
1

Hipsgen

User manual
Related to versions 12.135 and following.

Translation

with help from deepl.com

2

Hipsgen – User manual

Pierre Fernique

January 2023 – with additions 24/01/2024, 23/4/2024 and 27/5/2024

Centre de Données astronomiques de Strasbourg

Observatoire astronomique de Strasbourg

© 2023-2024 – Université de Strasbourg / CNRS – under Open Licence (CC-BY compliant)

3

Introduction

Hipsgen is a software package dedicated to generating a Hierarchical Progressive Survey, or HiPS, from

a set of images, also known as a "sky survey". A HiPS is both a format and a protocol for viewing

astronomical data, based on a hierarchical "tiling" that allows zooming and moving through

astronomical images represented as a coherent entity. It is defined in an international IVOA standard

"HiPS 1.0".

HiPS is primarily dedicated to scientific use. The methods adopted minimise spatial distortions and, if

necessary, preserve the dynamic range (pixel values) of the original images.

Once the HiPS is created, it will be distributable by a standard web server (Apache, nginx or equivalent)

and viewable by any HiPS-compatible astronomical tool such as Aladin (Desktop or Lite), WWT,

Stellarium or DIGISTAR, either locally or over the Internet.

Hipsgen is a software developed by the CDS. It shares the same code with Aladin Desktop. It can be

used either via the Aladin graphical interface via the "Tools -> Generate a HiPS based on" menu, or

from a command line. This document details the command line usage which offers more controls and

is more adapted to the production of large HiPS. If you wish to use the graphical interface, please refer

to the Aladin Desktop user manual1.

You can download the latest version of Hipsgen at https://aladin.cds.unistra.fr/java/Hipsgen.jar , or

simply use the Aladin Desktop code as explained below.

1 https://aladin.cds.unistra.fr/java/AladinManual.pdf

https://aladin.cds.unistra.fr/java/Hipsgen.jar
https://aladin.cds.unistra.fr/java/AladinManual.pdf

4

HiPS structure

 In short, a HiPS, or Hierarchical Progressive Survey, is

a mosaic of astronomical images stored as hierarchical

tiles using the HEALPix sky tessellation. The creation of

a HiPS consists of the generation of the mosaic, the

partitioning, and then the generation of the tree of tiles

that constitute the final HiPS. The resulting tiles are

image files of the same size grouped in directories

following a hierarchy described in the IVOA standard.

In addition to the tiles, a HiPS

provides some additional files, optional or not: index.html - an HTML page

allowing to view the HiPS through the Aladin Lite web client, Moc.fits - a file

describing the spatial coverage of the HiPS, and properties - a text file providing

the characteristics of the HiPS (name, identifier, description, technical

characteristics, etc). Finally, you will often find a HpxFinder directory. It is added

by Hipsgen to store the spatial index needed to build the HiPS as well as to

provide some advanced features.

For more details, please refer to the HiPS IVOA standard 2

How Hipsgen works

Hipsgen offers a wide range of actions related to the generation and manipulation of a HiPS: spatial

indexing, generation of different HiPS tile formats. These actions can be performed separately or

automatically one by one. Hipsgen also allows to perform complementary operations such as

duplication, concatenation of 2 HiPS, or compliant test on HiPS already created.

The generation of a HiPS usually follows the following 5 steps:

1. INDEX : Generation of a spatial index. This first step allows Hipsgen to memorize the HiPS

tiles concerned by each original image (also called "progenitor"). This location information

will be stored in the dedicated directory: "HpxFinder".

2. TILES : Generation of HiPS tiles. Based on the location information obtained in the previous

step, Hipsgen will calculate the HiPS tiles one by one in a format that preserves the pixel

dynamics of the original images. These tiles are called "FITS" and have the usual size of

512x512 pixels. This step generates not only all tiles with the highest resolution (Norderx

where x is an integer corresponding to the maximum depth/resolution of the survey), but

also all tiles in the HiPS hierarchy up to the lowest resolution (Norder0).

At the end of this step, Hipsgen will also update the files: "properties", "Moc.fits", and if

necessary "Allsky.fits" (see IVOA HiPS standard).

3. PNG : Generation of a second set of HiPS tiles in PNG compressed image format. This step

uses the FITS tiles calculated in the previous step.

At the end of this step, Hipsgen will update the "properties" files and if necessary

"Allsky.png".

2 https://www.ivoa.net/documents/HiPS/

https://www.ivoa.net/documents/HiPS/

5

This step can be substituted by JPEG which performs the same operation but in a JPEG

compressed image format.

4. CHECKCODE : Compute the numeric keys. This step will update the properties file with the

numerical key values which will allow to quickly check if the HiPS has been damaged, for

example after a transfer.

5. DETAILS : Formats the spatial indexing information created in the first step (INDEX) to

provide a convenient way to access the original images (progenitors) via direct links from the

HiPS.

Implementation

Syntax: Hipsgen, on the command line, follows this syntax:

java –jar Hipsgen.jar –options in=dirSrc out=dirDst otherParam… ACTIONs …

The source directory indicated by the "in" parameter contains the original images. This directory can

itself be subdivided into subdirectories, Hipsgen will take into account all the images included in this

directory and subdirectories. Note that if you have only one original image, you can directly indicate

its file name rather than the directory which contains it.

The destination directory indicated by the "out" parameter will hold the HiPS that will be generated.

Actions: They are indicated as one or more keywords giving the sequence of steps to be performed. By

convention, they are written in uppercase even if Hipsgen does not make any distinction. If no actions

are mentioned, the 5 actions indicated above (INDEX, TILES, PNG, CHECKCODE, DETAILS) will be

executed in sequence.

Parameters: They specify some elements required to perform the actions. They follow the syntax

"parameterName=values...". As for the actions, the upper and lower case of the parameter name do

not matter. Some parameters support aliases (synonyms) for compatibility with previous versions of

Hipsgen and/or to take into account the specific IVOA obscore equivalent vocabulary (see section

"Metadata").

 If the list of parameters is getting longer, the solution of queuing them all up in the command line can

be tedious, especially if your parameters contain spaces that require you to enclose them in quotes.

You can group some or all of the parameters in a file that will be taken

into account by Hipsgen using the "-param=filename" option. This file

must contain one parameter per line, following the syntax "key=value".3

Note that actions and options (e.g. "-color") should not be put in this

parameter file. If they are, they will be ignored.

3 Blank lines and comment lines starting with the # character are allowed.

6

java –jar Hipsgen.jar –param=/dir/param.txt …

Options: They control the general behavior of Hipsgen, (e.g. -color: coloring of messages, -n: effective

non-execution of actions, etc.). They are preceded by a dash.

Online help: Hipsgen provides online help for all actions, parameters and options. The exhaustive list

of these items can be obtained with the "-h" option (reproduced at the end of this document). The

specific man page for one of them can be obtained with the "-man xxx" option, where xxx is an action

or a parameter. Otherwise, all the man pages will be returned.

E.g.: java –jar Hipsgen.jar –man TILES

Launch of Hipsgen via Aladin.jar: Note that it is also possible to launch Hipsgen with the Aladin Desktop

code by using the following command:

java –jar Aladin.jar –hipsgen …

Terminal: Hipsgen provides numerous indications when executing actions. To help you, and when the

terminal allows it, Hipsgen uses a colour code to make it easier to locate information, statistics, alerts

and even errors. You can disable this

mechanism with the "-nocolor" option

or force it with "-color" if Hipsgen has

not correctly detected a "colourable"

terminal…

Visualisation, distribution and publication

Once your HiPS has been generated, you can display it directly from the "index.html" cover page using

a simple Web browser, either locally or remotely via the Internet. In the second case, you will first have

to "install" the HiPS you have generated on your web server (apache, nginx or equivalent). As a HiPS

generated by Hipsgen4 is only composed of files, a simple copy in a directory accessible by your web

server will work perfectly well without modifying the web server configuration.

To publish your HiPS, in particular if you want your HiPS to appear in the menus of tools such as Aladin

or DIGISTAR, please refer to the HiPS standard mentioned above5.

Generating a HiPS from FITS images

You have the full set of FITS images from a sky survey and you want to generate a HiPS. This is the most

common use of Hipsgen. This set of images can be a single image, typically a full Cartesian sky map, or

thousands or even millions of images for a large survey such as PanSTARR.

Prerequisites: All your images must be located in the 'in' directory (or sub-directories) mentioned in

the Hipsgen command. These locations can be provided by regular file names or via one or more

"symbolic links", or even a network mount, but keeping in mind that fast disk access to these images

is strongly recommended. All these images must have an astrometric calibration. These are keywords

4 Note that HiPS can be implemented in other forms (databases, dedicated files) as long as they can be accessed
according to the IVOA HiPS standard.
5 https://www.ivoa.net/documents/HiPS

https://www.ivoa.net/documents/HiPS

7

contained in each FITS image header that allow you to know the position of each pixel on the sky, and

vice versa. To ensure that your images contain this information, and in a syntax supported by Hipsgen,

just load one of them into Aladin Desktop and check if it is possible to display the coordinate grid.

Hipsgen supports most common astrometric calibrations.

The Hipsgen command: Generating a HiPS from your FITS image set consists of simply indicating the

directory of your images "in=xxx" and the directory where your HiPS will be generated "out=xxx and

an identifier for your HiPS. This is the minimum required to generate a HiPS.

java –jar Hipsgen.jar in=/data/img out=/data/hips id=HERE/P/myhips6

Identification: The identification of a HiPS is mandatory. It is performed by the parameter "id=...". The

identifier follows the HiPS convention of "ivo://AUTHORITY/P/xxx". The prefix ivo:// can be omitted,

AUTHORITY is a word or an abbreviation - usually in capital letters - of your home institute, P indicates

that it is a HiPS "Pixels"7 , and xxx is the specific label of your HiPS. This label can itself incorporate '/'

to describe sub-categories of the same mission.

