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Abstract—This paper is a continuation of our previous paper
[Part I, ibidem]. In this study we present many new results in
the subject of minimal cycles (including the fixed points) of the
so called Kaprekar’s transformations. We formulate also some
conjectures. Moreover, we discuss here all minimal cycles of
the first 18 Kaprekar’s transformations (and present but only
of the first 15) with emphasis of the new, introduced by us,
characteristics of this cycles.

I. INTRODUCTION

In Part I of this elaboration (see [1]) we have introduced

the definitions of the so called Kaprekar’s transformations Tn:

Tn : {0}∪
{
α : 10n−1 − 1 ≤ α < 10n

}
→

→ {0} ∪
{
α : 10n−1 − 1 ≤ α < 10n

}

Tn(α) : =

n∑

k=1

(ak − an−k+1)10
k−1

= anan−1 . . . a1 − a1a2 . . . an,

for every α, n ∈ N, 10n−1 − 1 ≤ α < 10n, where

0 ≤ a1 ≤ a2 ≤ . . . ≤ an ≤ 9,

denote all digits of decimal expansion of number α ordered

in nondecreasing sequence and Tn(0) = 0. We have also

described the orbits of maps Tn for n = 3, 4, . . . , 7. Further-

more, in Part I many new concepts and characteristics of the

minimal cycles of general transformations F : X → X , where

X is a finite set, have been proposed. All of them will be

used in this part of our paper and applied for the Kaprekar’s

transformations Tn, n ∈ N.

Moreover, in this part of our paper we intend to present

firstly the collection of absolutely new facts discovered by

observing the, numerically obtained, orbits of operators Tn

for n ≤ 18. Next we will compile in tables the detailed

descriptions of the minimal cycles of operators Tn for n ≤ 15
(that is, we will give many individual pieces of information

concerning each of the investigated cycles). The other cases

for n = 16 − 18, because of the permissible length of the

paper, are omitted here.

II. FACTS BASING ON THE NUMERICAL RESULTS

Let us present now several essential facts in the subject of

Kaprekar’s transformations which we have deduced by ana-

lyzing the numerically obtained minimal cycles of operators

Tn for n ≤ 18. We will also formulate some conjectures

concerning the cycles of Kaprekar’s transformations.

Fact 1. Numbers appearing in the orbits of transformations

Tn correspond with the partitions of number ⌈n

2 ⌉ × 9 into n

digits, except the following n = 3k-digit numbers being the

Kaprekar’s constants of order 3k with the sum of digits equal

to 18k:
495, 549945, 554999445, . . . , 5 . . . 5

︸ ︷︷ ︸

(k−1) digits

4 9 . . .9
︸ ︷︷ ︸

k digits

4 . . . 4
︸ ︷︷ ︸

(k−1) digits

5.

The following theorem and the respective conclusions con-

stitute the theoretical grounds of the described above properties

of the orbits of transformations Tn.

Theorem 1.

a) Let a ∈ N be a 2n-digit number composed of digits

0 ≤ a1 ≤ a2 ≤ . . . ≤ a2n ≤ 9

and suppose that

an−k−1 < an−k = an−k+1 = . . . = an+l < an+l+1

for some k, l ∈ N0.

If k ≥ l, then the sum of digits of number T2n(a) is equal

to 9×(n+ l). Otherwise, this sum is equal to 9×(n+k).
b) Let a ∈ N be a (2n+1)-digit number composed of digits

0 ≤ a1 ≤ a2 ≤ . . . ≤ a2n+1 ≤ 9

and suppose that

an−k < an−k+1 = an−k+2 = . . . = an+l+1 < an+l+2

for some k, l ∈ N0.

If k ≥ l, then the sum of digits of number T2n+1(a) is

equal to 9× (n+ l+ 1), whereas if k < l, then the sum

of digits of number T2n+1(a) is equal to 9× (n+k+1).

Proof:

ad a) Let us notice that the following decimal expansions of

T2n(a) can be obtained

T2n(a)=







(a2n − a1)(a2n−1 − a2). . .(an+k+1 − an−k − 1)
×(9 + an+k − an−k) . . . (9 + a2 − a2n−1)
×(10 + a1 − a2n), if l > k,

(a2n − a1)(a2n−1 − a2). . .(an+l+1 − an−l − 1)
×(9 + an+l − an−l) . . . (9 + a2 − a2n−1)
×(10 + a1 − a2n), if k ≥ l,
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which implies the assertion.

ad b) The proof runs in similar way as in case of item a).

Corollary 1. If a ∈ N is a n-digit number then the sum of

digits of number Tn(a) is not lower than the number 9×⌈n

2 ⌉.

