝑥

𝜄𝑠 (𝑚𝑥 �=′𝑠 𝑓 ) = (𝜄 ◦ 𝜇 ′ ◦𝑀 ′𝑓 )𝑠 (𝑚𝑥)
= (𝜄 ◦ 𝜇 ′)𝑠 (𝑚𝑥 ◦ (𝜋𝑟,𝑓 (𝑥) )𝑟,𝑥 )
= 𝜄𝑠 (𝑚𝑥 ◦ (𝜋𝑟,𝑓 (𝑥) )𝑟,𝑥 ◦ (𝑚𝑦)𝑡,𝑚𝑦)
= 𝜄𝑠 (𝑚𝑥 ◦ (𝜋𝑟,𝑓 (𝑥) ◦ (𝑚𝑦)𝑡,𝑚𝑦)𝑟,𝑥 )
= 𝜄𝑠 (𝑚𝑥 ◦ (𝑓 (𝑥))𝑟,𝑥 )
= 𝜄𝑠 ( [𝑓 (𝑥)]𝑟,𝑥 ◦𝑚𝑥) dualize
= 𝜄𝑠 (𝑚𝑥) �=𝑠 (𝜄 ◦ 𝑓 ).

�is isomorphism of monads is easily seen to be natural w.r.t. 𝑀 . �

5.5 �e KEML-diagram for MATs
We can summarize our �ndings about MATs in a diagram. Assume that a monadic MAT𝑀 and a Lawve-
rian MAT L correspond. �en we obtain a commuting diagram as follows:

Set𝑆 𝑀 //

𝐽𝑀 ##
𝑋 ↦→∏

𝑠∈𝑆 〈𝑠 〉𝑋 𝑠

��

Set𝑆

Kl(𝑀)
𝑋 ↦→(𝑀𝑋,𝜇) // EM(𝑀)

𝑈

88

'

Lop

'

HomL
// Model(L)

𝑈 :𝑇 ↦→𝜆𝑠.𝑇 〈𝑠 〉

OO

�e existence of each of the arrows is clear; in the case of the equivalence Lop ' Kl(𝑀) it follows from
the correspondence of L and𝑀 (propositions 5.7 and 5.10). �e commutation of the triangle on the le� is
clear by construction of L𝑀 (proposition 5.7). Commutation of the upper trapezium is a general theorem
about monads. Commutation of the right triangle follows from proposition 5.9, and commutation of the
lower trapezium follows from its proof.

5.6 Discussion
5.6.1 �e Empty MAT presentation

A MAT presentation with zero operators gives rise to the identity monad.

• �en 𝐽Id : Set𝑆 � Kl(Id) is an isomorphism,

• In the Lawverian MAT, all morphisms are tuples of projections, so that 𝑋 ↦→ ∏
𝑠∈𝑆 〈𝑠〉𝑋 𝑠 : Set𝑆 '

Lop is an equivalence,

• Being an EM-algebra is void, so𝑈 : EM(Id) � Set𝑆 is an isomorphism,

• Product preservation determines𝑇 ∈ Model(L) fully from all𝑇 〈𝑠〉 so𝑈 : Model(L) ' Set𝑆 : 𝑇 ↦→
𝜆𝑠.𝑇 〈𝑠〉 is an equivalence,

• �en HomL : Lop ' Model(L) is also an equivalence.
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6 Essentially andGeneralizedAlgebraic�eories (EATs andGATs)
EATs [AHR99, nLa21] di�er from MATs (only) in that operations may be partial: they may require that
the arguments satisfy certain equalities depending on them.

GATs [Car86, Car78] di�er from MATs in that sorts can now be dependent. With a trick2, we can
moreover allow GAT operations to be partial like EAT operations.

In both cases, the consequence is that the arity (by now be�er called premise) of an operator may
mention operators. �e question is then: do we allow circular dependencies? In Cartmell’s original de�ni-
tion of GATs [Car86, Car78], this is allowed. In Adámek et al.’s de�nition of EATs, it is not. We observe
that circular dependencies are not allowed in contemporary approaches such as Kaposi and Kovács’ for-
malization of HIITs [KK18] and will not allow it here either. By consequence and in line with [KKA19],
we will discuss the algebraic aspects of EATs/GATs by induction on the number of operators.

In fact, we will not really discuss GATs at all: as already observed by Cartmell [Car86], GATs are
essentially EATs. Indeed, by replacing every dependent sort with a non-dependent sort that we think of
as its total space, turning the dependencies into operations (to be thought of as projections from the total
space), we obtain an EAT. For example, when we formalize dependent type theory, instead of having a
sort Ty(Γ) depending on a context Γ, we would have an operation getCtx : Ty→ Ctx.

Overview We de�ne EAT presentations (de�nition 6.1), monadic EATs (de�nition 6.2) and Lawverian
EATs (de�nition 6.5). We prove:

• An EAT presentation may give rise to a monadic EAT (de�nition 6.3) with the same models (propo-
sition 6.4).

• Every monadic EAT gives rise to a Lawverian EAT (proposition 6.6) with the same models (propo-
sition 6.7).

• Monadic and Lawverian EATs are essentially the same thing (proposition 6.8).

We summarize in a diagram (section 6.5).

6.1 EAT Presentations
We give a more general de�nition of EAT presentations than Adámek et al. [AHR99]; our de�nition
reduces to theirs if the prior theory is a MAT.

De�nition 6.1. An essentially algebraic theory presentation 𝔄 consists of:

• a set of sorts 𝑆𝔄

• a prior EAT or MAT𝔓 such that 𝑆𝔓 = 𝑆𝔄 ,

• for each arity ®𝑟 ∈ List 𝑆 , output sort 𝑠 ∈ 𝑆 and list of conditions 𝐾 ∈ 𝐶𝔓(®𝑟 ), a set of operators
𝑂𝔄 (®𝑟, 𝑠, 𝐾),

𝑂𝔄 : (®𝑟 ∈ List 𝑆) × (𝑠 ∈ 𝑆) ×𝐶𝔓(®𝑟 ) → Set.

�e set 𝐶𝔓(®𝑟 ) = {[]} isd de�ned below;

• for each arity ®𝑟 ∈ List 𝑆 , output sort 𝑠 ∈ 𝑆 and list of conditions 𝐾 ∈ 𝐶𝔓(®𝑟 ), a set of axioms, which
are pairs (𝑡1, 𝑡2), denoted as 𝑡1 = 𝑡2:

𝐸𝔄 : (®𝑟 ∈ List 𝑆) × (𝑠 ∈ 𝑆) × (𝐾 ∈ 𝐶𝔓(®𝑟 )) → P
(
𝑇𝔄 (®𝑟, 𝑠, 𝐾)2

)
.

Note that the conditions are phrased in the prior theory, whereas the axioms are phrased in the current
theory.

2by including sorts of equality proofs
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An ®𝑟 -ary term of output sort 𝑠 and conditions 𝐾 is inductively de�ned to be either a metavariable
m𝑖 where 𝑟𝑖 = 𝑠 , or an expression of the form 𝑜 (𝑡1, . . . , 𝑡𝑘 ), where 𝑜 has arity ®𝑞 of length 𝑘 , conditions 𝐿
and output sort 𝑠 and every 𝑡𝑖 is an ®𝑟 -ary term of output sort 𝑞𝑖 with conditions 𝐾 , and the conditions
𝐿[𝑡1, . . . , 𝑡𝑘 ] need to follow from 𝐾 :

𝑇𝔄 (®𝑟, 𝑠, 𝐾) = {m𝑖 | 𝑟𝑖 = 𝑠} ]
∑︁

®𝑞∈List𝐴,𝐿∈𝐶𝔓 ( ®𝑞),𝑜∈𝑂𝔄 ( ®𝑞,𝑠,𝐿)
{(𝑡1, . . . , 𝑡𝑘 ) | 𝑡𝑖 ∈ 𝑇𝔄 (®𝑟, 𝑞𝑖 , 𝐾) and𝐾 ⇒ 𝐿[𝑡1, . . . , 𝑡𝑘 ]}.

Let us not dwell on the meaning of substitution and implication of conditions.
�e set of lists of conditions 𝐶𝔓(®𝑟 ) is de�ned as follows:

• If𝔓 is a MAT, then it is the following least �xpoint:

𝐶𝔓(®𝑟 ) = {[]} ]
{
(𝐾, (𝑡1, 𝑡2))

��𝐾 ∈ 𝐶𝔓(®𝑟 ) and 𝑠 ∈ 𝑆 and 𝑡1, 𝑡2 ∈ 𝑇𝔓(®𝑟, 𝑠)
}
� List

∑︁
𝑠∈𝑆
(𝑇𝔓(®𝑟, 𝑠))2.

• If𝔓 is an EAT with prior theory𝔔, then it is the following least �xpoint:

𝐶𝔓(®𝑟 ) = 𝐶𝔔 (®𝑟 ) ]
{
(𝐾, (𝑡1, 𝑡2))

��𝐾 ∈ 𝐶𝔓(®𝑟 ) and 𝑠 ∈ 𝑆 and 𝑡1, 𝑡2 ∈ 𝑇𝔓(®𝑟, 𝑠, 𝐾)
}
.