For example, the colour DSS HiPS generated by CDS has the identifier "CDS/P/DSScolor", the HiPS of

the XMM mission, EPIC instrument generated by ESA has the identifier "ESAVO/P/XMM/EPIC"8.

E.g.: in=… out=… id=HERE/P/myhips …

Note that you can also modify the identifier of your HiPS by editing the "properties" file afterwards

(see the section "Metadata of a HiPS").

Compression: If your images are compressed, either externally by GZIP, BZIP2 or ZIP, or internally by

RICE, GZIP1, GZIP2 or HCOMPRESS compression, you don't need to decompress them beforehand,

Hipsgen will do it progressively, saving you the time and disk space needed to decompress the entire

survey.

Multi-extensions : Your FITS files can contain one or more extensions, (HDU in FITS terminology). By

default Hipsgen takes into account the first image extension. The parameter "hdu=n1,n2-n3,...|all"

allows you to change this default behaviour. You can explicitly specify the index or indices of the

required image extensions, or even take into account all image extensions.

Additional standard parameters

The FITS format for astronomical images uses some specific parameters that Hipsgen may have to take

into account. These parameters may concern the adjustment of the number of bits used to encode

each pixel (BITPIX), or the use of a specific null value (BLANK) or a possible linear change to be applied

to the pixel values (BZERO, BSCALE).

Blank: The "blank=nnnn" parameter is used to indicate to Hipsgen a specific value used in the original

images for the pixels considered as null (i.e. not defined). This value should have been specified directly

in each FITS file using the FITS keyword "BLANK", but is often forgotten. The numerical value nnnn is

the value stored in the FITS file without applying a linear change (bzero/bscale see below). In the case

of a FITS image coded in real numbers (BITPIX=-32 or BITPIX=-64), the NaN value will always be

6 In the remainder of this manual, for reasons of conciseness, this parameter may be omitted from the examples.
7 There are other types of HiPS, for example Catalogue HiPS.
8 List of currently known HiPS identifiers => https://aladin.cds.unistra.fr/hips/list

https://aladin.cds.unistra.fr/hips/list

8

considered null even if a specific blank has been mentioned9. If nnnn is not a numeric value, it will be

considered as an alternative to the FITS keyword "BLANK"10.

E.g. : … in="…" out="…" blank=0

Bitpix: The "bitpix=nn" parameter is used to modify the coding of the pixels. It indicates the encoding

used for FITS tiles whatever the encoding of the original images is. It follows the FITS standard, i.e. 8,

16, 32 or 64 for an integer encoding on the specified number of bits, and -32 or -64 for a real encoding

in 32 or 64 bits. By default, Hipsgen keeps the original encoding, or at least the encoding of the first

image processed ("reference image").

In the case of a conversion, the range of values may be reduced, which may introduce rounding. To

control this effect, the parameter "dataRange=min max" allows to indicate to Hipsgen the range of

original values to be taken into account. Hipsgen will then adjust the conversion of the values using

the linear conversion operation specific to the FITS standard, i.e. introduce a linear conversion using

the BZERO and BSCALE factors according to the formula: pixval = bzero + bscale x pixcoded. Note that

the original images may have already used a linear conversion by means of their own BZERO and

BSCALE, the min and max bounds of the "dataRange" parameter are then to be considered as the pixel

values after applying the linear conversion (and not the value encoded in the original FITS file). If this

range is not explicitly indicated, Hipsgen will evaluate the content of the first image to be processed

("reference image" - see the "img=xxx" parameter described below) in order to determine the values.

E.g. : in="…" out="…" bitpix=16 "dataRange=-11000 32000"

Note that the original images do not have to share all the same encodings. This is true for the BITPIX,

but also for the 3 other parameters BLANK, BZERO and BSCALE.

8 bits compressed tiles: Hipsgen will generate FITS tiles and PNG compressed tiles. For PNG tiles, the

pixels are encoded on 8 bits reducing the dynamic range of possible values. Therefore, similar to a

BITPIX conversion in the case of FITS tiles, the "pixelCut=min max [fct]" parameter will allow you to

explicitly indicate the range of original values to be taken into account and the "transfer function" to

be applied to obtain the 255 possible values of the compressed tiles: log, sqrt, linear (default), asinh,

pow2. If this interval is not mentioned, Hipgen will scan the first image ("reference image") to be

processed and will automatically determine the range that seems appropriate. Note that the values

considered as null (cf blank above) will appear transparent in PNG compressed tiles, and in black for

the JPEG alternative (cf JPEG action).

E.g. : in="…" out="…" pixelCut="-8000 16000 sqrt"

Determining a range of values for the generation of 8-bit images can be difficult, especially when the

sky survey contains original images with a very high amplitude of values. It is necessary to find the best

compromise in order to avoid generating a HiPS in which some compressed tiles are too dark and

others too light. An alternative solution exists for pointed image surveys. Since these surveys do not

form a continuous mosaic on the sky, it may be possible to determine a specific interval for each

observed area. With the parameter "pixelCut=byRegion..." Hipsgen will determine independent

observed regions, evaluate for each of them a specific interval by analysing the pixel distribution of the

concerned FITS tiles. Then it will save these thresholds in the header of the FITS tiles using the

9 The use of a FITS BLANK keyword for a real -32 or -64 encoding is surprising, but not forbidden.
10 The use of an alternative FITS keyword to the conventional word BLANK is quite rare. For example, "BADVAL"
can be found.

9

keywords "CUTMIN" and "CUTMAX". These values will be used when generating the compressed tiles.

Thus, the resulting HiPS will be much more visually homogeneous.

When Hipsgen performs an automatic evaluation to determine a range of values, either on the

reference image or on the independent regions, the pixelCut parameter can be used to provide two

percentages indicating the proportion of pixel values to be rendered. Thus the example below asks

Hipsgen to determine the minimum and maximum thresholds for rendering between 3% and 98.5% of

the pixel value distribution for each independent region of the survey.

E.g.: in="…" out="…" pixelCut="3% 98.5% byRegion"

Sky background: Depending on the origin of the images, the sky background may or may not have

already been subtracted. Therefore, it may be necessary to perform a "sky background" adjustment to

be able to make a mosaic without a "patchwork" effect. Sometimes, the sky background value has not

been subtracted, but simply indicated in the header of each image by means of a dedicated keyword

(e.g. BACKGRD). The "skyVal=key" parameter allows you to tell Hipsgen which keyword should be used

to subtract the sky background. This parameter can also be set to: "auto" - indicates to Hipsgen to

make an evaluation of the sky background on each image11, "info%" - represents the centered

percentage of the automatic sky background detection histogram that Hipsgen should keep, or "min%

max%" - represents the range of percentages of this histogram.

E.g.1 : in="…" out="…" skyVal=BACKGRD

E.g.2 : in="…" out="…" skyVal=99%

E.g.3 : in="…" out="…" skyVal="0.3% 99.7%"

Exposure time: The original images may also have a specific exposure time. In order to obtain a

homogeneous mosaic, and in case this information has been mentioned in the FITS header of each

original image, it may be necessary to ask Hipsgen to average pixel values as a function of exposure

time. The parameter "expTime=fitskey" is used to indicate the relevant FITS keyword12.

E.g. : in="…" out="…" expTime=EXPTIME

Reference image: When Hipsgen processes a set of images, it will use the characteristics of one of them

(the first one during the sequential reading of the input directory) and deduce from it, among other

things, the bitpix, order, dataRange, pixelCut parameters to apply. By using the img=filename

parameter, it is possible to explicitly indicate which "representative" image should be used.

E.g. : in=/data/img out="…" img=/data/img/Image32.fits

11 The evaluation of the sky background by Hipsgen uses 5 zones of the image distributed as on the face of a dice,
and takes into account the averages of the measurements on the 3 zones whose values are not the extrema.
12 This method is not restricted to the exposure time, it can be used for any value of the FITS header as weight
factor.

10

Resampling: HiPS is based on a division of the sky into HEALPix, i.e. 12 diamonds of identical spherical

surfaces at the lowest order, each subdivided into 4 at each additional order. The maximum resolution

is obtained at the 29th subdivision and corresponds to an angular size of about 400 µas per diamond.

HiPS tiles group together a square of NxN HEALPix diamonds, by default 512x512 (N is necessarily a

power of 2). The "tileWidth=nnn" parameter allows to modify this default, either to make smaller tiles

(e.g. 64x64) which will reduce the "null" edges in the case of pointed observations, or to make larger

tiles (e.g. 1024x1024) to reduce the total

number of HiPS tiles. Knowing that the tile is

the basic element that a HiPS client loads to

perform the visualisation, it is important to

keep the size "reasonable" in terms of KB to

transfer/handle.

Hipsgen determines the number of

subdivisions required based on the tile size

(512x512 by default) and the angular

resolution of the original images. It uses the

first processed image (standard image). It

will automatically choose the necessary

order to have an angular resolution of the

HiPS pixels equal to or just above the initial

resolution. Order 0 (k-tile in the table13)

corresponds to the 12 starting tiles. Order 9

corresponds to 3,714,728 tiles, and if the

tiles are 512x512 pixels in size, they provide

an angular resolution per pixel of 805.2 mas.

Each additional order is twice more accurate in angular resolution, but adds 4 times the volume of the

previous order. By using the "order=nn" parameter it is possible to subsample, or increase the sampling

that Hipsgen had planned by default.

E.g. : in="…" out="…" tileWidth=256 order=13

Hipsgen uses a bilinear resampling algorithm to "transform" the pixels from the original images to the

HEALpix grid. Hipsgen does not offer an alternative to this algorithm, unless the original pixels are

already located in a HEALPix grid (see the section "Generating a HiPS from a HEALPix map").

Overlay: Hipsgen is used both on image sets pointing to astronomical objects, and on sky surveys in

the form of a mosaic of images with partially overlapping edges. In both cases, several original images

may contribute by overlap to the pixel values calculated in the HiPS tiles. The "mode=param"

parameter is used to indicate the method Hisgen should use to combine multiple original pixel values.