Corollary 2. If a ∈ N is a number possessing different digits

in the decimal expansion then the sum of digits of number

Tn(a) is equal to 9× ⌈n

2 ⌉.

Conjecture 1. Sum of digits of the numbers belonging to the

given orbit of operator Tn, where n ∈ N, except the two-

element orbit of operator T5, is the same.

Remark 1. The lowest number n, for which there exist two

different orbits (two different orbits possessing at least two

elements) of operator Tn composed of the numbers with

different sums of digits, is equal to 6 (is equal to n = 16,

respectively).

Remark 2. Numbers belonging to the orbits of operator

T2n+1 possess in their decimal expansion the middle digit

equal to 9.

Fact 2. Let a1a2 . . . an be an n-digit number belonging to

some orbit of transformation Tn, n ∈ N. Then the sequence,

henceforward called as the digit type of element a1a2 . . . an
of the given cycle, defined in the following way

a1+an, a2+an−1, a3+an−2, . . . ,

{
an

2
+ an

2
+1, if n is even

an+1

2

, if n is odd

is equal to

10, 9, . . . , 9,
︸ ︷︷ ︸

(k−1)-times

8, 9 (1)

if n = 2k + 1, k = 1, 2, . . ., and

10, 9, . . . , 9,
︸ ︷︷ ︸

(k−2)-times

8 (2)

if n = 2k, k = 2, 3, . . . In both cases the equality holds

independently on number a1a2 . . . an, except the following

numbers:

(i) the Kaprekar’s constants of order n = 3k:

5 . . . 5
︸ ︷︷ ︸

(k−1)-times

4 9 . . .9
︸ ︷︷ ︸

k-times

4 . . . 4
︸ ︷︷ ︸

(k−1)-times

5,

for which the respective sequence of sums has the form

10, 9, . . . , 9,
︸ ︷︷ ︸

(k−2)-times

8, 18, . . . , 18,
︸ ︷︷ ︸

⌊ k

2
⌋-times

9.
︸︷︷︸

(⌈ k

2
⌉−⌊ k

2
⌋)-times

Let us notice that if we correct the above sequence in

the following way (we shift the units similarly as in the

addition operation):

(k − 2)-times ⌊k

2⌋-times (⌈k

2 ⌉ − ⌊k

2 ⌋)-times

then we obtain the sequence

10, 9, . . . , 9
︸ ︷︷ ︸

(⌊ 3k
2
⌋−2)-times

8, 9,
︸︷︷︸

(⌈ k

2
⌉−⌊ k

2
⌋)-times

which is "compatible" either with (1), if k is odd, or with

(2), if k is even.

(ii) the numbers belonging to the single 2-element orbit

{53955, 59994} of operator T5, where the respective

sequences of sums are of the forms 10, 8, 9 and 9, 18, 9,

but we get

(iii) the numbers belonging to the single 2-element orbit

{8764421997755322, 8765431997654322} of operator

T16, where both sequences of sums are of the form

10, 9, 9, 9, 9, 9, 8, 18, but we obtain

which is compatible with (2).

Fact 3. We have noticed that for every n = 10, 12, ..., 18
the operator Tn possesses the even number of 3-element

cycles and, moreover, the difference between the numbers of

3-element cycles of Tn possessing the orbit types (1, 3, 2) and

(1, 2, 3), respectively, is equal to 0 for n = 10, 12 and 2
n−12

2

for n = 14, 16, 18. The orbit type of all 7-element cycles of

Tn, n ≤ 18, is the same and is equal to (1, 5, 3, 4, 6, 7, 2).