In case 𝔄 occurs as a prior theory to another EAT, we need to de�ne the set of lists of conditions
𝐶𝔄 (®𝑟 ). We de�ne it as the following least �xpoint:

𝐶𝔄 (®𝑟 ) = 𝐶𝔓(®𝑟 ) ] {(𝐾, (𝑡1, 𝑡2)) |𝐾 ∈ 𝐶𝔄 (®𝑟 ) and 𝑠 ∈ 𝑆 and 𝑡1, 𝑡2 ∈ 𝑇𝔄 (®𝑟, 𝑠, 𝐾)}.

An algebra or model 𝐴 of 𝔄 is a model of𝔓 equipped with functions

È𝑜É :
{
®𝑎 ∈

∏
𝑖

𝐴𝑟𝑖

�����∀(𝑡1, 𝑡2) ∈ 𝐾.È𝑡1É®𝑎 = È𝑡2É®𝑎

}
→ 𝐴𝑠

for every 𝑜 ∈ 𝑂𝔄 (®𝑟, 𝑠, 𝐾), satisfying the axioms. Given ®𝑎 = (𝑎1, . . . , 𝑎𝑛) ∈
∏

𝑖 𝐴𝑟𝑖 , the interpretation of an
®𝑟 -ary term 𝑡 is de�ned recursively by È𝑜 (𝑡1, . . . , 𝑡𝑘 )É®𝑎 = È𝑜É(È𝑡1É®𝑎, . . . , È𝑡𝑘É®𝑎) and Èm𝑖É®𝑎 = 𝑎𝑖 . We say
that 𝐴 satis�es the axiom 𝑡1 = 𝑡2 of arity ®𝑟 and conditions 𝐾 if È𝑡1É®𝑎 = È𝑡2É®𝑎 for all ®𝑎 ∈ ∏

𝑖 𝐴𝑟𝑖 satisfying
𝐾 .

A morphism of algebras/models is a morphism in Model(P) such that 𝑓𝑠 ◦ È𝑜É = È𝑜É ◦∏
𝑖 𝑓𝑟𝑖 :∏

𝑖 𝐴𝑟𝑖 → 𝐵 for every ®𝑟 -ary operator 𝑜 of sort 𝑠 .
�e syntax of 𝔄 is the initial object of the category of 𝔄-models. It is the 𝑆-indexed set of nullary

terms of 𝔄, divided by the equivalence relation generated by the axioms.

Note that if the prior theory is empty, then there can be no conditions so the EAT is really a MAT. In
this sense, instead of allowing the prior theory to be a MAT, we could allow it to be the empty EAT.

6.1.1 Type Analogy

EATs can be thought of as mutual quotient inductive types (of the EAT’s terms) in a dependently typed
language.

GATs can be thought of as quotient inductive-inductive types [KK18, KKA19] (of the GAT’s terms) in
a dependently typed language.

6.1.2 Examples

• Category theory is an EAT, with as prior theory the theory of re�exive graphs, which is an instance
of a presheaf theory and therefore an example of a MAT.

• Dependent type theory is a GAT and therefore an EAT, which needs to be constructed incremen-
tally: a non-equational rule that mentions other rules, can only be wri�en down when these other
rules are part of the prior theory.
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6.2 Monadic EATs
De�nition 6.2. Amonadic EAT with prior monadic MAT or EAT𝑀0 is a monad on C := EM(𝑀0).

Note that if the prior theory𝑀0 is the identity at Set𝑆 , corresponding to the empty presentation, then
EM(𝑀0) � Set𝑆 , so an EAT over the empty MAT is just a MAT itself.

De�nition 6.3. To an EAT presentation 𝔄 over 𝔓, we associate, if existent, the monad 𝑀𝔄 on EM(𝔓)
which sends 𝑋 ∈ EM(𝔓) to the initial 𝔄-algebra over 𝑋 .

Proposition 6.4. �e category EM(𝑀𝔄) of Eilenberg-Moore algebras of𝑀𝔄 is isomorphic to the category
Model(𝔄) of models of 𝔄, and the isomorphism commutes with the forgetful functors to C on the nose.

�

6.2.1 �e In�xed Monad is Uninteresting

Note that the monad 𝑀0 decomposes as an adjunction 𝐹𝑀0 a 𝑈𝑀0 over EM(𝑀0) and similarly 𝑀 decom-
poses as an adjunction 𝐹𝑀 a 𝑈𝑀 over EM(𝑀). Decomposing these adjunctions yields a new monad
𝑁 = 𝑈𝑀0𝑈𝑀𝐹𝑀𝐹𝑀0 = 𝑈𝑀0𝑀𝐹𝑀0 which again has an EM-category EM(𝑁 ). It is natural to ask how all
these relate.

It is well-known that the EM-adjunction is the �nal adjoint decomposition of any monad, hence we
have a functor 𝐻 : EM(𝑀) → EM(𝑁 ) such that 𝐻𝐹𝑀𝐹𝑀0 = 𝐹𝑁 and 𝑈𝑁𝐻 = 𝑈𝑀0𝑈𝑀 . However, 𝐻 is not
in general an equivalence and moreover, neither the monad 𝑁 nor its EM-category is a general object of
interest.

Indeed, consider the example where 𝑀0 : Set2 → Set2 sends a pair of sets 𝑋0 = (𝑁, 𝐸) to the free
re�exive graph with generating nodes in 𝑁 and generating edges in 𝐸. Note that the graph 𝑀0𝑋0 is
completely unconnected: every non-re�exive edge has its own private source and target. Now EM(𝑀0)
is the category of re�exive graphs; let𝑀 : EM(𝑀0) → EM(𝑀0) send a graph 𝑋 to the free category over
it. �en EM(𝑀) is the category of categories.

Now the monad 𝑁 = 𝑈𝑀0𝑀𝐹𝑀0 sends a pair of sets 𝑋0 to the carrier of the free category over the free
graph over 𝑋0. But the free graph is unconnected and therefore has no candidates for composition. As
such, 𝑀𝐹𝑀0 � 𝐹𝑀0 and 𝑁 � 𝑀0 and by consequence, EM(𝑁 ) � EM(𝑀0) is again just the category of
re�exive graphs.

�is is remarkable: what distinguishes an EAT from aMAT is perhaps that its category of models is
not the Eilenberg-Moore category of the ‘free model’ monad, at least not over Set𝑆 . �e decompo-
sition of the adjunction here seems crucial. From this I conclude that we should not want to de�ne EATs
(or GATs) in a single stroke.

6.2.2 Two-Stage EATs are Insu�cient in Practice

Adámek et al.’s de�nition of an EAT [AHR99, nLa21] requires that the prior mode be a MAT. As explained
above, this means that the category of models is an EM-category over an EM-category over Set𝑆 .

We give an example of a theory that apparently needs to be de�ned in three stages: the theory of
skeletal categories. A category is skeletal if every isomorphism is an identity. Let𝑀0 be the monadic MAT
of re�exive graphs, 𝑀1 over EM(𝑀0) the monadic EAT of categories, and 𝑀 over EM(𝑀1) the monadic
EAT of skeletal categories. We already know that in�xing𝑀0 with𝑀1 just yields𝑀0 again. A similar thing
is observed for 𝑀1 and 𝑀 : a category of the form 𝐹𝑀1𝑋 , i.e. a free category over some re�exive graph,
is automatically skeletal, so 𝑀𝐹𝑀1 � 𝐹𝑀1 . What this shows is that it is pointless to consider skeletality
without �rst knowing that a graph is a category, and pointless to consider categoryhood without �rst
knowing that a pair of sets constitutes a graph. �e theory of skeletal categories is a three-stage EAT and
as such, two-stage EATs are not good enough for all intents and purposes.

Note that we are not making a formal claim. In particular, we have not proven that the category
EM(𝑀) of skeletal categories cannot be equivalently obtained as the EM-category EM(𝑁 ) of somemonadic
EAT 𝑁 over some EM-category EM(𝑁0) of some monadic MAT 𝑁0 over Set𝑆 ; in fact it can as we will see
in section 6.3.1. However, though such a construction technically possible, it is not entirely clear why
we would want this: graphs and categories are excellent intermediate concepts between pairs of sets and

20



skeletal categories. In general, one could draw up graphs with powers of sets at the roots, where each
branch corresponds to an EAT (i.e. an added feature) and each non-root node is an EM-category. We can
at least remark that there may be multiple paths from a given root to a given node (e.g. we can pass from
pairs of sets to re�exive graphs directly or we can pass by ordinary graphs).

In this text, we treat �nite-stage EATs; we have not considered whether there is ever a need for
trans�nite-stage EATs.

6.3 Lawverian EATs from Monadic EATs
De�nition 6.5. A Lawverian EAT is a category L equipped with:

• a prior Lawverian MAT or EAT S,

• a functor 〈xy〉 : S → L respecting the speci�c products/limits that S is equipped with (called
prior limits),

• it has limits of the form lim(𝑠,𝑥) ∈∫S 𝑋 〈𝑠〉 for 𝑋 ∈ Model(S) (called current limits), algebraically,

• every object is an (algebraically obtained) current limit up to a designated isomorphism (i.e. we have
an operation to reconstruct any object as an algebraically obtained current limit up to a designated
isomorphism).