The supported parameters are: overlayNone - no overlap, only one pixel value will be considered,

overlayMean - all values will be averaged, overlayAdd - all values will be summed.

E.g. : in="…" out="…" mode=overlayMean

13 Table extracted from the paper Fernique et al (2015A&A...578A.114F). The columns represent: k - the HEALPix
order, Nside - the resolution in the HEALPix terminology, Npix - the number of HEALPix pixels, θ-pix - the angular
resolution, k-tile - the HiPS tile order, N-tile - the number of HiPS tiles, θ-tile - the angular resolution of a pixel in
the tile.

https://ui.adsabs.harvard.edu/#abs/2015A%26A...578A.114F/abstract

11

Note that in the case of averaging (default mode), the signal-to-noise ratio will be a function of the

number of source images contributing to the final value. The consequence is that it is normal to be

able to detect astronomical objects in the HiPS that were not detectable in each individual image.

In addition, Hipsgen (version 12.134 and higher) provides a COUNT action that generates an alternative

HiPS (dedicated HipsCounter directory) counting, for each HiPS pixel, the number of images that

contributed to its calculation (see section "Generating a weight HiPS").

Suspicious images: It may happen that in the original set of images, some of them have an imprecise

or even incorrect astrometric calibration. The result on HiPS will depend on the nature of the error and

usually consists of a slight shift of objects on the sky, easily spotted when overlapping several original

images over the same region. But a particularly annoying error is an erroneous angular pixel size. If the

error is large these pixels will be able to alter a large area of the HiPS. To avoid this, for a set of several

images, Hipsgen automatically rejects all images whose pixels have a suspicious angular projection on

the sky because they are strongly disproportionate in longitude compared to latitude. By default a

ratio greater than 3 will be considered improbable14. The parameter "maxRatio=x" allows to modify

this limit value, and the value 0 suppresses the test completely. The list of discarded images is provided

at the end of the processing.

E.g. : in="…" out="…" maxRatio=1.5

Field of view: Some original images may have a field of view smaller than the totality of the pixels of

the image: altered edges, the existence of a cartouche, the field of view of the telescope being smaller

than the image, ... To ignore the "unobserved" original pixels of such images, Hipsgen can take into

account a polygon or a circle where only the internal pixels will be taken into account. The polygon or

circle can be the same for all images, or only for part of the images, or even for each image individually.

This polygon/circle will be described in a file with the same name as the image, respectively the

directory, to which it is associated but with the extension ".fov". In the case of a ".fov" file associated

with a directory, all the images in that directory will be concerned, except for those which have their

own ".fov" file. For a polygon the expected format is a list of X Y pairs separated by a comma and/or

a space, one pair per line, described counterclockwise in the image. For a circle, Hipsgen expects a

single line with a triplet representing the X,Y centre and its radius R.

The coordinates are to be used according to the FITS convention, i.e. the centre of the pixel at the

bottom left is at the coordinates 1,1. It is essential to use the "fov=true" parameter to ensure that

these additional files are taken into account by Hipsgen. In the case of a single shape common to all

the images, it is also possible to indicate the coordinates of this shape directly as the value of the

parameter (ex : fov=2,2,1000,2,1000,500,4,390).

E.g. : in="…" out="…" fov=true

Tip: Obtaining X,Y pairs can be made easier via Aladin Desktop by using the “tag” tool.

14 Note that this filtering is not applied to images covering a large part of the sky in Cartesian or Moldweide
projection.

12

When the edges to be removed are constant, the "border=N W S E" parameter allows you to remove

a specific number of pixels from the top, left, bottom and right of all images respectively. A single value

is also possible if all edges are identical.

E.g. : in="…" out="…" "border=10 50 20 50"

When the shape of the field of view is a rectangle or ellipse, aligned in the image, but the centre or

even the size is not identical from one image to another, the "shape=rectangle|ellipse" parameter will

tell Hipsgen to determine the mask characteristics for each image by itself15.

E.g. : in="…" out="…" shape=ellipse

Hierarchy: During the generation of the tile hierarchy, each tile of order x is generated from its 4

daughter tiles of order x+1. The "mode=param" parameter is used to specify the aggregation method

for each pixel: treeMean - the average of the 4 child pixels, treeMedian - the median of the 4 child

pixels, treeFirst - one of the 4 pixels, treeMiddle – one the 2 intermediate pixel values. If not specified,

Hipsgen uses the mean for HiPS from FITS images, and the median for HiPS from colour images16 (see

"How to generate a HiPS from JPEG images"). As the "mode" parameter is used for several controls, it

is possible to specify several values, or even to specify only the end of a parameter value to apply it

simultaneously. The 2 examples below are equivalent. They apply the calculation of the average, both

for the overlays (see previous paragraph) and for the hierarchy.

E.g.1 : in="…" out="…" mode="overlayMean treeMean"

E.g.2 : in="…" out="…" mode=mean

15 This method should only be used in the case where a BLANK value cannot be defined (typically when the edge
value - usually zero - is also used in the pixel area to be considered. This situation is actually quite common (e.g.
GALEX, etc).
16 The choice of the median for the colour images makes large structures, nebulosities, filaments, etc. more
visible. The mean is the natural method of preserving photometry between scales in the case of surface
brightnesses.

13

Partitioning: In the case of a large survey, and especially if it has very dense overlays, Hipsgen may

need a lot of resources to be able to calculate the pixel values of the tiles. To avoid memory overflows,

Hipsgen will subdivide the treatment of very large original images into 4096x4096 pixel blocks. The

parameter "partitioning=nnn|false" allows you to adjust the size of these blocks, or even to remove

this option if you have enough RAM. This parameter must be applied at the first step of the HiPS

generation, i.e. the spatial index (INDEX).

E.g. : in="…" out="…" partioning=false

Coordinate system: By default, Hipsgen generates the HiPS based on the ICRS equatorial coordinate

system. Thus the HiPS tiles will be arranged according to the equator and the equatorial poles. The

parameter "frame=equatorial|galactic|ecliptic" allows to modify this default behaviour. However, it is

preferable to keep the equatorial system as much as possible in order to be able to use some HiPS

tools combining several HiPS, with the constraint of a single reference frame.

E.g. : in="…" out="…" frame=galactic

Generating a HiPS from compressed colour images

You have a set of colour images (png or jpg) and you want to generate a HiPS.

Prerequisites: Your images must have an astrometric calibration. Hipsgen will look for this information

either in the image files directly, in the form of AVM tags17, or in a WCS header stored in each image

file, or separately in a file with the same name but with the extension replaced by ".hhh". To ensure

this, simply load one of these images into Aladin Desktop and check that the coordinate grid can be

activated. If this is not the case, you will have to 'calibrate' each of these images manually (e.g. via the

Aladin Image -> Astrometrical calibration menu), or automatically (e.g. via Astrometry.net).

Coloured tiles: Unlike HiPS based on greyscale FITS images, Hipsgen will directly generate colour tiles

corresponding to the original colour images. By default, the tiles produced will use the same

compression format as the original images, or more precisely the first original image processed

("reference image"). The "color=png|jpeg" parameter will allow you to modify this default behaviour.

The JPEG format is faster to generate, and produces smaller tiles. The PNG format has a transparency

channel that allows the HiPS client to simultaneously view a partial PNG HiPS on top of another HiPS.

in="/data/img " out="/data/hips" color=jpeg …

Overlays: Overlays of the original images can be processed with various methods. The parameter

"mode=xxx" allows to tell Hipsgen how to handle multiple contributors to a HiPS pixel: overlayMean -

average (colour channel by colour channel), overlayAdd - addition (colour channel by colour channel),

overlayNone - single contributor. However, these methods are much more suitable for processing the

original FITS images where the pixel values represent a physical quantity. A fourth option is possible

"mode=overlayFading". It offers an interesting alternative for colour images. Hipsgen will average the

contributors but using a weighting that is inversely proportional to the distance to the edge of the

corresponding image. A complicated way to describe a "fade-in" between images to smooth out

transitions between images.

17 Astronomy Visualization Metadata - http://virtualastronomy.org : keywords to describe astronomical images
for media use.

http://virtualastronomy.org/

14

Hierarchy: When building the tile hierarchy, each tile of order x is generated from its 4 daughter tiles

of order x+1. The "mode=param" parameter allows to specify the aggregation method of the pixels:

treeMean - the average of the 4 child pixels, treeMedian - the median of the 4 child pixels, treeFirst -

one of the 4 pixels, treeMiddle - one of the 2 intermediate value pixels. If not specified, Hipsgen uses

the median for HiPS from colour images18. The calculations are performed on each colour channel (red,

green and blue) independently.

treeMean treeMedian treeMiddle treeFirst

Control and performance

Generating a HiPS on a large set of images is a heavy process in terms of disk space, memory resources

and the computing capacity you have. The operation consists of potentially reading billions of pixels,

performing various calculations on each of them, and rewriting them. There are several parameters

that can be used to customize the performance of Hipsgen.

"Not run": First of all, the "-n" option will allow you to check in advance what Hipsgen will do according

to the parameters you have given it. Technically, this option inhibits any writing to the disk. There is

no risk of any damage even if you have made a mistake in your settings. On the other hand, you will

see the technical information of the treatment (see the section "Hipsgen traces" at the end of this

document). This is very useful if you have a doubt, especially if the action you want to take modifies

an already generated HiPS that you could damage by mistake.

Pilot: The generation of a HiPS often requires a few preliminary tests to adapt the various parameters

and to check the result visually (using Aladin Desktop or any other HiPS compatible client). However,

the time required to generate a HiPS can be long, making these fine-tuning steps tedious. The

"pilot=nnn" option allows you to calculate a HiPS "for seeing" only on nnn original images. This allows

you to adjust your settings until you determine the best options. Then you run the calculation again

on all the images, having removed the "pilot=nnn" parameter. Note that if you generate the final HiPS

in the same destination directory as your pilot and this one only contains a small number of images, it

is then judicious to add the "-clean" option which will accelerate the processing by avoiding Hipsgen

to have to constantly check each source image if it has already processed or not (see below section

"HiPS computation recovery").