Fact 4 (Kaprekar’s constants). We have observed that each

Kaprekar’s constant of order n ≤ 18 generates the sequence

of extensions of decimal expansions remaining the Kaprekar’s

constants (of the respectively higher order). For example, we

have

— 6 3 . . .3
︸ ︷︷ ︸

k-times

17 6 . . .6
︸ ︷︷ ︸

k-times

4 are the Kaprekar’s constants of order

(2k + 4) for every k = 0, 1, 2, . . .,

Sketch of the proof: We have

7 6 . . .6
︸ ︷︷ ︸

k+1

4 3 . . .3
︸ ︷︷ ︸

k

1− 1 3 . . .3
︸ ︷︷ ︸

k

4 6 . . . 6
︸ ︷︷ ︸

k+1

7 = 6 3 . . . 3
︸ ︷︷ ︸

k

17 6 . . .6
︸ ︷︷ ︸

k

4

�

— 9 . . . 9
︸ ︷︷ ︸

k-times

750842 0 . . . 0
︸ ︷︷ ︸

(k−1)-times

1 are the Kaprekar’s constants of

order (2k + 6) for every k = 1, 2, . . .,
— 975 3 . . .3

︸ ︷︷ ︸

k-times

08 6 . . .6
︸ ︷︷ ︸

k-times

421 are the Kaprekar’s constants of

order (2k + 8) for every k = 0, 1, 2, . . .,
— 9 . . . 9

︸ ︷︷ ︸

k-times

75308642 0 . . . 0
︸ ︷︷ ︸

(k−1)-times

1 are the Kaprekar’s constants of

order (2k + 8) for every k = 1, 2, . . .,
— 864 3 . . .3

︸ ︷︷ ︸

k-times

197 6 . . .6
︸ ︷︷ ︸

k-times

532 are the Kaprekar’s constants of

order (2k + 9) for every k = 0, 1, 2, . . .
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Remark 3. The Q-Kaprekar’s transformations Qn, defined in

the last section of Part I, possess the same property as above

for their fixed points. For example, the number

5 . . . 5
︸ ︷︷ ︸

k-times

4 9 . . . 9
︸ ︷︷ ︸

(k+1)-times

4 . . . 4
︸ ︷︷ ︸

k-times

5

is the fixed point of transformation Q3k+3 for every k =
1, 2, . . ., the number

66 3 . . .3
︸ ︷︷ ︸

k-times

08 6 . . .6
︸ ︷︷ ︸

k-times

52

is the fixed point of Q2k+6 for every k = 0, 1, 2, . . . and, at

last, the number

9 . . . 9
︸ ︷︷ ︸

(k+1)-times

750842 0 . . .0
︸ ︷︷ ︸

k-times

1

is the fixed point of Q2k+8 for every k = 1, 2, . . ..

Fact 5. We suppose that, similarly like in case of the

Kaprekar’s constants, all orbits of operators Tn with the odd

number of elements possess their "extensions", that is they

generate the infinite sequences of orbits of the Kaprekar’s

operators preserving the number of elements of the initial

orbit. Whereas, despite of the insistent efforts we did not

manage to get such extension (in the similar style as in case

of the orbits presented below) for any orbit having the even

number of elements.

The Kaprekar’s transformation T2(k+4), for k = 0, 1, . . . , 5,

possesses A140226(k) (equal to 1
3k(11+k2) for k ≥ 1) of 3-

element minimal cycles (A140226 in notation of the Sloane’s

OEIS).

Furthermore, transformation T2(k+4), for each k =
0, 1, . . . , possesses the following 3-element minimal cycle

(

643 3 . . .3
︸ ︷︷ ︸

k-times

08 6 . . .6
︸ ︷︷ ︸

k-times

654,

83 3 . . .3
︸ ︷︷ ︸

k-times

2087 6 . . .6
︸ ︷︷ ︸

k-times

62,

865 3 . . .3
︸ ︷︷ ︸

k-times

26 6 . . .6
︸ ︷︷ ︸

k-times

432
)

.

For k = 0 it is the single 3-element minimal cycle of the

respective Kaprekar’s transformation.

The other examples of 3-element minimal cycles of maps

T6k+8, T2k+10, T2k+10, are the following:
(

8 7 . . .7
︸ ︷︷ ︸

k-times

3 . . . 3
︸ ︷︷ ︸

2k-times

32087 6 . . . 6
︸ ︷︷ ︸

2k-times

62 2 . . .2
︸ ︷︷ ︸

k-times

,

865 5 . . .5
︸ ︷︷ ︸

k-times

3 . . . 3
︸ ︷︷ ︸

2k-times

26 6 . . . 6
︸ ︷︷ ︸

2k-times

4 . . . 4
︸ ︷︷ ︸

k-times

432,

643 3 . . . 3
︸ ︷︷ ︸

2k-times

1 . . . 1
︸ ︷︷ ︸

k-times

08 8 . . .8
︸ ︷︷ ︸

k-times

6 . . . 6
︸ ︷︷ ︸

2k-times

654
)

,

(

975 3 . . .3
︸ ︷︷ ︸

k-times

1088 6 . . .6
︸ ︷︷ ︸

k-times

421, 9775 3 . . .3
︸ ︷︷ ︸

k-times

08 6 . . .6
︸ ︷︷ ︸

k-times

4221,

9755 3 . . .3
︸ ︷︷ ︸

k-times

08 6 . . .6
︸ ︷︷ ︸

k-times

4421
)