A morphism of Lawverian EATs with prior theory S is a current limit, 〈xy〉 and reconstruction pre-
serving functor L → L ′. �is constitutes a 2-category Law(S).

Amodel of L is a functor L → Set preserving current limits. �e forgetful functor𝑈 : Model(L) →
Model(S) is de�ned by𝑈 𝑇 = 𝑇 ◦ 〈xy〉.

Other authors [nLa21] instead simply consider categories that have (�nite) limits. We force things a
bit to make Lop equivalent to the Kleisli category of the corresponding monadic EAT.

Proposition 6.6. Every monadic MAT 𝑀 with prior monadic theory 𝑀0 : C0 → C0 gives rise to a
Lawverian MAT L𝑀 with corresponding prior monadic theory S.

Construction. From section 5 (if 𝑀0 is a MAT) or from the current section by induction on the length
of the chain of prior theories (if 𝑀0 is an EAT), we know that EM(𝑀0) ' Model(S), which is a fully
faithful subcategory of Psh(Sop) = SetS . Working in the full presheaf category, any presheaf 𝑋 can be
reconstructed as a colimit of representables:

𝑋 � colim
(𝑠,𝑥) ∈

∫
S 𝑋

y(𝑠).

Note also that y(𝑠) = HomS (𝑠, xy) : S → Set preserves all limits. Since the embedding is fully faithful,
one can see that 𝑋 also satis�es the universal property of the colimit in Model(S). For simplicity, we
shall pretend that𝑀 is a monad on Model(S).

We de�ne L𝑀 := Kl(𝑀)op, the opposite Kleisli category of𝑀 :

• We de�ne 〈𝑠〉 = y(𝑠).

• Limits are given by colimits in Kl(𝑀), which are in turn given by colimits inModel(S) (since 〈xy〉
factors over 𝐽𝑀 ), which need not exist. However, as discussed above, the ones we need to have
current limits in L𝑀 do exist.

• �e object 𝑋 can be wri�en as

𝑋 � colim
(𝑠,𝑥) ∈

∫
S 𝑋

y(𝑠) = lim
(𝑠,𝑥) ∈

∫
S 𝑋

y(𝑠) = lim
(𝑠,𝑥) ∈

∫
S 𝑋
〈𝑠〉. �
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Let us consider what this means. By the universal property of the limit, the full Hom-structure of L𝑀

is given by the Hom-sets with codomain in the image of 〈xy〉. (We need to include the functorial action
of Hom and 〈xy〉, i.e. we need to consider the family of Hom-sets of a given domain as a presheaf over
S.) We have:

HomL𝑀

(
lim

(𝑟,𝑥) ∈
∫
S 𝑋
〈𝑟 〉, 〈𝑠〉

)
� HomL𝑀

(
𝑋, 〈𝑠〉

)
= HomKl(𝑀)

(
y𝑠, 𝑋

)
= HomC (y𝑠, 𝑀𝑋 ) � 𝑀𝑋 𝑠,

which we can think of as the set of terms of (generalized) sort3 𝑠 with 𝑟 -sorted variables in 𝑋 𝑟 , modulo
equality. More generally, we have

HomL𝑀

(
lim

(𝑟,𝑦) ∈
∫
S 𝑌
〈𝑟 〉, lim

(𝑠,𝑥) ∈
∫
S 𝑋
〈𝑠〉

)
� lim
(𝑠,𝑥) ∈

∫
S 𝑋
(𝑀𝑌 𝑠) � HomC (𝑋,𝑀𝑌 ).

�e identity corresponds to the the tuple of variables variables4, and composition amounts to substitution.
�e functor 𝐽 op

𝑀
: Cop → L𝑀 creates pure morphisms (i.e. morphisms without e�ects in the current

monadic EAT 𝑀 but perhaps with e�ects in 𝑀0), which are renamings and substitutions with terms
of the prior theory.
Proposition 6.7. �e category Model(L𝑀 ) of models of L𝑀 is equivalent to the category EM(𝑀) of
EM-algebras of𝑀 , and the equivalence commutes with the forgetful functors to C.
Proof. We continue to pretend that𝑀 is a monad on Model(S).
→ Given a model 𝑇 ∈ Model(L𝑀 ), i.e. a current-limit-preserving functor L𝑀 → Set, we build an

EM-algebra 𝐴 ∈ EM(𝑀). For the carrier, we (must) take 𝐴 := 𝑇 ◦ 〈xy〉 : S → Set so that

𝑇

(
lim

(𝑠,𝑥) ∈
∫
S 𝑋
〈𝑠〉

)
� lim
(𝑠,𝑥) ∈

∫
S 𝑋
𝑇 〈𝑠〉 = lim

(𝑠,𝑥) ∈
∫
S 𝑋

𝐴𝑠 � HomC (𝑋,𝐴).

Recall that

𝜄 : HomC (𝑋,𝑀𝑌 ) � HomL

(
lim

(𝑟,𝑦) ∈
∫
S 𝑌
〈𝑟 〉, lim

(𝑠,𝑥) ∈
∫
S 𝑋
〈𝑠〉

)
: 𝑓 ↦→ 𝑓

so that the functorial action of 𝑇 creates an operation

>=>𝐴 : HomC (𝑋,𝑀𝑌 ) → HomC (𝑌,𝐴) → HomC (𝑋,𝐴),
i.e.𝑇 𝑓 𝑔 = 𝑓 >=>𝐴𝑔. By functoriality and coproduct preservation w.r.t. 𝑋 , >=>𝐴 is a componentwise
application of some ‘𝐴-speci�c bind’ operation (where ∀ denotes an end)

�=𝐴 : ∀(𝑠 ∈ 𝑆).𝑀𝑌 𝑠 → HomC (𝑌,𝐴) → 𝐴𝑠,

i.e. (𝑓 >=>𝐴 𝑔) (𝑠, 𝑥) = 𝑓𝑠 (𝑥) �=𝐴𝑠 𝑔.
�e rest of the reasoning could be copied verbatim from proposition 5.9.

← Given an EM-algebra 𝐴 ∈ EM(𝑀), we build a current-limit-preserving functor 𝑇 : L𝑀 → Set. We
de�ne 𝑇

(
lim(𝑠,𝑥) ∈∫S 𝑋 〈𝑠〉

)
:= HomC (𝑋,𝐴).

�e reasoning to make this functorial could be copied verbatim from proposition 5.9.
To see that this constitutes a functor EM(𝑀) → Model(L𝑀 ), assume an algebra morphism 𝑓 :
HomC (𝐴,𝐴′). We shall construct a natural transformation 𝜃 : 𝑇 → 𝑇 ′. On objects, we set
𝜃 lim(𝑠,𝑥 )∈∫S 𝑋 〈𝑠 〉 = (𝑓 ◦ xy) : HomC (𝑋,𝐴) → HomC (𝑋,𝐴′). On morphisms, we have

𝑓 ◦ (𝑔 >=>𝐴 ℎ) = (𝑓 ◦ 𝛼 ◦𝑀ℎ ◦ 𝑔) = (𝛼 ′ ◦𝑀 (𝑓 ◦ ℎ) ◦ 𝑔) (𝑚𝑥) = 𝑔 >=>𝐴′ 𝑓 ◦ ℎ.

' It is straightforward to check that the two functors constructed above constitute an equivalence of
categoriesModel(L𝑀 ) ' EM(𝑀). �

3Here, 𝑠 is really an object of the prior theory. If that theory is a MAT, then 𝑠 is a product of sorts. If it is an EAT, then 𝑠 is a
limit of generalized sorts.

4�ese are to generalized sorts what variables are to sorts.
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6.3.1 Two-stage EATs are Su�cient in �eory

From proposition 6.7, we know that the EM-category EM(𝑀) of any monadic EAT 𝑀 , de�ned in any
number of stages, is equivalent to the category Model(L𝑀 ) of current-limit-preserving functors L𝑀 →
Set.

Now Psh(Lop
𝑀
) = SetL𝑀 is the EM-category of the free presheaf monad 𝑀0 on SetObj(L𝑀 ) , which

is a monadic MAT. �ere is an EAT on EM(𝑀0) � Psh(Lop
𝑀
) which enforces preservation of current

limits by adding an operation for creating compatible tuples in the images of current-limit-objects in
L𝑀 and enforing 𝛽- and 𝜂-rules. �is gives rise to an (idempotent) monad 𝑀1 on EM(𝑀0) such that
EM(𝑀1) � Model(L𝑀 ) ' EM(𝑀).

�us, we have decomposed𝑀 as a two-stage EAT.�e fact that this is possible in general is doubtlessly
useful in the mathematical analysis of the concept of an EAT, but seems less useful in practice. Indeed, the
intermediate concept of presheaves over Lop

𝑀
' Kl(𝑀) does not seem very interesting. Objects of L𝑀 can

be seen as arities-with-conditions, and a presheaf over Lop
𝑀

that does not preserve limits is essentially a
model of𝑀 which has not only a set of terms for every sort, but also for every arity-with-conditions, with
the �aw that neither existence nor uniqueness of compatible tuple objects at these arities is guaranteed.
Moreover, this two-stage decomposition is not even canonical: if we apply the algorithm described above
to its own output, we arrive at a more complicated decomposition.