Pilot1: in=/data/img out=/data/hips pilot=100
Pilot2: -clean in=/data/img out=/data/hips pilot=100 skyval=auto …

Final execution: -clean in=/data/img out=/data/hips …

18 The "treeMiddle" method particularly highlights large structures. The "treeFirst" method emphasises point
sources. The effect is cumulative at each zoom level.

15

The "pilot" stages also allow you to note the performance you obtain. Of course, they depend on the

capacity of your computing machine, but also on the options you have chosen for the creation of the

HiPS. During the generation of the tiles ("TILES" action), processing speed statistics are displayed every

30s allowing you to compare the time cost for a expecting result. On a small machine (4 cores/4GB),

you can expect 500 to 1000 tiles per minute, and up to 5000 to 7000 tiles per minute for a high

performance computer (50 cores/128GB). Thus, a complete sky survey such as 2MASS at 800mas HiPS

resolution that requires more than 3 million tiles will take about 15 hours of processing on a big

computer.

Tip: Aladin Desktop version 12 and following can display a HiPS even during generation (fTILES step)

without even stopping Hipsgen. This is convenient for impatient people, and also to check the result

before the end of the processing. As the HiPS tree is being generated, it may be necessary to zoom in

to the deepest order tiles to see the partial result. Note that in order to take into account the progress

of the calculations, it is necessary to reload the HiPS in a new Aladin Desktop plan.

Multitasking: Hipsgen speeds up its processing if it can use multiple cores. By default, it will take all

available cores on the machine. If this machine needs to perform other tasks simultaneously, the

"maxthread=n" option will allow you to limit the number of threads used by Hipsgen and consequently

the cores used. Note that it is not required to reduce the number of threads to save memory impact

(recommended in earlier versions of Hipsgen), Hipsgen will now do it automatically if necessary.

RAM: One of the resources that Hipsgen uses heavily is RAM. Just like the computer cores, the more

you give it, the better it will do. Since Hipsgen is a java program, the control of RAM memory is done

by the "-Xmx" parameter specific to your java interpreter. A good practice is to count 1GB of RAM for

each calculation core. The example below allocates 10 gigabytes.

E.g.: java –Xmx10g –jar Hipsgen.jar in=/data/img out=/data/hips …

If you have a very powerful machine, you can consider using almost all your RAM memory (be careful

not to use more, otherwise you will swap and slow down processing drastically) while inhibiting the

block partitioning that Hipsgen performs on large images (>4096x4096). Since you have memory, you

might as well take advantage of it. The example below allocates 255 gigabytes.

E.g.: java –Xmx255g –jar Hipsgen.jar partioning=false in …

On the contrary, if your machine is a small laptop with very little RAM (typically <1GB), you should

impose a block size smaller than the default. Hipsgen will be able to generate your HiPS even on a small

machine, just be more patient.

E.g.: java –Xmx700m –jar Hipsgen.jar partionning=512 in …

Disk cache: In case your original images are compressed, Hipsgen will have to decompress them during

processing. For this it needs disk space. As Hipsgen will potentially use the same image several times

during its processing, it will save time if the decompression operation is not repeated unnecessarily.

So the larger the disk cache, the faster the processing will be. For compressed FITS images, the default

disk cache is designated by the operating system of your machine. The "cacheSize=xxx" parameter

16

allows you to increase the default size (500GB or less if there is not enough space on the partition

concerned). Note that xxx is expressed in MB. If the default cache partition is too small, the

"cache=path" parameter will allow you to specify an alternative directory. Finally, the

"cacheRemoveOnExit=false" parameter will allow you to keep the contents of the cache, and therefore

the decompressed images in it, in order to accelerate a possible resume of processing. It is up to you

to delete this cache manually once the final HiPS has been obtained.

For JPEG or PNG colour images, if they are particularly large (>4096x4096), a disk cache is also used

but directly managed by the java graphics libraries. Therefore, thanks to an option of the java

interpreter "-Djava.io.tmpdir=path" you can designate an alternative cache directory.

E.g.: java -Djava.io.tmpdir=/path/to/tmpdir –jar Hipsgen.jar …

Tile size reduction: First of all, note that you can already obtain PNG (or JPEG) compressed tiles via the

"PNG" (or JPEG) action. You are free to remove the FITS tiles afterwards via the "CLEANFITS" action in

order to finally obtain a HiPS that is only intended for viewing, but with a smaller volume. However,

this approach is not adequate if you want to keep the FITS tiles and use them for the full dynamics of

the pixel values. Hipsgen offers two possibilities to reduce the size of FITS tiles: GZIP compression

and/or edge removal. These two methods should only be used when strictly necessary. They are still

subject to change, and the FITS tiles produced are currently only recognised by Aladin Desktop.

GZIP compression: Hipsgen allows you to apply GZIP compression to FITS tiles, either on the fly

with the "-gzip" option, or via the "GZIP" action. This action will gzip all FITS tiles and the "Allsky.fits"

file if it has been generated19. This is a very efficient operation in terms of volume, but it is time

consuming, of the same order of magnitude as the generation of the FITS tiles themselves. Conversely,

via the GUNZIP action you can unzip FITS tiles that have been gzipped previously..

E.g.1: -gzip in=/data/img out=/data/hips INDEX TILES …

E.g.2: out=/data/hips GZIP

E.g.3: out=/data/hips GUNZIP

Edge removal: The second solution is not strictly speaking a compression method, but a

"pruning" operation of the edges of FITS tiles20. It is interesting on the fragmented HiPS. It has the

advantage of being very fast, even almost instantaneous if used during the generation of FITS tiles. It

also has the advantage of not inhibit direct access to pixel values21. The FITS tiles are still regular FITS

images, but with possibly restricted sizes and with the dedicated XTRIM and YTRIM keywords storing

the "original" edges that have been removed, ZNAXIS1 et ZNAXIS the original dimensions. Edge

reduction can be applied immediately when generating FITS tiles if the "-trim" option is specified. It

can also be applied, respectively removed afterwards via the "TRIM" and "UNTRIM" actions.

E.g.1: -trim in=/data/img out=/data/hips INDEX TILES …

E.g.2: out=/data/hips TRIM

E.g.3: out=/data/hips UNTRIM

19 Note that FITS tiles, whether gzipped or not, will keep their ".fits" extension. It is up to the client to detect a
possible compression thanks to the magic code at the beginning of the file, rather than using the file extension.
20 This approach is especially effective on HiPS of pointed objects for which the HiPS tiles are very "spearsed", i.e.
they have many null pixels, and mainly on the edges, and for an increasingly large proportion up the HiPS
hierarchy.
21 This property is required for some HiPS tools working "server side", for example to quickly extract from a group
of HiPS the values of a SED on a given position.

17

HiPS computation recovery

The generation of a HiPS on a very large survey can take several hours or even days. It is therefore not

surprising that processing can be interrupted, voluntarily or not.

Recovery after an involuntary interruption

You have been waiting for several hours during the generation of your HiPS. Unfortunately, the

calculation has been interrupted by accident. You can of course restart the calculation, without even

deleting the tiles already generated. However, you can specify the "mode=keeptile" option, which will

avoid regenerating the tiles already generated, which will speed up the processing..

in=/data/img out=/data/hips mode=keeptile …

Recovery to change the calculation mode

However, if you want to restart the whole calculation from the beginning (for example if you want to

change some parameters such as the BITPIX of the HiPS), you will have to delete the first processing,

either partially or totally. To do this you have a series of cleanup actions: CLEAN - deletes the whole

HiPS except the properties file, CLEANINDEX - deletes the spatial index (HpxFinder), CLEANTILES -

deletes all tiles, CLEANFITS - deletes all FITS tiles, CLEANPNG - deletes all PNG tiles, CLEANJPEG - deletes

all JPEG tiles, CLEANWEIGHT - deletes all weight tiles (see –live option).

You can also use the "-clean" option which will automatically delete only those items that will be

regenerated22.

-clean in=/data/img out=/data/hips …

Recovery to complete areas

It may happen that a generated HiPS contains some defects that you want to correct without restarting

the whole calculation. For example, when some original images have been forgotten and then added

later, it is often convenient to restart the HiPS generation, only on the concerned areas. The

"region=..." parameter allows you to indicate the numbers of the HEALPix rhombs you wish to

recalculate in the following form : orderN/npix1 npix2 … orderM/npix…23. Alternatively, you can

specify the name of a MOC file describing the region to be reprocessed (FITS binary MOC format).

The "mode=..." parameter controls how the new tiles will be inserted into the existing HiPS: mergeKeep

- keeps the pixels of the already calculated tiles and adds only the new pixels, mergeOverwrite -

overwrites the pixels of the already calculated tiles with the new values (this is the default),

mergeMean - averages the old pixels with the new ones, mergeAdd - adds the old pixels with the new

ones.

in="…" out="…" mode=mergeKeep "region=3/213 215 4/849 851 857 859 881 883-884"

22 This option replaces the previous "-f" option (still supported).
23 This is the syntax of an ASCII MOC

18

Tip: Getting the region can be facilitated via Aladin Desktop by clipping the area concerned with the

"Draw" tool, then generating a MOC (Multi-Order Coverage) from the clipped area (menu Coverage ->

Gererate a spatial MOC based on the selected drawing objects ».

Pixel weighting: A replay operation will not have the same result if you still have all the original images

(plus possibly some new ones), or on the contrary you only have the new images. In the first case, the

final result will be identical to a complete recalculation. On the other hand, if you only have the new

images, the weighting associated with each pixel will have been lost. For example, let's suppose that a

HiPS pixel was obtained by averaging N original images, and that the second processing adds a new

image to the area, in the first case, the final pixel following the mergeMean method will have the value

(N x oldValue) + newValue) / (N+1) whereas in the second case it will be (oldValue + newValue) / 2.