,

(

975 5 . . .5
︸ ︷︷ ︸

k-times

1088 4 . . .4
︸ ︷︷ ︸

k-times

421, 9775 1 . . .1
︸ ︷︷ ︸

k-times

08 8 . . .8
︸ ︷︷ ︸

k-times

4221,

97 7 . . .7
︸ ︷︷ ︸

k-times

550844 2 . . .2
︸ ︷︷ ︸

k-times

21
)

,

respectively, for every k = 0, 1, 2, . . .
Every Kaprekar’s transformation T2k+11, for k =

0, 1, 2, . . ., possesses the following 5-element minimal cycle

(864 3 . . . 3
︸ ︷︷ ︸

k−times

20987 6 . . . 6
︸ ︷︷ ︸

k−times

532,

9664 3 . . . 3
︸ ︷︷ ︸

k−times

197 6 . . . 6
︸ ︷︷ ︸

k−times

5331,

8843 3 . . . 3
︸ ︷︷ ︸

k−times

197 6 . . . 6
︸ ︷︷ ︸

k−times

6512,

8764 3 . . . 3
︸ ︷︷ ︸

k−times

197 6 . . . 6
︸ ︷︷ ︸

k−times

5322,

8654 3 . . . 3
︸ ︷︷ ︸

k−times

197 6 . . . 6
︸ ︷︷ ︸

k−times

5432).

For k = 0 it is the single 5-element minimal cycle of the

respective Kaprekar’s transformation.

Next, the transformation T2k+13, for every k = 0, 1, 2, ...,
has also two following 5-element minimal cycles (all these

cycles possess the same orbit type equal to (1, 4, 5, 3, 2) and

(1, 4, 2, 5, 3), respectively):

(8654 3 . . . 3
︸ ︷︷ ︸

k−times

20987 6 . . . 6
︸ ︷︷ ︸

k−times

5432,

9664 3 . . . 3
︸ ︷︷ ︸

k−times

20987 6 . . . 6
︸ ︷︷ ︸

k−times

5331,

98643 3 . . . 3
︸ ︷︷ ︸

k−times

197 6 . . . 6
︸ ︷︷ ︸

k−times

65311,

88743 3 . . . 3
︸ ︷︷ ︸

k−times

197 6 . . . 6
︸ ︷︷ ︸

k−times

65212,

87654 3 . . . 3
︸ ︷︷ ︸

k−times

197 6 . . . 6
︸ ︷︷ ︸

k−times

54322)

and

(8764 3 . . . 3
︸ ︷︷ ︸

k−times

20987 6 . . . 6
︸ ︷︷ ︸

k−times

5322,

96654 3 . . . 3
︸ ︷︷ ︸

k−times

197 6 . . . 6
︸ ︷︷ ︸

k−times

54331,

8843 3 . . . 3
︸ ︷︷ ︸

k−times

20987 6 . . . 6
︸ ︷︷ ︸

k−times

6512,

97664 3 . . . 3
︸ ︷︷ ︸

k−times

197 6 . . . 6
︸ ︷︷ ︸

k−times

53321,

88543 3 . . . 3
︸ ︷︷ ︸

k−times

197 6 . . . 6
︸ ︷︷ ︸

k−times

65412).

For k = 0 three above 5-element minimal cycles are the only

5-element minimal cycles of T2k+13.

The example of 7-element cycle of map T2k+6, for every

k = 0, 1, 2, ..., is the following (which possesses the orbit type
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equal to (1, 5, 3, 4, 6, 7, 2)):
(

4 3 . . . 3
︸ ︷︷ ︸

k-times

2087 6 . . .6
︸ ︷︷ ︸

k-times

6, 85 3 . . .3
︸ ︷︷ ︸

k-times

17 6 . . .6
︸ ︷︷ ︸

k-times

42,

75 3 . . .3
︸ ︷︷ ︸

k-times

08 6 . . .6
︸ ︷︷ ︸

k-times

43, 84 3 . . .3
︸ ︷︷ ︸

k-times

08 6 . . .6
︸ ︷︷ ︸

k-times

52,

86 3 . . .3
︸ ︷︷ ︸

k-times

08 6 . . .6
︸ ︷︷ ︸

k-times

32, 86 3 . . .3
︸ ︷︷ ︸

k-times

26 6 . . .6
︸ ︷︷ ︸

k-times

32,

64 3 . . .3
︸ ︷︷ ︸

k-times

26 6 . . .6
︸ ︷︷ ︸

k-times

54
)

.

Indicated number 4, at the end of the last number in this cycle,

appears only for k ≥ 1.

For each k ≤ 6 this is the single 7-element minimal cycle

of these Kaprekar’s transformations.

Fact 6. The following statements hold for every n ≤ 20.

If Tn possesses a cycle with the odd number of elements,

then it possesses also a fixed point.