6.4 Monadic EATs from Lawverian EATs
Proposition 6.8. �e functor Monad(Model(S)) → Law(S) : 𝑀 ↦→ L𝑀 is a 2-equivalence.

Proof. We continue to pretend that𝑀 is a monad on Model(S).

← To a Lawverian EAT L, we associate a monad𝑀L on C = Model(S) given by

• 𝑀L𝑋 𝑠 := HomL
(
lim(𝑟,𝑥) ∈∫S 𝑋 〈𝑟 〉, 〈𝑠〉

)
,

• (𝑀L 𝑓 )𝑠 (𝑚𝑥) :=𝑚𝑥 ◦ (𝜋 (𝑟,𝑓𝑟 (𝑥)) ) (𝑟,𝑥)
• 𝜂𝑠 (𝑥) := 𝜋 (𝑠,𝑥) ,
• 𝜇𝑠 (𝑚𝑚𝑥) :=𝑚𝑚𝑥 ◦ (𝑚𝑥) (𝑟,𝑚𝑥) .

�e checking of naturality and monad laws could be copied verbatim from proposition 5.10.

Law(S) We can now observe that L ' Kl(𝑀L)op = L𝑀L . Indeed, we have

HomL

(
lim

(𝑟,𝑦) ∈
∫
S 𝑌
〈𝑟 〉, lim

(𝑠,𝑥) ∈
∫
S 𝑋
〈𝑠〉

)
� lim
(𝑠,𝑥) ∈

∫
S 𝑋

HomL

(
lim

(𝑟,𝑦) ∈
∫
S 𝑌
〈𝑟 〉, 〈𝑠〉

)
= lim
(𝑠,𝑥) ∈

∫
S 𝑋

𝑀L𝑌 𝑠 � HomC (𝑋,𝑀L𝑌 ).

�e argument that this isomorphism respects identity and composition could be copied verbatim
from proposition 5.10. �e same holds for the argument that this isomorphism is natural w.r.t. L.

Monad(Model(S)) For any monadic EAT 𝑀 , we have an isomorphism of monads 𝑀 � 𝑀L𝑀
. Indeed,

we have

𝜄𝑠 : 𝑀L𝑀
𝑋 𝑠 = HomL𝑀

(
lim

(𝑟,𝑥) ∈
∫
S 𝑋
〈𝑟 〉, 〈𝑠〉

)
= HomKl(𝑀)

(
y𝑠, colim
(𝑟,𝑥) ∈

∫
S 𝑋

y𝑟

)
� HomKl(𝑀) (y𝑠, 𝑋 ) � 𝑀𝑋 𝑠.

�e argument that this isomorphism respects the monad operations and is natural w.r.t. 𝑀 could
be copied verbatim from proposition 5.10. �
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6.5 �e KEML-diagram for EATs
We can summarize our �ndings about EATs in a diagram. Assume that a monadic EAT 𝑀 with prior
theory 𝑀0 and a Lawverian EAT L with corresponding prior theory S correspond. �en we obtain a
commuting diagram as follows, featuring in the upper le� triangle a part of the KEML-diagram of the
prior theory:

Kl(𝑀0)
𝑋 ↦→(𝑀0𝑋,𝜇0) //

'

EM(𝑀0)
𝑀 //

𝐽𝑀

��

EM(𝑀0)
'

Model(𝑆)

𝑋 ↦→lim(𝑠,𝑥 )∈∫S 𝑋 〈𝑠 〉

��

'

Model(𝑆)

Sop

y=HomS

99

〈xy〉 %%

Kl(𝑀)
𝑋 ↦→(𝑀𝑋,𝜇) // EM(𝑀)

𝑈

OO

'

Lop

'

HomL
// Model(L)

𝑈 :𝑇 ↦→𝑇 ◦〈xy〉

OO

�e existence of each of the arrows is clear; in the case of the equivalenceLop ' Kl(𝑀) it follows from the
correspondence of L and 𝑀 (propositions 6.6 and 6.8). �e analogous equivalences for S and 𝑀0 follow
from the KEML-diagram of the prior theory. Commutation of the triangle out ofSop and the parallelogram
right next to it, is clear by construction of L𝑀 (proposition 6.6). Commutation of the upper square is a
general theorem about monads. Commutation of the right parallelogram follows from proposition 6.7,
and commutation of the lower trapezium follows from its proof.

6.6 Discussion
6.6.1 �e Empty EAT presentation

An EAT presentation with zero operators other than those in the prior theory gives rise to the identity
monad𝑀 = Id on C = EM(𝑀0).

• �en 𝐽Id : EM(𝑀0) � Kl(𝑀) is an isomorphism,

• In the Lawverian EAT, all morphisms are obtained from projections, tupling and prior operations,
so that 𝑋 ↦→ lim(𝑠,𝑥) ∈∫S 𝑋 〈𝑠〉 : EM(𝑀0) ' Lop is an equivalence,

• Being an EM-algebra for𝑀 = Id is void, so𝑈 : EM(𝑀) � EM(𝑀0) is an isomorphism,

• Current limit preservation determines 𝑇 ∈ Model(L) fully from 𝑇 ◦ 〈xy〉 so 𝑈 : Model(L) '
EM(𝑀0) : 𝑇 ↦→ 𝜆𝑠.𝑇 〈𝑠〉 is an equivalence,

• �en HomL : Lop ' Model(L) is also an equivalence.

6.6.2 Self-Prior Lawverian EATs

Especially if we look at Lawverian EATs, it is tempting to ask if we can set 〈xy〉 = Id : S → L so that we
can take limits involving new operations, perhaps accommodating EATs which allow rules to refer to one
another cyclically. However this approach does not work: if S = L, then the current EAT is vacuous: 𝐽𝑀
is a fully faithful embedding but also a factor of the identity, so it must be an equivalence itself (implying
that 𝑀 � Id) and the other factor must be an equivalence, implying that Kl(𝑀0) ' EM(𝑀0), i.e. all
𝑀0-algebras are free (e.g.𝑀0 could be the Maybe-monad).
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7 Extending MATs
EATs as de�ned in section 6 allow us to extend a prior theory𝔓 – be it a MAT or an EAT – with additional
operations, yielding an EAT𝔄. �ese additional operations may require their arguments to satisfy condi-
tions expressed using prior operations from𝔓. If𝔓 is a MAT and the new operations have no conditions
at all, or if𝔓 is an EAT with prior theory𝔔 and the conditions of the new operations use only operations
from 𝔔, then 𝔄 is e�ectively an extension of 𝔓: it could then have been directly de�ned as a MAT (if 𝔓
is a MAT) or as an EAT over𝔔.

In this section, we consider only extensions of MATs, which we will use in section 8.

7.1 Extending MAT Presentations
De�nition 7.1. An extension𝔅 (called the superMAT) of a MAT presentation 𝔄 (called the subMAT) is
a MAT presentation whose operations and axioms form supersets of the subMAT’s.

It is clear that every model of𝔅 is a model of 𝔄 and hence there is a morphism of 𝔄-models from the
syntax of 𝔄 to the syntax of 𝔅.

Proposition 7.2. For any MAT presentation extension 𝔄 ⊆ 𝔅, the MAT 𝔅 can be regarded as an EAT
presentation with prior theory 𝔄. �

7.2 Extending Monadic MATs
De�nition 7.3. An extension of a monadic MAT 𝑀 ∈ Monad(Set𝑆 ) is a coslice under 𝑀 , i.e. another
monad 𝑁 ∈ Monad(Set𝑆 ) with a monad morphism 𝜁 : 𝑀 → 𝑁 .

By reasoning based on that in section 5.2, it is clear that every MAT presentation extension 𝔄 ⊆ 𝔅

gives rise to a monadic MAT extension 𝜁 : 𝑀𝔄 → 𝑀𝔅.
Any monad morphism 𝜁 : 𝑀 → 𝑁 yields a fully faithful functor EM(𝜁 ) : EM(𝑁 ) → EM(𝑀); in

the case of a monad morphism arising from a presentation extension 𝔄 ⊆ 𝔅, this fully faithful functor
corresponds to the inclusion of 𝔅-models in 𝔄-models mentioned above.

On the other hand, every monad morphism 𝜁 : 𝑀 → 𝑁 also yields a functor Kl(𝜁 ) : Kl(𝑀) → Kl(𝑁 )
(note the opposite variance for the Kleisli and the EM category).

Proposition 7.4. For any monadic MAT extension 𝜁 : 𝑀 → 𝑁 , if 𝑍 := EM(𝜁 ) : EM(𝑁 ) → EM(𝑀) has a
le� adjoint𝑊 , then we obtain a monad 𝑂 = 𝑍𝑊 on EM(𝑀), i.e. an EAT with prior theory 𝑀 . Moreover,
if 𝜁 = 𝑈𝑀𝜂

𝑍a𝑊 𝐹𝑀 ,5 then 𝑍 a𝑊 is the EM-decomposition of 𝑂 , i.e. EM(𝑁 ) � EM(𝑂).