In order to be able to add new images and use a weighting linked to the number of progenitors, it is

necessary to set the parameter "incremental=true"24 during the generation of the first HiPS. This

option tells Hipsgen that for each FITS tile generated, it must also keep a tile of the "weights"

associated with each pixel. These weight tiles will be used later in the event of a rework. Note that this

method is expensive in terms of disk space as it will globally double the size of the final HiPS. If you

think you don't need these weight tiles anymore, you can delete them via the "CLEANWEIGHT" action.

in="/data/img " out="/data/hips" incremental=true …

Note that Hipsgen does not take into account any additional FITS HDUs dedicated to the weights or

masking associated with each original pixel. Technically the calculation is not a problem, unfortunately

there are too many differences in the way these weights and masks are integrated into the FITS format.

You will have to generate a set of images yourself that takes these weights and masks into account.

24 Option "-live" in previous versions of Hipsgen (still recognised).

19

HiPS update

Updating a HiPS is usually done to add new images without having to completely restart the

calculation25. Usually you no longer have the original images and you just want to add new ones. The

safest method is to create a new HiPS with the new images, and then concatenate it to the original

HiPS.

Concatenation of 2 HiPS

Hipsgen allows to concatenate 2 HiPS thanks to the "CONCAT" action. These 2 HiPS must necessarily

be compatible, i.e. have the same maximum HiPS order and the same BITPIX.

The concatenation is done by integrating the first HiPS into the second. At the end of the operation

the second HiPS will have been modified and will contain the common data. For obvious performance

reasons, it is preferable to choose the smaller HiPS to be integrated into the larger one. By default the

tiles of both HiPS will be merged using an average. If the "incremental=true" parameter was used when

creating the two HiPS (see previous section), this average will be weighted by the number of original

images concerned (progenitors). The "mode=xxx" parameter allows this default behaviour to be

modified: mergeOverwrite: the pixels of the HiPS to be included will replace the pixels of the second

HiPS even if they existed, mergeKeep: only the new pixels will be included, those already calculated

will be kept as is, mergeAdd: the pixels will be added together (without weighting).

E.g.: in=/data/hips1 out=/data/hips2 mode=mergeOverwrite CONCAT

The concatenation will also integrate the original HiPS image information into the spatial index

(HpxFinder) of the receiving HiPS.

Concatenation of colour HiPS: The concatenation of colour HiPS is performed in the same way. The

results are much better in PNG format. Since JPG colour HiPS do not have a transparency channel, the

merging will only be done for the "non-black" pixels. However, JPEG compression produces slight

alterations in values, which will result in "almost" black pixels that cannot be correctly merged.

PNG HiPS JPEG HiPS

Update by Generation & Concatenation

To make your life easier, the creation of a HiPS followed by its concatenation can be done in a single

"APPEND" action. This has the advantage of ensuring that the two HiPS are compatible, as it uses the

same processing parameters of the final HiPS to generate the HiPS to be merged. Of course, it is

possible to modify this default behaviour, for example by using the "mode" parameter. Note that the

25 However, it is not possible to "delete" pixels related to images that you want to discard.

20

presence of the original images of the receiving HiPS are not necessary for this operation, only the

images of the HiPS to be created and then merged.

E.g.: in=/data/img out=/data/hips APPEND

HiPS generation by arithmetic combinations

Hipsgen offers 4 modes for combining HiPS by addition, subtraction, multiplication and division:

mergeAdd, mergeSub, mergeMul, mergeDiv. These options associated with the possibility of

concatenating HiPS will allow you to generate a HiPS by successive steps. An illustrative example is to

obtain a HiPS from the "images" giving the counts of photons, and the exposure times.

1) Generation of HiPS by the sum of counts:

in=/data/countImg out=/data/hips mode=add

2) HiPS exposure time generation:

in=/data/timeImg out=/data/hipsTime mode=add

3) Generation of the final flux HiPS:

in=/data/hipsTime out=/data/hips mode=div CONCAT

Generating a HiPS using a cluster of machines

If the original data is very large, it may be appropriate to use several computing machines. Each

machine will be responsible for generating a partial HiPS. These partial HiPS will be merged at the end

of the processing to obtain a single final HiPS.

The strategy for distributing the work will depend on the disk capacities of each computing machine.

One disk for everyone, or independent disk spaces.

Shared disc: The most practical - but perhaps not the fastest - situation is when all computing machines

access the same shared disk medium. In this case, the division of the calculation will be determined by

disjoint regions by using the "region" parameter. Once the calculations are complete, the partial HiPSs

are merged into the final HiPS through "CONCAT" actions for each partial HiPS. If the regions have been

properly divided, the method of merging has no impact on the final result. If this was not the case, it

is recommended to choose "mode=overwrite" in order to correctly merge tiles that have been partially

calculated several times.

Machine1: in=/data/img out=/data/hips region="0/0-3"

Machine2: in=/data/img out=/data/hips2 region="0/4-8"

Machine3: in=/data/img out=/data/hips3 region="0/9-11"

Concat1: in=/data/hips2 out=/data/hips CONCAT

Concat2: in=/data/hips3 out=/data/hips CONCAT

21

Independent discs: In the case where the machines in the cluster do not share the same disk, or in order

to obtain better performance on disk accesses, the division of the calculation will require either the

complete duplication of the original data on each disk of each machine, or the partitioning of these

original images. In the first case, the method is finally similar to that used in the case of a shared disk.

In the second case, the partitioning of the original images must absolutely guarantee that all the

original images concerned by one of the calculation regions are indeed on the disk of the machine in

charge of the calculation.

Machine1: in=/data/imglot1 out=/data/hips region="0/0-3"

Machine2: in=/data2/imglot2 out=/data2/hips2 region="0/4-8"

Machine3: in=/data3/imglot3 out=/data3/hips3 region="0/9-11"

Manual copy1 : scp machine2:/data2/hips2 machine1:/data

Manual copy2 : scp machine3:/data3/hips3 machine1:/data

Finally, on the machine1:

Concat1: in=/data/hips2 out=/data/hips CONCAT

Concat2: in=/data/hips3 out=/data/hips CONCAT

Tip: It is possible to obtain the lists of images concerned by a calculation zone by diverting the use of

the "INDEX" action in the following way. On a machine with all the original images, run the following

command: in="/data/img" out="/data/hips" order=0 INDEX, then retrieve the names of the files

concerned for each region from the contents of the spatial index tiles stored in the directory

/data/hips/HpxFinder/Norder0/Dir0…

The interest of performing a HiPS calculation on several machines rather than on a single one must be

evaluated on a case by case basis. The time required to select and then set up the original images, plus

the time required to move the intermediate results, is not always worth the time required to calculate

on a single machine. On the other hand, as a sky survey is generally available in several wavelengths,

it is often preferable to parallelize the generation of HiPS by using one machine per "wavelength band"

because the source data are by construction independent, and there is no merging to be done at the

end of the processing.

Generation of a HiPS composed of pointed outreach images

You have a set of nice colour images (png or jpg) pointed to some astronomical objects and you want

to generate a HiPS of them (e.g. the JWST images).

22

Prerequisites: Your images must have an astrometric calibration. See the section "Generating a HiPS

from colour images".

Data preparation: One of the characteristics of outreach images is that they often focus on the same

astronomical objects several times. By default, Hipsgen averages all available images. In case of

astrometric shifts, and/or very heterogeneous images

(wavelength, resolution), the result will be surprising,

even disappointing. For these images, it is sometimes

preferable to add them, one by one, to a first generated

HiPS, by "overwriting" the pixels concerned using the

"mode=overwrite" parameter26. The recommended

format for such manipulation is PNG (see section

"concatenation of 2 HiPS). The order in which these

additional images are processed is also important. It is

judicious to start with the images with the largest area

on the sky and end with the smallest. Thus, you should

store your images in at least two separate directories (e.g. allTogether and individual) so that you can

easily manipulate them, first globally for the global generation of a HiPS, and then individually for the

later additions

Hipsgen in action: The APPEND action allows you to add new images to an already generated HiPS. In

the case presented here, these images will be added one by one, sequentially27.

1) Generating a colour HiPS from a whole set of images:
in=/data/allTogether out=/data/hips color=png

2) Adding individual images by overlaying on the first HiPS:
in=/data/individual/image1.jpg out=/data/hips mode=overwrite APPEND

in=/data/individual/image2.jpg out=/data/hips mode=overwrite APPEND

…

Generation of one colour HiPS from 3 greyscale HiPS

The Hipsgen "RGB" action generates a colour HiPS from 3 previously calculated greyscale HiPS. The

command is the following:

E.g.: inRed=hips1 inGreen=hips2 inBlue=hips3 out=hipsRGB RGB

Note: If the original HiPS are from a HiPS cube (see section "Generating a HiPS cube") the paths of the

hips may be suffixed with "[nn]" where nn is the number of the relevant slice in the cube (starting at 0

for the first).

Basic method: This is the default method. Each colour component (red, green and blue) of the pixels

to be calculated will take the pixel value of each HiPS in greyscale, scaled to 256 values. By default

Hipsgen takes into account the range of values and the transfer function used to generate the

compressed tiles of the source HiPS (see the pixelCut parameter). This choice can be changed using

26 Note that the "incremental=true" parameter is useless because it has no effect (no weighting). It would only
slow down the processing and increase the volume of the HiPS.
27 It is strongly discouraged to perform APPEND operations in parallel (risk of access conflicts).

23

the parameters "cmRed, cmGreen and cmBlue" whose values follow the following syntax: "min max

[fct]"28 - min is the smallest pixel value to be taken into account, max the largest and fct a transfer

function among: log, sqrt, linear (default), asinh, pow2. In the case where the colour HiPS to be

generated uses only 2 greyscale HiPS, the third colour component will be obtained by averaging the

other two.