Moreover, we note that there exists n ≤ 20 such that the

operator Tn possesses only the nontrivial orbits with the even

numbers of elements, for example we may consider T5, T7.

Fact 7. If a is an element belonging to the orbit of operator

Tn composed of at least three numbers and a = α1α2 . . . αn

and Tn(a) = β1β2 . . . βn are the decimal representations

of numbers a and Tn(a), respectively, then αk − βk =
βn−k+1 − αn−k+1 for every k = 1, 2 . . . , n. For example,

for the cycles of operator T5 (only two 4-element cycles are

taken into account) we consider the following sequences of

differences

β1 − α1, β2 − α2, . . . , β5 − α5.

Thus, for the cycle

(62964 = a = T 4
5 (a), 71973 = T5(a),

83952 = T 2
5 (a), 74943 = T 3

5 (a))

we have

−1,−2, 0, 2, 1
︸ ︷︷ ︸

T 4
5
(a)−T 3

5
(a)

; 1,−1, 0, 1,−1
︸ ︷︷ ︸

T5(a)−a

;

1, 2, 0,−2,−1
︸ ︷︷ ︸

T 2
5
(a)−T5(a)

; −1, 1, 0,−1, 1
︸ ︷︷ ︸

T 3
5
(a)−T 2

5
(a)

,

whereas for the cycle

(61974, 82962, 75933, 63954)

we have

0,−2, 0, 2, 0; 2, 1, 0,−1,−2; −1, 3, 0,−3, 1; −1,−2, 0, 2, 1.

III. CONCLUSIONS

Although one can find quite a lot of references concerning

the subject of the discussed here Kaprekar’s transformations

(see the References in [1]), we have noticed yet several lacks

in descriptions of the orbits of Tn transformations, even for

n ≤ 10. Aim of our work was to complete these lacks, in

which we succeeded, and we did even more. Our achievements

have been indicated and included in Section II. One should em-

phasize especially the theorems concerning the possibility of

"expanding" the fixed points and cycles of a given Kaprekar’s

transformation Tn, n ≤ 18, to the fixed points and cycles of

infinitely many Kaprekar’s transformations (which, by the way,

gives the answer to a question whether there exist infinitely

many n ∈ N such that Tn possesses a fixed point - similar

fact concerns the possession of 3,5,7-element orbits). For our

research we introduced several new concepts which, in the

context of obtained numerical results, brought us to some

theoretical results and conjectures. We derived some of our

theorems and conjectures presented in Section II also for the

generalizations of Kaprekar’s transformations (obeying the Q-

Kaprekar’s transformation from [1]) which will be the subject

of the created now next paper. We intend also to use the

experience, gained by applying the numerical results in theory,

in didactic work by showing to the students the possibilities

of seemingly simple calculations. We will also use in this field

the experiences of other authors (see [2], [3]).

APPENDIX

Description of tables presenting the cycles of Kaprekar’s

transformations Tn

The table is composed in the following way

– in the first row the value of index n of the Kaprekar’s

transformation Tn is given,

– the second row presents the amount of minimal cycles of

the given length of the given transformation Tn as well

as the information whether the given transformation pre-

serves the strong Sharkovsky’s order or the Sharkovsky’s

order (see definitions 1 and 2 in [1]),

– the third row shows how many n-digit numbers is trans-

formed by the given Kaprekar’s transformation Tn (after

the finite number of steps) onto the respective minimal

cycle of this transformation,

– in the successive rows the successive cycles from the

third row (except the trivial one, that is the zero cycle)

are associated with: the order types (it concerns only the

cycles of length greater than 1, see the proper definition

in [1]); the sum of digits of particular elements of the

cycle, in case when these sums are identical, we include

them only once; the digit types, and again, in case

when they are identical, we include them only once; the

longest increasing interval of the given cycle, the longest

increasing subsequence of the given cycle, the longest

decreasing interval of the given cycle and the longest

decreasing subsequence of the given cycle.
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n = 5
1 fixed point, 1 cycle of length 2, 2 cycles of length 4; strong Sharkovsky’s order

3190 numbers → cycle: (53955,59994)

48480 numbers → cycle: (61974,82962,75933,63954)

48320 numbers → cycle: (62964,71973,83952,74943)

successive order type sum of digits digit type longest incr. interval, subseq.,

cycles longest decr. interval, subseq.