Proof. �at we have a monad 𝑂 is obvious.
We show that 𝑍 a𝑊 is the EM-decomposition of 𝑂 . By �nality, we certainly have a morphism 𝐺 of

adjoint decompositions:

EM(𝑁 )
𝑍

%%
𝐺

��

𝑈𝑁

!!
Set𝑆

𝐹𝑀 //

𝐹𝑁
//

EM(𝑀)

𝑊

99

𝐹𝑂 %%

𝑂 // EM(𝑀) 𝑈𝑀 // Set𝑆

EM(𝑂)
𝑈𝑂

99

Here, the triangles with 𝑂 commute by de�nition of 𝑂 = 𝑍𝑊 and by de�nition of the EM-category. �e
fact that 𝑈𝑁 = 𝑈𝑀𝑍 is obvious by construction of 𝑍 = EM(𝜁 ) and the fact that 𝐹𝑁 � 𝑊𝐹𝑀 follows by
uniqueness of the adjoint.

5As argued in the proof, this seems like a fairly mild condition, although I have not been able to prove that it is automatic.
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Note that, as a property of composite adjunctions, we then know that 𝜂𝑁 = 𝑈𝑀𝜂
𝑍a𝑊 𝐹𝑀 ◦ 𝜂𝑀 . On the

other hand, sinze 𝜁 is a monad morphism, we also know that 𝜂𝑁 = 𝜁 ◦ 𝜂𝑀 . �us, the condition in the
theorem is 𝜁 = 𝑈𝑀𝜂

𝑍a𝑊 𝐹𝑀 seems fairly mild.
�e action of 𝐺 is given by

𝐺 (𝐴, 𝛼𝑁 ) = (𝑍 (𝐴, 𝛼𝑁 ), 𝑍𝜀𝑊 a𝑍 ) = ((𝐴, 𝛼𝑁 ◦ 𝜁𝐴), 𝑍𝜀𝑊 a𝑍 )

where 𝜀𝑊 a𝑍 :𝑊𝑍 → Id is the co-unit of𝑊 a 𝑍 .
We construct an inverse 𝐻 to 𝐺 . Let 𝐻 ((𝐴, 𝛼𝑀 ), 𝛼𝑂 ) = (𝐴, 𝛼𝑁 ) where

𝛼𝑁 : 𝑁𝐴 = 𝑈𝑀𝑈𝑂𝐹𝑂𝐹𝑀𝑈𝑀𝑈𝑂 ((𝐴, 𝛼𝑀 ), 𝛼𝑂 ) → 𝑈𝑀𝑈𝑂 ((𝐴, 𝛼𝑀 ), 𝛼𝑂 ) = 𝐴

𝛼𝑁 = 𝑈𝑀𝑈𝑂

(
𝜀𝑂 ◦ 𝐹𝑂𝜀𝑀𝑈𝑂

)
= 𝑈𝑀𝛼

𝑂 ◦𝑈𝑀𝑂𝜀
𝑀𝑈𝑂 = 𝑈𝑀𝛼

𝑂 ◦𝑈𝑀𝑂 (𝛼𝑀 , )

where 𝜀𝑀 and 𝜀𝑂 denote the co-units of the EM-adjunctions and where denotes the proof that 𝛼𝑀 is an
𝑀-algebra morphism.

To see that 𝐻𝐺 = Id, we plug in 𝛼𝑂 = 𝑍𝜀𝑊 a𝑍 and 𝛼𝑀 = 𝛼𝑁 ◦ 𝜁𝐴 and obtain

𝛼𝑁 =? 𝑈𝑀𝑍𝜀
𝑊 a𝑍 ◦𝑈𝑀𝑂 (𝛼𝑁 ◦ 𝜁𝐴, )

= 𝑈𝑁

(
𝜀𝑊 a𝑍 ◦𝑊 (𝛼𝑁 ◦ 𝜁𝐴, )

)
𝑈𝑀𝑍 = 𝑈𝑁 and𝑈𝑀𝑂 = 𝑈𝑁𝑊 ,

= 𝑈𝑁

(
𝜀𝑊 a𝑍 ◦𝑊 (𝛼𝑁 , ) ◦𝑊 (𝜁𝐴, )

)
𝛼𝑁 and 𝜁𝐴 are𝑀-algebra morphisms,

= 𝑈𝑁

(
𝜀𝑊 a𝑍 ◦𝑊𝑍 (𝛼𝑁 , ) ◦𝑊 (𝜁𝐴, )

)
𝛼𝑁 is an 𝑁 -algebra morphism,

= 𝑈𝑁

(
(𝛼𝑁 , ) ◦ 𝜀𝑊 a𝑍 ◦𝑊 (𝜁𝐴, )

)
= 𝛼𝑁 ◦𝑈𝑁

(
𝜀𝑊 a𝑍 ◦𝑊 (𝜁𝐴, )

)
= 𝛼𝑁 ◦𝑈𝑁

(
𝜀𝑊 a𝑍 ◦𝑊𝜂𝑍a𝑊 𝐹𝑀

)
𝜁 = 𝑈𝑀𝜂

𝑍a𝑊 𝐹𝑀 so (𝜁 , ) = 𝜂𝑍a𝑊 𝐹𝑀 , = 𝛼𝑁 adjunction law.

�e fact that 𝐺𝐻 = Id is automatic by �nality of the Eilenberg-Moore decomposition. �

7.3 Lawverian MAT Extensions from Monadic MAT Extensions
De�nition 7.5. An extension of a Lawverian MAT L ∈ Law(𝑆) is a coslice under L, i.e. another Lawve-
rian MAT K ∈ Monad(Set𝑆 ) with a Lawverian MAT morphism 𝐿 : L → K .

By functoriality of the construction in section 5.3, it is clear that every monadic MAT extension 𝜁 :
𝑀 → 𝑁 (and hence every MAT presentation extension 𝔄 ⊆ 𝔅) gives rise to a Lawverian MAT extension
𝐿𝜁 : L𝑀 → L𝑁 and that the composition functorModel(L𝑁 ) → Model(L𝑀 ) corresponds to the functor
EM(𝜁 ).

7.4 Monadic MAT Extensions from Lawverian MAT Extensions
�e functorial part of proposition 5.10 asserts that there is in fact a correspondence between monadic and
Lawverian MAT extensions.

7.5 Factorizing the KEML-diagram for MAT extensions
We summarize our �ndings about MATs in a diagram. Assume that 𝜁 : 𝑀 → 𝑁 and 𝐿 : L → K are
corresponding MAT extensions (hence 𝑀 corresponds to L and 𝑁 to K). �en we obtain the following
commuting diagram, which contains the full KEML-diagram of 𝑁 and K but not that of 𝑀 and L: the
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do�ed arrows are not part from the KEML-diagram of𝑀 and L:

Set𝑆 𝑁 //

𝐽𝑀

##𝐽𝑁

��

𝑋 ↦→∏
𝑠∈𝑆 〈𝑠 〉𝑋 𝑠

��

Set𝑆

Kl(𝑀)
𝑋 ↦→(𝑁𝑋,𝜇𝑁

𝑋
◦𝜁𝑁𝑋 )//

Kl(𝜁 )

��

EM(𝑀)

𝑈

::

'

Lop

'

HomK (𝐿xy,𝐿xy)
//

𝐿op

��

Model(L)

𝑈 :𝑇 ↦→𝜆𝑠.𝑇 〈𝑠 〉

[[

Kl(𝑁 )
𝑋 ↦→(𝑁𝑋,𝜇𝑁 ) // EM(𝑁 )

EM(𝜁 )

OO

'

𝑈

HH

Kop

'

HomK
// Model(K)

xy◦𝐿

OO

8 Higher-Order Algebraic �eories (HOATs)
In section 8.2, we de�ne 𝜆HOATs, which are a completely di�erent take on HOATs from Arkor and
McDermo�’s [AM20]. In order to disambiguate, we will call their notion closed HOATs (CHOATs).

We de�ne 𝜆HOATs quite simply as extensions of the STLC, based on the well-known fact that the
simply-typed lambda-calculus (STLC) is the internal language of a cartesian closed category (theorem 8.4).
�is is already a powerful concept but is a special case of what we already know from the previous section,
unlike CHOATs. Moreover, 𝜆HOATs will be helpful when trying to understand CHOATs and their KEML-
diagram (section 8.4), which is at least super�cially very di�erent from the ones we have seen so far.

I have not compared the practical usability of 𝜆HOATs and CHOATs in applied problems, and I can
imagine that the more native support for binding available in CHOATs is o�en an advantage.

I would say that the most notable di�erence between both concepts is that the Lawvere theory of
a 𝜆HOAT is essentially the category of judgements and derivations, whereas the Lawvere theory of a
CHOAT is the category of arities/contexts/types and substitutions/terms. By consequence, the Lawvere
theory of a CHOAT is cartesian closed, whereas the Lawvere theory of a 𝜆HOATwill merely be preclosed
(de�nition 8.2).

