ANALYSIS OF RUMEN AMMONIA & BLOOD UREA NITROGEN Updated September 2013

Reference:

Smith, F.E. and Murphy, T.A. Analysis of Rumen Ammonia & Blood urea Nitrogen March 10, 1993

Berthelot MPE: Violet D'aniline. Repert Chim Appl. 1:284 (1859)

Broderick, G.A. and Kang, J.H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 63:64 (1980)

Chaney, A.L. and Marbach, E.P. Modified reagents for determination of urea and ammonia. Clin Chem. 8:130 (1962)

Personal Protective Equipment:

- 1. Lab Coat
- 2. Safety glasses/goggles
- 3. Latex gloves
- 4. Perform procedure in designated fume hood

Reagents:

- 1. Urease Buffer (BUN only)
 - a.) Dissolve 7.11g Sodium phosphate (Na₂HPO₄) in 400-500ml boiling (CO₂ free) distilled H₂O
 - b.) Add 5.0 g Disodium ethylenediamine tetraacetate $(Na_2C_{10}H_{14}O_8N_2*2H_2O)$ (EDTA)
 - c.) Bring volume to 1 liter with boiling distilled H₂O
 - d.) pH should be 7 (adjust if necessary)
- 2. Buffered Urease Solution (BUN only) (0.4 mg/ml)
 - a.) Add 20mg Urease (Sigma U1500 Type III 27,000 units/g)to 50 ml Urease buffer and dissolve
 - b.) Store at 2-10°C. Stable for one month
 - c.) Concentration may need to be adjusted
- 3. Standards for BUN's
 - a.) Purchase from Sigma (Urea Nitrogen Standard Solution Catalog No. 535-30)
 - b.) Use standard to make levels: 30 mg/dl
 - 15 mg/dl
 - 7.5 mg/dl
 - 3.75 mg/dl
 - $0 \text{ mg/dl} (H_2 \text{O only})$
- 4. Phenol Color Reagent (2 liters)
 - a.) Dissolve 0.1g sodium nitroprusside (NA₂Fe(CN)₅NO*2H₂O) in 1 liter of distilled H₂O
 - b.) Add 20.0 g dry phenol (C_6H_5OH). Mix and dissolve
 - c.) Bring volume up to 2 liters with distilled H₂O
 - d.) Store in brown glass bottle at 2-10°C. Stable for 6 months when protected from light
- 5. Alkaline Hypochlorite Reagent (2 liters)
 - a.) Dissolve 10.0 g sodium hydroxide (NaOH) in about 1300ml distilled H_2O
 - b.) Add 75.7g Disodium phosphate (Na₂HPO₄*7H₂O) and dissolve with mild heating and

mixing

- c.) After cooling, add 100 ml of commercial bleach ("Clorox" 5.25% sodium hypochlorite). MAKE SURE BLEACH IS FRESH! Mix
- d.) Bring volume up to 2 liters with distilled H_2O .
- e.) Filter through Whatman #1 filter paper and store in polyethylene bottle at 2-10°C protected from light. Stable for 6 months.
- 6. Ammonia Standard Solution
 - a.) Stock solution is 32 mg/dl
 - b.) To make with ammonium chloride (NH_4Cl) :

N=14.01					
H= 1.01		<u>NH3</u>	17.04	=	31.86%
Cl= <u>35.45</u>		NH ₄ Cl	53.49		
52 40 (F	1				

53.48 (Formula weight)

0.3186X=0.032g

X=0.10045g NH₄Cl

So to make 1 liter use $1.0045 \text{g NH}_4\text{Cl}$

- c.) Dissolve 1.0045g NH_4Cl in 800ml distilled H_2O
- d.) Drop pH down to 2 with dilute (2N) HCl
- e.) Bring volume up to 1 liter with distilled H_2O
- f.) Use Stock Solution to make levels: 32mg/dl
 - 16mg/dl 8mg/dl 4mg/dl

```
2mg/dl
1mg/dl
```

```
0mg/dl (H_2O only)
```

Principle:

Ammonia reacts with alkaline hypochlorite and phenol in the presence of a catalyst (sodium nitroprusside) to form indophenol (blue) (Berthelot reaction). The concentration of ammonia is directly proportional to the absorbance of indophenol which is measured spectrophotometricaly.