β1 (1, 2) 27, 36 (10, 8, 9), (9, 18, 9) 2, 1, 2, 1

β2 (1, 4, 3, 2) 27 (10, 8, 9) 2, 2, 3, 3

β3 (1, 2, 4, 3) 27 (10, 8, 9) 3, 3, 2, 2

n = 6
3 fixed points, 1 cycle of length 7; Sharkovsky’s order

1950 numbers → fixed point: 549945

62520 numbers → fixed point: 631764

935520 numbers → cycle: (420876,851742,750843,840852,860832,862632,64265)

successive order type sum of digits digit type longest incr. interval, subseq.,

cycles longest decr. interval, subseq.

β1 36 (10, 8, 18)
β2 27 (10, 9, 8)
β3 (1, 5, 3, 4, 6, 7, 2) 27 (10, 9, 8) 4, 5, 2, 3

n = 7
1 fixed point, 1 cycle of length 8

9999990 numbers → cycle: (7509843,9529641,8719722,8649432,7519743,8429652,7619733,8439552)

successive order type sum of digits digit type longest incr. interval, subseq.,

cycles longest decr. interval, subseq.

β1 (1, 5, 7, 6, 8, 4, 3, 2) 36 (10, 9, 8, 9) 2, 4, 4, 5

n = 8
3 fixed points, 1 cycle of length 3, 1 cycle of length 7

599536 numbers → fixed point: 63317664

2371040 numbers → fixed point: 97508421

48247316 numbers → cycle: (64308654,83208762,86526432)

48782098 numbers → cycle: (43208766,85317642,75308643,84308652,86308632,86326632,64326654)

successive order type sum of digits digit type longest incr. interval, subseq.,

cycles longest decr. interval, subseq.

β1, β2 36 (10, 9, 9, 8)
β3 (1, 2, 3) 36 (10, 9, 9, 8) 3, 3, 1, 1

β4 (1, 5, 3, 4, 6, 7, 2) 36 (10, 9, 9, 8) 4, 5, 2 ,3

n = 9
3 fixed points, 1 cycle of length 14; Sharkovsky’s order

34440 numbers → fixed point: 554999445
51389136 numbers → fixed point: 864197532

948576414 numbers → cycle:
(753098643, 954197541, 883098612, 976494321, 874197522, 865296432, 763197633,
844296552, 762098733, 964395531, 863098632, 965296431, 873197622, 865395432)

successive order type sum of digits digit type longest incr. interval, subseq.,

cycles longest decr. interval, subseq.

β1 54 (10, 9, 8, 18, 9)
β2 45 (10, 9, 9, 8, 9)
β3 (1, 11, 10, 14, 9, 6, 3, 4, 2, 12, 5, 13, 8, 7) 45 (10, 9, 9, 8, 9) 2,5,4,6
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n = 10
4 fixed points, 4 cycles of length 3, 1 cycle of length 7

4306680 numbers → fixed point: 6333176664 644450820 numbers → fixed point: 9753086421
41045760 numbers → fixed point: 9975084201
1291432626 numbers → cycle: (6431088654, 8732087622, 8655264432)
3925269288 numbers → cycle: (6433086654, 8332087662, 8653266432)
1058345520 numbers → cycle: (6543086544, 8321088762, 8765264322)
558293820 numbers → cycle: (9751088421, 9775084221, 9755084421)

2476855476 numbers → cycle:
(4332087666, 8533176642, 7533086643, 8433086652,
8633086632, 8633266632, 6433266654)

successive order type sum of digits digit type longest incr. interval, subseq.,

cycles longest decr. interval, subseq.

β1 − β3 45 (10, 9, 9, 9, 8)
β4 (1, 3, 2) 45 (10, 9, 9, 9, 8) 2, 2, 2, 2

β5, β6 (1, 2, 3) 45 (10, 9, 9, 9, 8) 3, 3, 1, 1

β7 (1, 3, 2) 45 (10, 9, 9, 9, 8) 2, 2, 2, 2

β8 (1, 5, 3, 4, 6, 7, 2) 45 (10, 9, 9, 9, 8) 4, 5, 2 ,3

n = 11
2 fixed points, 1 cycle of length 5, 1 cycle of length 8

7444117296 numbers → fixed point: 86431976532
61796170458 numbers → cycle: (86420987532, 96641975331, 88431976512, 87641975322, 86541975432)

30759712236 numbers → cycle:
(76320987633, 96442965531, 87320987622, 96653954331,
86330986632, 96532966431, 87331976622, 86542965432)

successive order type sum of digits digit type longest incr. interval, subseq.,

cycles longest decr. interval, subseq.