8.1 �e Simply-Typed Lambda-Calculus (STLC) as a MAT
De�nition 8.1. �e simply-typed lambda-calculus (STLC) with set of base types B is the MAT pre-
sented as follows:

• �e set of sorts is:

{Sub(Γ,Δ) | Γ,Δ ∈ Ctx} ] {Tm(Γ,𝑇 ) | Γ ∈ Ctx,𝑇 ∈ Ty}.

where Ctx = List(Ty) and types are given by the syntax:

Ty 3 𝑇 ::= (𝑇 → 𝑇 ) | (𝑇 ×𝑇 ) |>|𝐵𝑏∈B

• �ere are each time introduction and elimination operators together with 𝛽- and 𝜂-axioms such
that for any model 𝐴:

𝐴Sub(Γ,()) � >,
𝐴Sub(Γ,(Δ.𝑇 )) � 𝐴Sub(Γ,Δ) ×𝐴Tm(Γ,𝑇 ) ,

𝐴Tm(Γ,>) � >,
𝐴Tm(Γ,𝑆×𝑇 ) � 𝐴Tm(Γ,𝑆) ×𝐴Tm(Γ,𝑇 ) ,

𝐴Tm(Γ,𝑆→𝑇 ) � 𝐴Tm( (Γ.𝑆),𝑇 ) .
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• For every context Γ, there is an identity substitution idΓ ∈ 𝑂STLC(B) ( [], Sub(Γ, Γ)).

• �ere are substitution operations such that for any model 𝐴:

𝐴Sub(Γ,Δ) ×𝐴Sub(Δ,Θ) → 𝐴Sub(Γ,Θ) ,

𝐴Sub(Γ,Δ) ×𝐴Tm(Δ,𝑇 ) → 𝐴Tm(Γ,𝑇 ) ,

and axioms that make all operations natural in Γ w.r.t. substitution.

�e following de�nition is non-standard:

De�nition 8.2. We call a category C with products preclosed if it is equipped with a functor 𝐸 : Cop ×
C → C such that

• 𝐸 (>, xy) � Id,

• for every 𝑥 ∈ C (naturally in 𝑥 ), the functor 𝑥/𝐸 := HomC (𝑥, 𝐸 (xy, xy)) : Cop × C → Set is an
alternative Hom-functor for Obj(C) with the same products, that does make C cartesian closed
with exponentials given by 𝐸. �is implies that 𝐸 preserves products in its second argument.

Proposition 8.3. �e Lawverian MAT of the STLC with base types from B is equivalent to the free
cartesian preclosed category CPC(B) over B.

Proof. It is su�cient to show that the LawverianMATL is cartesian preclosed and that the canonical map
CPC(B) → L sending 𝑏 to 〈Tm((), 𝐵𝑏)〉 has (up to natural isomorphism) a section (which is a preclosed
cartesian functor) 𝐹 : L → CPC(B).

To see cartesian preclosedness, write Σ : Ctx→ Ty for the pairing up of a context:

Σ() = >, Σ(Γ.𝑇 ) = ΣΓ ×𝑇 .

We then have 〈Tm(Γ,𝑇 )〉 � 〈Tm((), ΣΓ → 𝑇 )〉 and 〈Sub(Γ,Δ)〉 � 〈Tm((), ΣΓ → ΣΔ)〉. �en we can
construct the cartesian product as 〈Tm((), 𝑆)〉 × 〈Tm((),𝑇 )〉 = 〈Tm((), 𝑆 ×𝑇 )〉, and a preclosed structure
as 𝐸 (〈Tm((), 𝑆)〉, 〈Tm((),𝑇 )〉) := 〈Tm((), 𝑆 → 𝑇 )〉.

• �is satis�es 𝐸 (>, xy) � Id because

𝐸 (>,Tm((),𝑇 )) � 𝐸 (Tm((),>),Tm((),𝑇 )) = Tm((),> → 𝑇 ) � Tm((),𝑇 ),

• �is allows for identities and composition,

• Functoriality of𝐸 follows from the fact that any derived rule (morphism inL) of the formHom(Tm((), 𝑋 ),Tm((), 𝑌 ))
can be weakened to Hom(Tm(Γ, 𝑋 ),Tm(Γ, 𝑌 )): given morphsims 𝑓 ∈ Hom(Tm((), 𝑅),Tm((), 𝑆))
and 𝑔 ∈ Hom(Tm((),𝑇 ),Tm((),𝑈 )), we can do

𝑟 : 𝑅 ` 𝑟 : 𝑅
𝑟 : 𝑅 ` 𝑓 (𝑟 ) : 𝑆

𝑓 ` ℎ : 𝑆 → 𝑇

𝑟 : 𝑅 ` ℎ(𝑓 (𝑟 )) ` 𝑇
𝑟 : 𝑅 ` 𝑔(ℎ(𝑓 (𝑟 ))) : 𝑈

𝑔

` 𝜆𝑟 .𝑔(ℎ(𝑓 (𝑟 ))) : 𝑅 → 𝑈
.

We �rst de�ne the action of 𝐹 : L → CPC(B) on objects (again only considering sort objects of the
form 〈Tm((),𝑇 )〉):

𝐹 〈Tm((),𝑇 )〉 = 𝐹Ty (𝑇 ),
𝐹Ty (𝑆 → 𝑇 ) = 𝐸 (𝐹Ty𝑆, 𝐹Ty𝑇 ),
𝐹Ty (𝑆 ×𝑇 ) = 𝐹Ty𝑆 × 𝐹Ty𝑇,

𝐹Ty (>) = >,
𝐹Ty (𝐵𝑏) = 𝑏.
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It is evident that this action on objects is (up to natural isomorphism) a section of the action on objects
of the canonical functor CPC(B) → L.

It is su�cient to de�ne the functorial action on operation morphisms. Substitution amounts to 𝑥/𝐸-
composition. Everything else is automatic, e.g. for context extension we need to prove

𝐹 〈Sub(Γ,Δ.𝑇 )〉 � 𝐹 〈Sub(Γ,Δ)〉 × 𝐹 〈Ty(Γ,𝑇 )〉

but both hands compute to

𝐸 (𝐹TyΣΓ, 𝐹TyΣΔ × 𝐹Ty𝑇 ) � 𝐸 (𝐹TyΣΓ, 𝐹TyΣΔ) × 𝐸 (𝐹TyΣΓ, 𝐹Ty𝑇 )

so this is just product preservation of 𝐸. One can verify, using the equational theory of the STLC, that
this is a section of the morphism part of the canonical functor CPC(B) → L. �

If CPC(B) is the Lawvere theory of the STLC, then Model(CPC(B)) is its category of models. A
model 𝑇 ∈ Model(CPC(B)) is a product-preserving functor 𝑇 : CPC(B) → Set. It is not required to
preserve the preclosed structure in any particular way, but of course we do get a functor 𝑇 (𝐸 (xy, xy)) :
CPC(B)op × CPC(B) → Set and in fact product-preservation does preserve the usability of morphisms
such as ◦ : HomCPC(B) (𝐸 (𝑦, 𝑧)×𝐸 (𝑥,𝑦), 𝐸 (𝑥, 𝑧)), i.e. substitution and function application are still possible
in a model.

�eorem 8.4. �e categoryModel(CPC(B)) of models of the STLC with base types from B is equivalent
to the category of cartesian closed categories C with the same objects and same products as CPC(B) and
exponentials given by 𝐸.6

Trivially, any such model C yields a cartesian preclosed identity-on-objects functor CPC(B) → C.
Proof. Let 𝑇 : CPC(B) → Set be a product-preserving functor. We reorganize 𝑇 into a CCC C with
Obj(C) = Obj(CPC(B)).

• De�ne HomC (𝑥,𝑦) := 𝑇 (𝐸 (𝑥,𝑦)) ∈ Set,

• Since𝑇 preserves products and the terminal object, this yields identity and composition operations
for C,

• Since 𝑇 preserves products and 𝐸 preserves products in its second argument, we know that HomC
preserves products in its second argument, i.e. the products of CPC(𝑆) are products of C,

• We need to show that 𝐸 (𝑦, 𝑥) ∈ Obj(C) is an exponential. We have

HomC (𝑧, 𝐸 (𝑦, 𝑥)) = 𝑇 (𝐸 (𝑧, 𝐸 (𝑦, 𝑥))) � 𝑇 (𝐸 (𝑧 × 𝑦, 𝑥)) = HomC (𝑧 × 𝑦, 𝑥).

Conversely, given a CCC C with the same objects as CPC(𝑆), we build a model 𝑇 :

• 𝑇𝑥 = HomC (>, 𝑥). Note that we have to do this if we want to obtain an inverse to the converse
action:

𝑇 〈Tm((), 𝑆)〉 � 𝑇 (𝐸 (>, 〈Tm((), 𝑆)〉)),
Now products are preserved.

It is easy to check that these operations constitute an equivalence. �

8.2 𝜆HOATs from the STLC
De�nition 8.5. A (Lawverian / monadic / presentation of a) 𝜆-higher order algebraic theory with set
of sorts B is a (Lawverian / monadic / presentation of a) MAT extension of the STLC with set of base
types B.

In particular, a Lawverian 𝜆HOAT with sorts B is a coslice under CPC(B) in the category of Lawvere
theories with the appropriate set of sorts.

6�e requirement that the objects of the CCC are precisely those of CPC(B) may be unexpected but can be a�ributed to the fact
that we are treating the STLC as a MAT. Should we treat it as a GAT with contexts and types as part of the syntax, then we would
have some freedom in modelling contexts and types.
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8.3 Intermezzo: Relative Monads
Before we compare to Arkor and McDermo�’s approach [AM20], we revise relative monads.