Sample Collection:

- 1. Rumen Fluid
 - a.) Strain rumen fluid through 2 layers of cheesecloth (Grade 50 or finer).
 - b.) Add 2ml of fresh 25% metaphosphoric acid to 8ml of strained rumen fluid. Cap and invert to mix.
 - c.) Store samples in freezer (-20°C) if not analyzing right away.
 - d.) Prior to Analysis, centrifuge samples at 11-12,000 x g for 20 minutes. Use supernatant for analysis.
- 2. Blood
 - a.) Centrifuge whole blood to collect serum or plasma
 - b.) Store in freezer until analysis

Procedure:

For BUN start here

1. Vortex serum (or plasma)

- 2. Using "Digiflex" automatic pipette, dispense 20 μ l sample or standard plus 20 μ l H₂O into pre-labeled test tubes. Run in duplicate
- 3. Add 500µl of Urease solution to each tube. Use a repeating pipette (Eppendorf)
- 4. Incubate in a 37°C water bath for 10 minutes. Skip to step #7

For Rumen Ammonia start here

- 5. Vortex rumen fluid
- 6. Using "Digiflex" automatic pipette, dispense 40μl rumen fluid or standard plus 40μl H₂O into pre-labeled test tubes. Run in duplicate.
- 7. Pipette 2.5ml phenol reagent into each tube.
- 8. Pipette 2.0ml alkaline hypochlorite reagent into each tube. Vortex.
- 9. Incubate in a 37°C water bath for 10 minutes.
- 10. Pipette 300µl from each tube into wells of a microtiter plate
- 11. Read absorbance on plate ready at 550 nanometers. (Any wavelength between 500 and 660nm can be used). If color is too intense, a lower wavelength can be used or samples can be diluted 1:1 with H₂O and read again.
- 12. Calculate standard curve using linear regression.
 - x = absorbance y = concentration
 - a. Substitute sample absorbances (x) into equation. For rumen ammonia samples, multiply result by 1.25 to correct for the dilution with metaphosphoric acid.
 - b. Normal rumen ammonia levels expected to be in the range of 1-25 mg/dl. Normal ruminant BUN's expected to be in the range of 8-25mg/dl

Validation (for BUN)

Standard	Absorbance	
0 mg/dl	0.048	Y = mx + b
3.75	0.14	
7.5	0.23	b = -2.26 m $- 42.7$
15	0.415	r = .9997
30	0.75	

Sta	andard	Absorbance	
0 mg/0	dl + Serum	0.265	y = mx + b
3.75	+Serum	0.37	h = 13.2
7.5	+Serum	0.46	m = 46.3
15	+Serum	0.625	r = 0.998
30	+Serum	0.92	

Sta	ndard	Absorbance	
0 mg/c	ll +Urea	0.258	y = mx + b
3.75	+Urea	0.35	-112
7.5	+Urea	0.445	m = 42.6
15	+ Urea	0.625	r = 0.9997
30	+Urea	0.963	

Control (Sigma Accutrol Catalog No. A2034) Value should be between 11-17 mg/dl. We got 16.3.

Validation (for Rumen Ammonia)

Standard*	Absorbance	
0 mg/dl	0.003	y = mx + b
1	0.047	
2	0.092	b = -0.108
4	0.192	m = 21.37 r = .9999
8	0.392	
16	0.762	
32	1.496	

* = Used 40 μ l standard + 40 μ l H₂O

	Standard	Absorbance	
0 mg/dl	+Rumen Fluid	0.121	y = mx + b
1	+Rumen Fluid	0.187	1 2 000
2	+Rumen Fluid	0.234	b = -2.898 m = 21.33
4	+Rumen Fluid	0.328	r = .99999
8	+Rumen Fluid	0.509	
16	+Rumen Fluid	.895	
32	+Rumen Fluid	1.631	