β1 54 (10, 9, 9, 9, 8, 9)
β2 (1, 5, 4, 3, 2) 54 (10, 9, 9, 9, 8, 9) 2, 2, 4, 4

β3 (1, 6, 4, 8, 2, 7, 5, 3) 54 (10, 9, 9, 9, 8, 9) 2, 3, 3, 4

n = 12
6 fixed points, 10 cycles of length 3, 1 cycle of length 7

697950 numbers → fixed point: 555499994445
57413664 numbers → fixed point: 633331766664
28903840680 numbers → fixed point: 975330866421
6771885120 numbers → fixed point: 997530864201
556839360 numbers → fixed point: 999750842001
23752825668 numbers → cycle: (643110888654, 877320876222, 865552644432)
125925387258 numbers → cycle: (643310886654, 873320876622, 865532664432)
250807302642 numbers → cycle: (643330866654, 833320876662, 865332666432)
37978377360 numbers → cycle: (654310886544, 873210887622, 876552644322)
124802255728 numbers → cycle: (654330866544, 833210887662, 876532664322)
76745507520 numbers → cycle: (655430865444, 832110888762, 877652643222)
14186684160 numbers → cycle: (975110888421, 977750842221, 975550844421)
91728976482 numbers → cycle: (975310886421, 977530864221, 975530864421)
35851244880 numbers → cycle: (975510884421, 977510884221, 977550844221)
10397350260 numbers → cycle: (997510884201, 997750842201, 997550844201)

171533411258 numbers → cycle:
(433320876666, 853331766642, 753330866643, 843330866652,
863330866632, 863332666632, 643332666654)

successive order type sum of digits digit type longest incr. interval, subseq.,

cycles longest decr. interval, subseq.

β1 72 (10, 9, 9, 8, 18, 18)
β2 − β5 54 (10, 9, 9, 9, 9, 8)
β6, β7 (1, 3, 2) 54 (10, 9, 9, 9, 9, 8) 2, 2, 2, 2

β8 − β11 (1, 2, 3) 54 (10, 9, 9, 9, 9, 8) 3, 3, 1, 1

β12, β13 (1, 3, 2) 54 (10, 9, 9, 9, 9, 8) 2, 2, 2, 2

β14 (1, 2, 3) 54 (10, 9, 9, 9, 9, 8) 3, 3, 1, 1

β15 (1, 3, 2) 54 (10, 9, 9, 9, 9, 8) 2, 2, 2, 2

β16 (1, 5, 3, 4, 6, 7, 2) 54 (10, 9, 9, 9, 9, 8) 4, 5, 2, 3
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n = 13
2 fixed points, 1 cycle of length 2, 3 cycles of length 5; Sharkovsky’s order

127766869230 numbers → fixed point: 8643319766532
729214292326 numbers → cycle: (8733209876622, 9665429654331)

5169476073242 numbers → cycle:
(8643209876532, 9664319765331, 8843319766512,
8764319765322, 8654319765432)

1373689940636 numbers → cycle:
(8654209875432, 9664209875331, 9864319765311,
8874319765212, 8765419754322)

2599852824556 numbers → cycle:
(8764209875322, 9665419754331, 8843209876512,
9766419753321, 8854319765412)

successive order type sum of digits digit type longest incr. interval, subseq.,

cycles longest decr. interval, subseq.