De�nition 8.6. [ACU15, nLa22b] Given a diagram of functors (there is no opportunity for asking com-
mutativity)

A

𝐿

��

𝐼

&&

B𝐽

xx
𝑅

��
C D

we are interested in the case where there is a natural isomorphism HomC (𝐿𝑥, 𝐽𝑦) � HomD (𝐼𝑥, 𝑅𝑦) :
Aop × B → Set.

If B = C and 𝐽 = Id, then we call this a (monadic) relative adjunction and we have HomC (𝐿𝑥,𝑦) �
HomD (𝐼𝑥, 𝑅𝑦):

A

𝐿

��

𝐼

&&C
𝑅

// D

In that case, 𝑅𝐿 is a relative monad over 𝐼 .7
A relative monad over a functor 𝐼 : A → D is a functor 𝑀 : A → D equipped with natural

transformations 𝜂 : 𝐼 → 𝑀 and bind : HomD (𝐼𝑥, 𝑀𝑦) → HomD (𝑀𝑥,𝑀𝑦), such that bind(𝜂) = id and
bind(𝜑) ◦ 𝜂 = 𝜑 and bind(𝜒) ◦ bind(𝜑) = bind(bind(𝜒) ◦ 𝜑).

�e Kleisli category of 𝑀 : A → D is the category Kl(𝑀) with objects 𝑥 where 𝑥 ∈ A and
morphisms 𝜑 ∈ HomKl(𝑀) (𝑥,𝑦) where 𝜑 ∈ HomD (𝐼𝑥, 𝑀𝑦). �e identity is 𝜂 and composition is given
by 𝜒 ◦ 𝜑 = bind(𝜒) ◦ 𝜑 . �ere is a functor 𝐽𝑀 : A → Kl(𝑀) sending 𝑥 to 𝑥 and 𝜑 to 𝜂 ◦ 𝐼𝜑 = 𝑀𝜑 ◦ 𝜂,
and a functor 𝑃𝑀 : Kl(𝑀) → D sending 𝑥 to 𝑀𝑥 and 𝜑 to bind(𝜑). We have a relative adjunction
HomKl(𝑀) (𝐽𝑀𝑥,𝑦) � HomD (𝐼𝑥, 𝑃𝑀𝑦) that composes to𝑀 = 𝑃𝑀 𝐽𝑀 .

�eEilenberg-Moore category of𝑀 : A → D is the category EM(𝑀) of EM-algebras of𝑀 . AnEM-
algebra is an object 𝑎 ∈ D equipped with a natural isomorphism bind𝑎 : HomD (𝐼𝑥, 𝑎) → HomD (𝑀𝑥, 𝑎)
such that bind𝑎 (𝜑) ◦ 𝜂 = 𝜑 and bind𝑎 (𝜒) ◦ bind(𝜑) = bind𝑎 (bind𝑎 (𝜒) ◦ 𝜑). A morphism of EM-algebras
is a morphism 𝜁 : 𝑎 → 𝑏 such that 𝜁 ◦ bind𝑎 (𝜑) = bind𝑏 (𝜁 ◦ 𝜑). �ere is a functor 𝐹𝑀 : A → EM(𝑀) :
𝑥 ↦→ (𝑀𝑥, bind) and a functor 𝑈𝑀 : EM(𝑀) → D : (𝑎, bind𝑎) ↦→ 𝑎. Again we have a relative adjunction
HomEM(𝑀) (𝐹𝑀𝑥, (𝑦, bind𝑦)) � HomD (𝐼𝑥,𝑈𝑀 (𝑦, bind𝑦)) that composes to𝑀 = 𝑈𝑀𝐹𝑀 .

8.4 Comparison to Arkor and McDermott’s Approach
Wewill now compare and relate our approach to 𝜆HOATs to an informal and simpli�ed account of Arkor
and McDermo�’s HOATs [AM20] which we will here call CHOATs (for closed HOATs).

Before doing so, we put 𝜆HOATs in a di�erent perspective. We de�ned them above as extensions of
the STLC, but as argued in sections 7.1 and 7.2, extensions can be seen as a special case of EATs. As such,
we will slightly generalize our notion of 𝜆HOATs here to include all EATs over the STLC with base types
B. �e KEML diagram for such a theory (as a special case of section 6.5) looks like this, where 𝑀0 is the

7If instead 𝐼 = Id then we can dually consider comonadic relative adjunctions and relative comonads over 𝐽 .
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monadic MAT for the STLC and L and𝑀 are the monadic and Lawverian EAT for the speci�c 𝜆HOAT.

Kl(𝑀0)
𝑋 ↦→(𝑀0𝑋,𝜇0) //

'

EM(𝑀0)
𝑀 //

𝐽𝑀

��

EM(𝑀0)
'

Model(CPC(B))

𝑋 ↦→lim(𝑠,𝑥 )∈∫CPC(B) 𝑋 〈𝑠 〉

��

'

Model(CPC(B))

CPC(B)op
y=HomCPC(B)

66

〈xy〉
((

Kl(𝑀)
𝑋 ↦→(𝑀𝑋,𝜇) // EM(𝑀)

𝑈

OO

'

Lop

'

HomL
// Model(L)

𝑈 :𝑇 ↦→𝑇 ◦〈xy〉

OO

Let us start by handwaving away the distinction between EM(𝑀0) andModel(CPC(B)). �en we get the
following subdiagram:

Model(CPC(B)) 𝑀 //

𝑋 ↦→lim(𝑠,𝑥 )∈∫CPC(B) 𝑋 〈𝑠 〉

��

𝐽𝑀 ''

Model(CPC(B))

CPC(B)op
y=HomCPC(B)

66

〈xy〉
((

Kl(𝑀)
𝑋 ↦→(𝑀𝑋,𝜇) // EM(𝑀)

𝑈

77

'

Lop

'

HomL
// Model(L)

𝑈 :𝑇 ↦→𝑇◦〈xy〉

OO

Now 𝑀 is a monad on Model(CPC(B)). If we precompose 𝑀 with y : CPC(B)op → Model(CPC(B)),
then we obtain 𝑀y, which is a relative monad over y, having its own Kleisli and EM-categories. �is
yields the following diagram:

CPC(B)op
y // Model(CPC(B))

CPC(B)op
𝑀y //

𝐽𝑀y

&&

𝐽𝑀

��
〈xy〉

��

Model(CPC(B))

Kl(𝑀y)

𝑠 ↦→y𝑠
��

𝑠 ↦→(𝑀y𝑠,bind) // EM(𝑀y)

𝑈𝑀y
77

Kl(𝑀)
𝑋 ↦→(𝑀𝑋,𝜇)

// EM(𝑀)

𝑈𝑀

>>

'

(𝐴,𝛼) ↦→(𝐴,𝛼◦𝑀xy)

OO

Lop

'

HomL
// Model(L)

𝑈 :𝑇 ↦→𝑇 ◦〈xy〉

OO

(1)

Arkor and McDermo�’s work [AM20] does not explicitly feature a KEML-diagram. However, we recon-
struct one here using their symbols, and will then explain node per node how it corresponds to ours. We
remain informal, which allows us to make a few simpli�cations:

• We only consider the situation at order 𝜔 ,

• We ignore order incrementation and decrementation functors.
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L(𝑆)op
𝑝 :𝑥 ↦→KlL(𝑆 ) (𝑥×xy) // HLaw(𝑆)

L(𝑆)op
𝑇𝐿 :𝑥 ↦→KlL (𝑥×xy) //

𝐽𝑇𝐿 $$
𝐿op

��

HLaw(𝑆)

Kl(𝑇𝐿)
𝑥 ↦→(𝑇𝐿𝑥,bind) // EM(𝑇𝐿)

𝑈𝑇𝐿

77

'

Lop

'

𝑥 ↦→(KlL (𝑥×xy),𝐽𝑥×xy) // (L, 𝐿)/HLaw(𝑆)

𝑈

OO

(2)

• As their is no confusion with STLC sorts, the set of sorts is calles 𝑆 instead of B.

• �e category L(𝑆) is (equivalent to) the category whose objects are types of the STLC (with base
types from 𝑆) and whose morphisms are single-variable STLC terms. Equivalently, we could take
contexts as objects and substitutions as morphisms. �is is also equivalent to the free cartesian
closed category CCC(𝑆) over 𝑆 . It is slightly di�erent to what we had in the upper le� node of the
KEML-diagram: the free cartesian preclosed categoryCPC(B), which corresponded to the category
of judgements and derivations of the STLC.

• We write HLaw(𝑆) instead of Law(𝑆) to avoid collision with de�nition 5.5. �e category HLaw(𝑆)
is the category of Lawverian HOATs with sorts in 𝑆 . Such a Lawverian HOAT is de�ned as a pair
(L, 𝐿) of a category L such that Obj(L) = Obj(L(𝑆)) and such that 𝐿 : L(𝑆) → L is a cartesian
closed identity-on-objects functor.
Note that we could have given analogous de�nitions, e.g. a LawverianMAT could have been de�ned
as a cartesian identity-on-objects functor from the free cartesian category over 𝑆 .
We remark that HLaw(𝑆) is quite similar to Model(CPC(B)):

– HLaw(𝑆) is the category of cartesian closed identity-on-objects functors fromL(𝑆) ' CCC(𝑆),
– Model(CPC(B)) is the category of cartesian preclosed identity-on-objects functors fromCPC(B)

to closed categories (theorem 8.4).