E.g.: inRed=hips1 cmRed="10 1000 log" inBlue=hips3 cmBlue="40 800 log" …

Lupton Method: Hipsgen also offers the alternative Lupton29 method. It uses 2 parameters for each of

the colour components: luptonM (minimum) and luptonS (scale). These parameters follow the syntax

"valRed/valGreen/valBlue" and a global coefficient « luptonQ=x » (quality). The Lupton method

implements an algorithm that increases the differences between the red, green and blue components.

The "minimum" determines the beginning of the range of pixels involved, the "stretch" acts on the

range of pixels involved, and "Q" governs the sensitivity of the algorithm.

E.g.: … luptonM="10/30/45" inBlue=hips3 luptonS="1.1/1.3/1.2" luptonQ=20 …

Tip: Setting these parameters is quite tricky. You will find a precious help by using Aladin Desktop

(menu: Tools -> Generate a HiPS based on -> An image collection -> Generate RGB). You will be able to

see immediately the result that will be obtained.

Metadata of a HiPS

Each Hips is associated with a "properties" file that describes the HiPS: identifying it, knowing its origin,

describing the related rights, etc. This information is essential if you wish to distribute your HiPS, or

even make it public through the International Virtual Alliance's "HiPS network". This "properties" file

contains both technical data (HiPS maximum order, tile format, etc.) automatically filled in by Hipsgen,

but also description metadata that you have to update manually. The list of fields in the properties file

are described in the IVOA HiPS standard. Some of them can be directly specified when launching

Hipsgen: id - the identifier of the HiPS, creator - the person and/or institute that created the HiPS, and

status - the status of your HiPS (private|public clonable|clonableOnce|unclonable)30, target - the

coordinates and size of a default field of view for the HiPS display, title – the HiPS title (label).

E.g.:in="…" out="…" id=CDS/P/myhips1 creator="Dupont [CDS]"

Other metadata must be edited manually in the properties file:

hips_copyright = Copyright mention of the HiPS
obs_collection = Dataset collection name
obs_description = Dataset text description
obs_ack = Acknowledgement mention
prov_progenitor = Provenance of the original data (free text)
bib_reference = Bibcode for bibliographic reference
obs_copyright = Copyright mention of the original data
t_min = Start time in MJD (=(Unixtime/86400)+40587
t_max = Stop time in MJD

28 Note that you can also add an intermediate value between the "min" and the "max" to use exactly the same
method that Aladin Desktop uses for its display (see the Aladin Desktop user manual).

29 https://ui.adsabs.harvard.edu/abs/2004PASP..116..133L
30 The status private will prevent the publication of your HiPS in the context of adding it to the HiPS network
IVOA; clonableOnce indicates that you allow copying and redistribution of your HiPS, but this copy cannot itself
be copied. The default is "public clonableOnce".

https://ui.adsabs.harvard.edu/abs/2004PASP..116..133L

24

obs_regime = Waveband keyword (Radio Infrared Optical UV X-ray Gamma-ray)
em_min = Start in spectral coordinates in meters
em_max = Stop in spectral coordinates in meters
 (=2.998E8/freq in Hz, or =1.2398841929E-12*energy in MeV)

Moc - the spatial coverage of a HiPS

The HiPS standard recommends the addition of a "Moc.fits" file describing the spatial coverage of the

HiPS. This file follows the IVOA MOC standard31 and allows HiPS clients to know which sky areas are

covered by HiPS without having to check whether tiles exist or not.

Hipsgen can explicitly generate or regenerate

the "Moc.fits" file by means of the "MOC"

action. In the current version of Hipsgen, this

action is always executed systematically at the

end of the tile generation step ("TILES" action),

so there is no need to launch it specifically

unless you want to modify the default

generation parameters.

Thus the "mocOrder=nn" parameter allows

you to impose the order of the Moc to be

generated to eventually provide more detailed coverage than Hipsgen will have done by default. This

parameter determines the order of the Moc to reduce its generation time. The smaller the Hips, the

more accurate the Moc resolution will be. However, for large HiPS, the order can be reduced to that

of the HiPS itself (but never below).

E.g.: out=/data/hips mocOrder=12 MOC

Note that calculating Moc with the same order as HiPS is much faster because Hipsgen does not need

to explore the contents of each tile but simply checks that it exists.

Non-equatorial HiPS: The IVOA HiPS standards recommend that a celestial MOC must be equatorial. If

the HiPS is not itself equatorial (see frame parameter) - and does not cover the whole sky - this will

cause a problem of coherence and will not allow clients to know the indices of HiPS tiles. To resolve

this, the "MOC" action will generate a "Moc.fits" file in the same reference system as the HiPS, and

limited to the order of the HiPS (e.g.: HiPS galactic, order 9 => Moc.fits galactic, order 9). And in

addition, it will produce a "SMoc.fits" file giving the spatial coverage in the equatorial system and if

necessary at a better resolution than the HiPS order.

31 https://ivoa.net/documents/MOC/

25

STMoc - space-time coverage?

Hipsgen is also able to generate a "STMoc.fits"

file providing the coverage, not only spatial, but

spatio-temporal of the original images. The

"STMOC" action will take the spatial index

created at the very first step of the HiPS

generation (INDEX), and will use the observation

date and the exposure time of each image to

generate this spatio-temporal coverage.

Obviously, if these characteristics are missing, or

have not been recognised during the indexing

stage, or not specified via the "fitsKeys = xxx"

parameter, the STMOC generation will not be

carried out. Note that the spatial and temporal resolution (mocOrder) of the generated STMOC is fixed

and cannot be modified.

E.g.: out=/data/hips STMOC

This "STMoc.fits" file is not part of the IVOA HiPS 1.0 standard, but some HiPS clients are already able

to use it.

Rq: Hipsgen version 12.118 and later will also update the "tmin" and "tmax" fields in the "properties"

file with the minimum and maximum time bounds of the generated STMOC.

Allsky or not?

The HiPS standard offers the possibility to add an "Allsky" file when generating a HiPS. This file is a low

resolution mosaic of the 768 third order tiles, assembled edge to edge. This file - in fact, these

"Allsky.ext" files because associated with each tile format - are located in the "Norder3" directory. They

are intended for HiPS visualisation clients that cannot display tiles of orders 0, 1 and 2 without

introducing prohibitive distortions. As these clients are becoming rare, this option is less and less

necessary.

Hipsgen can explicitly generate or regenerate "Allsky" files by means of the "ALLSKY" action. In the

current version of Hipsgen, this action is always executed at the end of the tile generation step ("TILES"

action), so there is no need to launch it specifically.

E.g.: out=/data/hips ALLSKY

Cover page: index.html

The HiPS standard requires a cover page in the form of a web file "index.html". Hipsgen generates this

page automatically at the end of the tile production stage. Hipsgen provides the HTML code for viewing

the HiPS using the Aladin lite web client. This page can be viewed locally, or remotely via a web server.

Depending on the version of Hipsgen, the rendering of this page has evolved. Do not hesitate to

perform an "UPDATE" action on your HiPS to benefit from the latest version offered by Hipsgen.

26

Note that you can edit and modify this page to match your needs, especially if the default layout

proposed by Hipsgen does not suit you. After that, Hipsgen will inhibit any further automatic changes

in order to keep your custom version. If you change your mind you will need to delete your

"index.html" file before it can be re-generated (e.g. via an "UPDATE" action).

Generating a weight HiPS

The "COUNT" action (Hipsgen version 12.134 and later) adds the possibility of generating a weight

HiPS, in addition to the regular HiPS. Each pixel of each tile indicates not the value of the final pixel,

but the number of original images that contributed to its calculation.

If the Hipsgen settings require a weighting on the pixel calculation, typically a weighted average

through the "exptime =" parameter, or a "fade-in" overlay mode through the "mode=overlayFading"

parameter, the weight HiPS will provide the weight factor associated to each HiPS pixel.

Such a HiPS can be used to individually know the characteristics of the pixels in the final HiPS. It can be

useful for selecting/reducing the set of original images required, as well as determining the best

Hipsgen setting.

This "weight HiPS" is generated in a dedicated "HpxCounter" subdirectory.

To delete such a HiPS - typically after generation of the final HiPS - use the "CLEANCOUNT" action.

27

Information and links to the Progenitors of a HiPS

If desired, Hipsgen can extend the spatial indexing information created in the very first step (INDEX) to

provide a convenient way to access descriptive information about the original images (called

“progenitors”) and direct links to them. Hipsgen will generate in the HpxFinder directory of the spatial

index a HiPS tree of tiles containing not pixels but the required information. Visualisation clients

compatible with this mechanism, such as Aladin Desktop, will then be able to offer their users a way

to directly access the information and links of the

original images used to generate the HiPS.

The descriptive information of the original images is

by default the name of the image, the field of view

as well as all the descriptions that Hipsgen will find

in the FITS headers: the telescope, the date of the

exposure, the exposure time, etc. For this, Hipsgen

uses a list of keywords usually used for this

information. However, if you wish to modify this list,

you will have to fill in the parameter "fitsKeys=key1

key2 ..." in the very first INDEX step. If you have not

done so at that time, you can obviously restart this

action afterwards.

E.g.: in=/data/img out="…" fitsKeys="DATE TELESCOP" INDEX

FITS keywords detected by default: DATE, MJD_OBS, UTC, LST, DATE-OBS, MJD-OBS, MJD-END, OBS-

DATE, DATE-END, DATEOBS1, DATEOBS2, MIDOBS, ORDATE, TIMESYS, MJDREF, JD, EXPTIME,

TEXPTIME, OBSTIME, TIME-OBS, WAVELMIN, WAVELMAX, WAVELEN, TELESCOP, TELNAME

HpxFinder spatial index tile format: The format used for the spatial index tiles is JSON compatible, with

the additional constraint of one record per row. It provides in this format a set of "key = value" pairs

for each feature of the original images that intersect the spatial tile.

Example of HpxFinder tiles

To format the spatial index it is necessary to execute the "DETAILS" action.