β1 63 (10, 9, 9, 9, 9, 8, 9)
β2 (1, 2) 63 (10, 9, 9, 9, 9, 8, 9) 2, 2, 1, 1

β3 (1, 5, 4, 3, 2) 63 (10, 9, 9, 9, 9, 8, 9) 2, 2, 4, 4

β4 (1, 4, 5, 3, 2) 63 (10, 9, 9, 9, 9, 8, 9) 3, 3, 3, 3

β5 (1, 4, 2, 5, 3) 63 (10, 9, 9, 9, 9, 8, 9) 2, 3, 2, 2

n = 14
7 fixed points, 20 cycles of length 3, 1 cycle of length 7

825128304 numbers → fixed p.: 63333317666664; 1640938809510 numbers → fixed p.: 97533308666421
1955480289854 numbers → fixed p.: 97755108844221; 516356961120 numbers → fixed p.: 99753308664201
126071225280 numbers → fixed p.: 99975308642001; 6034588560 numbers → fixed p.: 99997508420001
616791947798 numbers → cycle: (64311108888654, 87773208762222, 86555526444432)
2245517211436 numbers → cycle: (64331108886654, 87733208766222, 86555326644432)
12115951630042 numbers → cycle: (64333108866654, 87333208766622, 86553326664432)
20900682225326 numbers → cycle: (64333308666654, 83333208766662, 86533326666432)
1233797593392 numbers → cycle: (65431108886544, 87732108876222, 87655526444322)
4978650152970 numbers → cycle: (65433108866544, 87332108876622, 87655326644322)
8893048070816 numbers → cycle: (65433308666544, 83332108876662, 87653326664322)
1917234715396 numbers → cycle: (65543108865444, 87321108887622, 87765526443222)
4466367674132 numbers → cycle: (65543308665444, 83321108887662, 87765326643222)
1355384297358 numbers → cycle: (65554308654444, 83211108888762, 87776526432222)
360886383858 numbers → cycle: (97511108888421, 97777508422221, 97555508444421)
2896580093862 numbers → cycle: (97531108886421, 97775308642221, 97555308644421)
5677743145438 numbers → cycle: (97533108866421, 97753308664221, 97553308664421)
2626503498710 numbers → cycle: (97551108884421, 97775108842221, 97755508444221)
6197474439338 numbers → cycle: (97553108864421, 97753108864221, 97755308644221)
1366108585842 numbers → cycle: (97555108844421, 97751108884221, 97775508442221)
420203255472 numbers → cycle: (99751108884201, 99777508422201, 99755508444201)
2316236914992 numbers → cycle: (99753108864201, 99775308642201, 99755308644201)
829988923764 numbers → cycle: (99755108844201, 99775108842201, 99775508442201)
181449067800 numbers → cycle: (99975108842001, 99977508422001, 99975508442001)

14157693169620 numbers → cycle:
(43333208766666, 85333317666642, 75333308666643, 84333308666652,
86333308666632, 86333326666632, 64333326666654)

successive order type sum of digits digit type longest incr. interval, subseq.,

cycles longest decr. interval, subseq.

β1 − β6 63 (10, 9, 9, 9, 9, 9, 8)
β7 − β9 (1, 3, 2) 63 (10, 9, 9, 9, 9, 9, 8) 2, 2, 2, 2

β10, β25 (1, 2, 3) 63 (10, 9, 9, 9, 9, 9, 8) 3, 3, 1, 1

β11, β26 (1, 3, 2) 63 (10, 9, 9, 9, 9, 9, 8) 2, 2, 2, 2

β12 − β16 (1, 2, 3) 63 (10, 9, 9, 9, 9, 9, 8) 3, 3, 1, 1

β17 − β20 (1, 3, 2) 63 (10, 9, 9, 9, 9, 9, 8) 2, 2, 2, 2

β21, β22 (1, 2, 3) 63 (10, 9, 9, 9, 9, 9, 8) 3, 3, 1, 1

β23, β24 (1, 3, 2) 63 (10, 9, 9, 9, 9, 9, 8) 2, 2, 2, 2

β27 (1, 5, 3, 4, 6, 7, 2) 63 (10, 9, 9, 9, 9, 9, 8) 4, 5, 2, 3
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n = 15
3 fixed points, 1 cycle of length 2, 5 cycles of length 5

15165150 numbers → fixed p.: 555549999944445; 3577552068090 numbers → fixed p.: 864333197666532
12790914986700 numbers → cycle: (873332098766622, 966543296654331)
91463039030240 numbers → cycle:

(864332098766532, 966433197665331, 884333197666512, 876433197665322, 865433197665432)
234193123825336 numbers → cycle:

(865432098765432, 966432098765331, 986433197665311, 887433197665212, 876543197654322)
270342559594928 numbers → cycle:

(876432098765322, 966543197654331, 884332098766512, 976643197653321, 885433197665412)
146805971092664 numbers → cycle:

(876542098754322, 966542098754331, 986432098765311, 987643197653211, 887543197654212)
240826824236882 numbers → cycle:

(885432098765412, 976642098753321, 986543197654311, 887432098765212, 976654197543321)
successive order type sum of digits digit type longest incr. interval, subseq.,

cycles longest decr. interval, subseq.

β1 90 (10, 9, 9, 9, 8, 18, 18, 9)
β2 72 (10, 9, 9, 9, 9, 9, 8, 9)
β3 (1, 2) 72 (10, 9, 9, 9, 9, 9, 8, 9) 2, 2, 1, 1

β4 (1, 5, 4, 3, 2) 72 (10, 9, 9, 9, 9, 9, 8, 9) 2, 2, 4, 4

β5 (1, 4, 5, 3, 2) 72 (10, 9, 9, 9, 9, 9, 8, 9) 3, 3, 3, 3

β6 (1, 4, 2, 5, 3) 72 (10, 9, 9, 9, 9, 9, 8, 9) 2, 3, 2, 2

β7 (1, 3, 4, 5, 2) 72 (10, 9, 9, 9, 9, 9, 8, 9) 4, 4, 2, 2

β8 (1, 3, 5, 2, 4) 72 (10, 9, 9, 9, 9, 9, 8, 9) 3, 3, 2, 2
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