• Given their de�nition of Lawverian HOATs, it is no surprise that the functor 𝐿 : L(𝑆) → L corre-
sponds to our 〈xy〉 : CPC(B) → L.

• Using the correspondence between HLaw(𝑆) andModel(CPC(B)), we relate y and 𝑝 .
If 𝑥 ∈ CPC(B), then y𝑥 ∈ Model(CPC(B)) is a cartesian functor

y𝑥 : CPC(B) → Set : 𝑦 ↦→ HomCPC(B) (𝑥,𝑦).

�e proof of theorem 8.4 allows us to view y𝑥 as a category C𝑥 with the same objects as CPC(B)
and where HomC𝑥 (𝑦, 𝑧) = y𝑥 (𝐸 (𝑦, 𝑧)) = HomCPC(B) (𝑥, 𝐸 (𝑦, 𝑧)) � HomCPC(B) (𝑥 × 𝑦, 𝑧). In other
words, y𝑥 is essentially the Kleisli category of the comonad 𝑥 × xy on CPC(B).
Arkor and McDermo�’s functor 𝑝 (neglecting an order change) also sends 𝑥 ∈ L(𝑆) ' CCC(𝑆) to
the Kleisli category of the comonad 𝑥 × xy on L(𝑆) ' CCC(𝑆).

• Similarly, we relate 𝑀y and 𝑇𝐿 . Speci�cally, we assume that 𝑀 = 𝑀L arises from the Lawverian
EAT L over the STLC.
If 𝑥 ∈ CPC(B), then𝑀Ly𝑥 ∈ Model(CPC(B)) is a cartesian functor

𝑀Ly𝑥 : CPC(B) → Set.

From the proof of proposition 6.8, we know that

𝑀L (y𝑥) 𝑦 = HomL

(
lim

(𝑧,𝜑) ∈
∫
CPC(B) y𝑥

〈𝑧〉, 〈𝑦〉
)
� HomL (〈𝑥〉, 〈𝑦〉).
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�eproof of theorem 8.4 allows us to view𝑀Ly𝑥 as a categoryD𝑥 with the same objects asCPC(B)
and where HomD𝑥

(𝑦, 𝑧) = 𝑀L (y𝑥) (𝐸 (𝑦, 𝑧)) = HomL (〈𝑥〉, 〈𝐸 (𝑦, 𝑧)〉).
Translating this to Arkor and McDermo�’s framework and recalling that 𝐿 is identity-on-objects
and properly closed, we get HomL (𝑥, 𝑧𝑦) � HomL (𝑥 × 𝑦, 𝑧). So in their framework, D𝑥 is the
Kleisli category of the comonad 𝑥 × xy on the Lawverian HOAT L. �is turns out to be a relative
monad over 𝑝 and is called 𝑇𝐿 .

• It turns out that the Lawverian CHOAT L is now equivalent to the Kleisli category of the relative
monad 𝑇𝐿 , whereas for 𝜆HOATs it was equivalent to the Kleisli category of the ordinary monad.

• Arkor and McDermo� de�ne a category of (Set-valued) models of a Lawverian CHOAT as the
category of cartesian closed functors L → Set.
However they have another model-like notion called term algebras. Rather than delving into what
term algebras are, we take their observation for granted that the category of term algebras of (L, 𝐿)
is equivalent to the category of coslices under (L, 𝐿).
It turns out that EM(𝑇𝐿) is isomorphic to the category of term algebras [AM20, thm. 8.2]. To un-
derstand this intuitively:

– An EM-algebra for 𝑇𝐿 is a lawvere theory (K, 𝐾) such that for any 𝑥 (naturally in 𝑥 ) a mor-
phism of Lawvere theories KlL(𝑆) (𝑥 × xy) → K li�s to KlL (𝑥 × xy) → K . Taking 𝑥 = >
already implies that 𝐾 : L(𝑆) → K li�s to L → K , so we have produced a coslice under
(L, 𝐿).

– Conversely, given a coslice 𝐹 : (L, 𝐿) → (K, 𝐾), we argue that any morphism of Lawvere
theories 𝐺 : KlL(𝑆) (𝑥 × xy) → K li�s to KlL (𝑥 × xy) → K . Note that any morphism in
KlL (𝑥 × xy), say 𝜑 : 𝑦 → 𝑧, i.e. 𝜑 ∈ HomL (𝑥 ×𝑦, 𝑧), can be reconstructed from the morphism
id ∈ HomKlL(𝑆 ) (𝑥×xy) (𝑦, 𝑥 × 𝑦) and 𝜑 . We can apply𝐺 to the former and 𝐹 to the la�er, yielding
𝐹𝜑 ◦𝐺 id ∈ K(𝑦, 𝑧). A�er verifying that this action is functorial and inverse to the previous
one, we can conclude that term algebras correspond to EM-algebras.

8.5 Models and Term Algebras of the Trivial HOAT
In this section, we consider what are

• models of the empty 𝜆HOAT, i.e. the empty EAT over the STLC,

• models and term algebras of the trivial CHOAT, i.e. (L(𝑆), Id).

8.5.1 Models of the Empty 𝜆HOAT

�is is simply the category Model(CPC(B)). As discussed in theorem 8.4, this is the category of CCCs
with the same objects and products asCPC(B) and exponentials given by 𝐸, or di�erently put the category
of CCCs equipped with a cartesian preclosed identity-on-objects functor from CPC(B).

Any CCC D with a map B → Obj(D) (yielding a preclosed functor 𝐹 : CPC(B) → D) can be
turned into such a model by de�ning a new CCC C with objects Obj(C) = Obj(CPC(B)) and morphisms
HomC (𝑥,𝑦) = HomD (𝐹𝑥, 𝐹𝑦).

As such, our framework really includes all models, including presheaf models. Indeed CPC(𝑆) is not
the category of contexts and morphisms (whence we would map to a presheaf category) but the category
of judgements and derivations (whence we can map to Set and still accommodate a presheaf model,
sending judgements to sets of presheaf morphisms).

8.5.2 Models of the Trivial CHOAT

For Arkor and McDermo�, models of the Lawvere theory of a CHOAT are cartesian closed functors from
its Lawvere theory L to Set (or another category).
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Let us �rst consider only Set-valued models. �ese seem in a way less powerful than (Set-valued)
models of 𝜆HOATs, because the insistence on preservation of exponentials rules out presheaf models and
enforces the inclusion of exotic functions as semantic functions. Indeed, we cannot model types 𝑆 and 𝑇
as presheaves and then model the function type 𝑆 → 𝑇 as a presheaf exponential, because the framework
insists that the semantic terms ` 𝑓 : 𝑆 → 𝑇 are all of the metatheoretic functions sending semantic terms
` 𝑠 : 𝑆 to semantic terms ` 𝑓 (𝑠) : 𝑇 . �ere is no hope to prove results like parametricity, naturality w.r.t.
isomorphisms (simply typed HoTT) or Löb induction this way. In other words, not every CCC is a Set-
valued model of the STLC seen as a CHOAT. In the next subsection, we shall see that CCCs are instead
term algebras of the STLC seen as a CHOAT.

However, unlike for 𝜆HOATs, it makes a lot of sense to consider presheaf-valued models of a CHOAT
(L, 𝐿), i.e. closed functors L → Psh(W). Indeed, in the Lawvere theory of a 𝜆HOAT, objects are
judgements and morphisms are derivations, and it seems bizarre to model judgements (with context!)
as presheaves and derivations as presheaf morphisms.

However, CHOATs correspond to a Gentzen-style presentation instead of a presentation with con-
texts, so that the objects of the Lawvere theory are really just types and the morphisms are really just
functions. Of course it is sensible to model types as presheaves and functions as presheaf morphisms, this
is in fact exactly how presheaf models work.

A dependent (GAT-style) generalization of CHOATs that could cover dependent type theory seems
di�cult, because Gentzen-style dependent type theory contains dependent judgements (which are there-
fore not self-contained statements).

8.5.3 Term Algebras of the Trivial CHOAT

A term algebra of (L, 𝐿) is a slice under (L, 𝐿) in HLaw(𝑆). In the case of the trivial CHOAT (L(𝑆), Id),
which is the initial object of HLaw(𝑆), a term algebra is just a Lawverian CHOAT, which is basically a
CCC with the same objects as L(𝑆) ' CCC(𝑆), which are really also the same objects we �nd in CPC(𝑆).
So we could say that a model of the STLC as a 𝜆HOAT is the same as a term algebra of the STLC as a
CHOAT.
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• Arkor and McDermo� do have a theorem on EM-algebras [AM20, thm. 8.2].

• Adapt the abstract: considering prior theories is not novel.

• Adapt the abstract: our Lawvere theories for MATs and EATs diverge from the literature.

• De�nition 6.1: �x the de�nition of the set of lists of conditions in the case of a MAT.

• Added section 6.3.1 on two-stage decomposition of EATs.

• Improved introductory text in section 8.
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