E.g.: in="…" out=/data/hips DETAILS

This action not only generates the necessary HpxFinder tree, but also sets up a "metadata.xml" file in

the HpxFinder directory. This file uses a substitution mechanism and macros that will allow

28

visualization clients to convert the content of spatial indexing tiles into a table in VOTable format (IVOA

standard)32.

Example of a "metadata.xml" file

The header of the "metadata.xml" file describes the columns that should appear in the HiPS client

when the user wishes to view the characteristics of a particular original image (see Aladin Desktop

illustration on previous page). This header is compliant with the IVOA VOTable document, and can use

the options of this standard to generate links to the original image, either by means of a VOTable

"LINK" (example below line 15), or by fields provided by the IVOA Obscore / DATALINK standard33.

The data section of the "metadata.xml" file is reduced to a single VOTable record. This record will allow

to extract the desired information from the HpxFinder tiles according to the user's consultations. To

do this, each field of this single record contains a "macro" that refers to the tile values. For example

the macro "$[name]" will be replaced by the value associated with the field "name" in the HpxFinder

tiles (see example of HpxFinder tile on the previous page).

Syntax of the "metadata.xml" macros

The macros in the "metadata.xml" file use a sophisticated substitution mechanism, the basic operation

of which was illustrated in the previous paragraph. Where the simple full substitution is not

appropriate, a more complex syntax can be deployed.

32 https://ivoa.net/documents/MOC/
33 https://www.ivoa.net/documents/DataLink

https://ivoa.net/documents/MOC/
https://www.ivoa.net/documents/DataLink

29

First of all, it is possible to use several macros for the same field and to add free texts which will always

appear identical. Only the macros will be substituted by the corresponding values from the HpxFinder

tiles.

Text1 $[macro1] text2 … $[macro2]…

In addition, if for a given macro, the expected substitution should not take the whole value, but only a

portion of it, it is possible to designate this portion by means of a suffix using the syntax of Unix regular

expressions with "capture groups".

$[macro:regu(lar)expression]

If, for example, the HpxFinder tiles contain a field indicating the date of the observation (e.g. {"DATE-

OBS" : "1996-11-04T04:30:00"}) and you want to see in the HiPS client only the year as a constant

prefix (e.g. Year 1996) you will need to use the following macro which will extract from the "DATE-

OBS" field all the digits up to the first hyphen, preceded by the prefix "Year":

Year $[DATE-OBS:^([0-9]+)-.*]

The header of the `metadata.xml` file will declare an additional field34 :

And the data section of the `metadata.xml` file will provide the additional field:

Thus, depending on the designated progenitor, the HiPS client will obtain, for example, the following

result:

Implementation: The tuning of the `metadata.xml' file is greatly facilitated by applying the following

method: 1 - First check that the VOTable syntax is correct. To do this, either use a VOTable validator,

or load the `metadata.xml` file directly into Aladin Desktop to ensure that it can read it; 2 - Use the

simplest possible regular expressions, making them more complex afterwards, until you get the

desired string; 3 - Don't hesitate to create "hidden" VOTable columns ("type=hidden" attribute in the

VOTable FIELD) and to use these columns to build the appropriate LINK or DATALINK.

Generating a HiPS from a single image covering the full sky

Some missions provide their observations in the form of a map in Cartesian representation covering

the whole sky. It is often provided in jpeg format without any associated calibration. With the "-hhhcar"

option and the indication of the single image concerned in the "in" parameter, Hipsgen will

automatically generate the ".hhh" calibration file associated with the image, and will launch the HiPS

generation process.

-hhhcar in="/data/skymission.jpg" out="/data/hips" …

34 The name of the column (here "Info") is independent of the name of the macros.

30

Non-equatorial image: If the image uses a non-equatorial spatial reference system, it will be necessary

to use the parameter frame=xxx where xxx can take the values "galactic" or "ecliptic". Note that this

parameter will also constrain the reference system of the final HiPS. Thus, if you wish to generate an

equatorial HiPS from a non-equatorial image, you must proceed in two steps. First, create the "hhh"

file in the reference system of the source image (adding the -n option will speed up this step by

inhibiting the effective actions), then, with a second Hipsgen command, generate the equatorial HiPS.

Etape 1 : -n -hhhcar in=/data/skymission.jpg out=/data/hips frame=galactic

Etape 2 : in=/data/skymission.jpg out=/data/hips …

Huge image: In the case of a very large image and on a machine with limited memory resources, it will

probably be necessary to proceed manually, by first cutting the original image into more easily

manipulated portions. The associated “hhh” files will have to be adapted according to.

Generating a planetary HiPS

 Originally developed for sky surveys, Hipsgen can also be used to generate planetary HiPS as long as

the body concerned is reasonably spherical. This extension of HiPS usage is compliant with the IVOA

HiPS 1.0 standard even though it is not specifically

described. The use of Hipsgen is similar to its

celestial use, but requires some minor

adaptations described below. Also the HiPS clients

need to be slightly adapted (see Aladin Lite

planetary example on the left).

Planetary surface images generally use specific

formats, e.g. PDS 35, which are not recognised by

Hipsgen. Therefore, it is necessary to convert

these images into a compatible format: FITS, JPEG

or PNG. This step can be very complex or very

simple depending on the nature of the original data. The simplest case is a Cartesian image covering

the entire planetary surface. Then the method described in the previous paragraph: "Generating a

HiPS from a single image covering the whole sky" can be applied immediately. Once the HiPS is

generated, it will be necessary to manually edit the "properties" file to designate the planet concerned

via a new parameter "hips_body = xxx" and to replace the reference system "hips_frame = equatorial"

by the reference system of the planet. While waiting for an update of the IVOA HiPS standardisation

document to take planets into account, it is recommended

to use the name of the body (in English, and in lower case)

both for the designation of the planet/body and for its

spatial reference system (sun, mercury, venus, earth,

moon, mars, ceres, saturn, titan, dione, enceladus, iapetus, mimas, rhea, tethys, jupiter, callisto,

europa, ganymede, io, uranus, ariel, miranda, oberon, titania, umbriel, neptun, triton, pluto, charon…)

35 https://pds.nasa.gov

https://pds.nasa.gov/

31

Generating a HiPS from a "HEALPix map"

Some observing missions, such as PLANCK, provide sky surveys in the form of a large FITS file containing

pixel values directly in HEALPix projection. This is called a "HEALPix map". Hipsgen can take such a map

as input instead of conventional images. The "MAPTILES" action is dedicated to this processing. the

spatial localisation step ("INDEX") is not required, and the choice of coordinate system is constrained

by the one used in the HEALPix. As with a classic HiPS, it is possible to generate a set of compressed

tiles via the "PNG" or "JPEG" actions.

Ex: in=/data/map.fits out=/data/hips MAPTILES PNG

It is important to note that in such a case, Hipsgen strictly preserves the values of the original map,

without any resampling or interpolation.

Generating a HEALPix map from a HiPS

Hipsgen's "MAP" action generates a HEALPix map from a HiPS. A HEALPix map is a single FITS file that

explicitly contains each HEALPix pixel value. It is a very similar format to HiPS except that it is limited

by the size of the file (and the RAM required to manipulate it). The resolution of the HEALPix map,

determined by the NSIDE, is by default 1024. The Hipsgen parameter "mapNside=xxx" allows you to

specify a specific NSIDE value. To be identical to the original HiPS, this resolution should correspond to

the formula: mapNside = tileWidth x 2^order.

in="/data/hips" out="/data/map.fits" mapNside=2048 MAP

This operation is only interesting if the HEALPix map produced remains of a reasonable size. An nside

greater than 4096 is in practice not very usable.

Generating a HiPS from the deepest level tiles

The construction of a HiPS can be partially done with dedicated code (python, java, Rust...). Hipsgen

will only be used to finish the job. So, if you are able to generate all the deepest level tiles of a HiPS by

storing them as expected according to the HiPS IVOA standard in a Norderx directory and in the

subdirectories designated DirNN000 according to the NpixNNNNN.fits tile nomenclature (respectively

.png or .jpg), you will be able to rebuild the full HiPS using the Hipsen "TREE" action. This action will

(re)create the whole missing hierarchy, and then the additional files required.

Note that by default, the generated HiPS will use the galactic reference frame36. You will need to

specifically specify another referential via the parameter « frame=xxx ».

E.g.: out=/data/hips frame=equatorial TREE

You can also use this method to apply an external filter on all the deepest order tiles. Then regenerate

the hierarchy of lower order tiles by means of this "TREE" action. In this case you can force Hipsgen

not to build the HiPS tree by specifying the same value as the deepest order in the "minOrder"

36 Historical reason related to the genesis of HiPS before IVOA standardisation.

32

parameter. Then, after having made the modifications to the tiles, restart Hipsgen with a "minOrder=0"

this time37.

Step1: in=/data/img out=/data/hips minOrder=7 order=7 INDEX TILES

Step2: treatment of the tiles of order 7

Step3: out=/data/hips minOrder=0 TREE

Generation of a HiPS cube from several HiPS

Hipsgen can be used to generate a HiPS cube from several HiPS already generated. For such an

operation, it is essential that all your HiPS are compatible. They must share the same encodings (bitpix,

bscale, bzero), the same order, the same formats and tile sizes.

To perform such an operation, you must use the "CUBE" action, indicating the list of HiPS as parameter

"in". By default, the HiPS tiles will be duplicated. However, by adding the "mode=link"38 parameter you

can ask Hipsgen to create "relative symbolic links" to the original HiPS tiles. This method is much faster,

but it forces you to keep the original HiPS tiles. The identifier of a HiPS cube conventionally uses the

hierarchy ".../C/..." instead of ".../P/...". (e.g. id=CDS/C/mycube).

E.g.: in=/data/hips1;…;/data/hipsN out=/data/hipscube id=CDS/C/mycube CUBE

Generating a HiPS cube from FITS cubes

Hipsgen can also be used to generate a HiPS cube directly from a set of FITS cubes. The generation is

done exactly the same way as for a classical pixel HiPS, with the same actions and parameters. As

mentioned in the previous paragraph, the identifier of a HiPS cube conventionally uses the hierarchy

".../C/...".

Prerequisites: All FITS cubes must share the same depth (same number of planes) 39.

E.g.: in=/data/fitscubes out=/data/hipscube id=CDS/C/mycube INDEX TILES …

When the cubes are pointed ("spread out") and not a mosaic of cubes, the proportion of "sparse" tiles40

can become significant as they are multiplied by the depth of the cube. The use of a compression

method for FITS tiles should be considered if you wish to keep them (see section "Compression of FITS

tiles").

Note that HiPS clients able to display HiPS cubes are still rare. Unlike Aladin Desktop, a non-compatible

client will only display the first plane of the HiPS cube.

37 This trick will save you 10% of the generation time. However, if you do not intend to modify the deepest order
tiles, this 2-step process should be avoided as it would increase the generation time by 6%.
38 In some versions of the Windows OS, the generation of symbolic links is only allowed if you have administrative
rights.
39 The HiPS cubes defined by the HiPS 1.0 standard only consider the number of the plane, not its physical
correspondence (wavelength, time, ...). The cube mosaic does not perform resampling in the 3rd dimension.
40 A "sparse" tile contains a high proportion of meaningless pixels (“blank” value).

33

Duplication of a HiPS

Duplicating a HiPS can be done by any dedicated copy tool, e.g. "cp -R /dir ." for a local copy or across

the network via "rsync -Hav host:/dir .". If the HiPS has been installed on an http server, it is also

possible to use a "wget" command without the need to log in on the remote machine and with the

required parameters to browse and copy the entire tree.

For partial copying, e.g. by focusing only on certain tile formats, or by discarding the deepest orders,

the standard tools can become complex to parameterize. Hipsgen's "MIRROR" action allows such

partial or full copy operations to be performed41. For this operation, the “in” parameter will fill in the

base URL of the HiPS available on the http server, or, in the case of a local duplication, the HiPS

directory. The "format=xxx"42 parameter will allow you to indicate the list of asked tile formats (fits,

png and/or jpeg). The "order=nn" parameter will allow you to limit the depth of the replicated HiPS

orders. It is also possible to take into account only one area of the sky by entering the "region=..."

parameter (see section « HiPS computation recovery » above).

At the end of the copy operation, Hipsgen will update the properties file to adjust the parameters

affected by the copy (hips_order, hips_format, hips_status) and verify the conformity of the check

codes to ensure that the copy is correct.

E.g.1: in="/data/hips" out="/data/myhips" format=png MIRROR

E.g.2: in="http://server/hips" out="/data/myhips" order=4 MIRROR

Recovery of a duplication: If the duplication of a remote copy is interrupted, Hipsgen MIRROR can be

restarted to complete the copy. By default, Hipsgen only checks that the size of the already copied tiles

is reasonable, and if necessary restarts the copy of these tiles. The "fastCheck=false" parameter can

be set to additionally check that the date and size is consistent with the remote tile. However, this test

slows down the copy process considerably43. Note that in the case of a full copy, the HiPS numerical

code is validated at the end of the copy, which will detect a possible erroneous copy.

Copying spread over several directories: Duplicating a HiPS may require a lot of disk space. If the target

directory is not big enough, it is possible to ask Hipsgen to split the copy over several target directories.

Thus the parameter "mirrorSplit=size;altpath ..." allows you to indicate one or more alternative

directories needed for the copy if the default directory does not have the required size. For example

mirrorSplit="10g;/data/hips-ext1 200g;/data/hips-ext2" will cause the first 10GB to be copied into the

default directory "out", then 200GB into the alternative directory /data/hips-ext1, and all the rest into

/data/hips-ext2.

E.g.: in=http://server/hips out=/data/myhips mirrorSplit="100g;/data1/althips"

MIRROR

41 Hipsgen runs multiple copy threads in parallel and adjusts the number of threads according to the
instantaneous performance of the network. This technique works well on both fast and slow networks.
42 Previously called “mirrorFormat” for Hipsgen versions prior to 12.135
43 Checking the size and date on the remote server often takes as long as the copy itself.

34

HiPS compliance check

A HiPS consists of a large number of files which must comply with the standard set by the International

Virtual Observatory Alliance.

Compliance with the standard: A first level of verification of a HiPS will be to validate its compliance

with the IVOA standard. The Hipsgen LINT action checks each required element of the standard

document and produces a compliance report for each item checked.

E.g.: out=/data/hips LINT

If your HiPS was generated before the current IVOA HiPS standard, Hipsgen's "UPDATE" action will

allow you to update it to comply with the current standard. This operation will also set up - if missing

- the digital keys (checkcodes and DATASUM) that recent versions of Hipsgen use to check the

conformity of a HiPS (see following paragraphs).

E.g.: out=/data/hips UPDATE

In addition, following a copy or a move, it may be useful to be able to check the conformity of the copy.

Two complementary techniques are possible, one very fast, the other slower but more complete.

Quick check: The first method checks that all files are present, and have kept their original size. The

"CHECKCODE" action, executed by default by Hipsgen at the end of the generation of a HiPS, will add

the keyword "hips_check_code" in the properties file by associating a numerical key specific to each

set of tiles (e.g.: "png:3137881707 fits:3716611556")44. These numerical keys are correlated to the

number and size of all the tiles in each format. Therefore, after a copy, the execution of the "CHECK"

action will recalculate these keys according to the tiles present and check whether the result

corresponds to the keys recorded in the "properties" file. If this is not the case, the copy does not

conform. This method is very fast, but it is not totally sure in the sense that a file could have been

altered without changing its size. This case is very unlikely in the case of a copy or transfer, but it is

possible in other cases of alteration (involuntary permutations of FITS files with the same size,

ransomware, ...)

E.g.: out=/data/hips CHECK

Full check: The second method is more reliable because it will calculate a numerical key directly on the

content of the tiles, and not simply on their size. When generating the tiles and following the FITS

standard, Hipsgen generates a DATASUM key specific to the content of each FITS tile, and stores it in

its header. Thus, after a copy, the execution of the "CHECKDATASUM" action will recalculate each

DATASUM of each FITS tile and check its correspondence with what was previously memorized. If this

is not the case, the copy of the FITS tiles is not correct, even if the number and size of the tiles are

correct. This method is very robust45 but unfortunately a hundred times slower than the previous

method. Additionally, it only takes into account the FITS.

E.g.: out=/data/hips CHECKDATASUM

44 The CHECKCODE action will also update the properties file with the total number of tiles (hips_nb_tiles) and
the total size of the HiPS (hips_estsize) provided in KB.
45 The DATASUM method, is very reliable, but not absolutely guaranteed. For example, it cannot detect a
permutation of values (2 pixels of 4 bytes inverted). But such a probability is very low (unless you do it on
purpose).

35

In the case of HiPS generated with earlier versions of Hipsgen, or by other tools not using a FITS digital

key, the "UPDATEDATASUM" action will allow you to calculate and store the DATASUMs without

having to regenerate the FITS tiles. This takes approximately 25% longer than the check itself (and

approximately half the time it would have taken to regenerate all the FITS.

Random check: In the case of "ransomware" viruses, Hipsgen also allows to "scan" a HiPS by means of

the FASTCHECK action to quickly check if it has not been altered or encrypted. The method consists of

randomly checking the consistency of certain elements of the HiPS in order to avoid making a backup

of a HiPS that has been corrupted. If there is a problem, Hipsgen displays the following message

"ERROR: HiPS is corrupted".

E.g.: out="/data/hips" FASTCHECK

HiPS tile packaging (Hipsgen version 12.135 and later)

The HiPS IVOA standard describes the methods for accessing HiPS elements (tiles, metadata, coverage,

etc.) via an HTTP API. Consequently, it may seem natural to physically store these elements as

individual files in the server's file system. This simplicity of storage is one of the strengths of HiPS

technology. However, it is also possible to use other means of storing HiPS elements. This could be a

database providing the requested elements, or specific software dedicated to the on-the-fly

generation of tiles and other requested elements.

Thus, in order to provide an alternative to storing individual tiles and considerably reduce the number

of physical files needed for storage, once the HiPS has been generated, the "PACK" action will replace

all the tiles in each "DirNNNN" sub-directory with a single binary file containing the aggregation of the

tiles concerned, for each tile format available.

E.g.: out=/data/hips PACK

If necessary, the "UNPACK" action will restore the original distribution46.

E.g.: out=/data/hips UNPACK

These two actions can be controlled by the "format=..." parameter to specify which tile types are

concerned. The value of this parameter will take the form of a series of words separated by spaces: fits

- FITS tiles, png - PNG tiles, jpeg - JPEG tiles, index - HpxFinder index tiles. By default, all represented

formats will be taken into account.

E.g.: out=/data/hips format="jpeg index" PACK

Runtime and recovery: The "PACK" and "UNPACK" actions require the complete reading and writing

of all the tiles concerned. This is a fairly lengthy operation, although Hipsgen will start the process by

estimating the most suitable number of threads. If the process is interrupted prematurely, it is

always possible to restart the action, or cancel the work already carried out using the complementary

action.

Binary file names: The binary files generated by "PACK" are prefixed with the directory name and

suffixed with "-ext.bin" where “ext” corresponds to the format (fits, png, jpg).

E.g.: Dir10000-png.bin

46 A “packaged” HiPS cannot be updated directly.

36

Example: DirNNNN directory structure before the "PACK" action

The same HiPS after the "PACK" action :

Binary file format: The binary files are made up of two parts: the “index” and the “tiles”. The “index”

is exactly 80,000 bytes long. It stores the positions of the next 10,000 tiles potentially concerned, coded

as long integers (8 bytes, big endian). Each of these indexes records the position of the byte

immediately following the tile concerned. Following the index, the tiles are stored, one after one, in

ascending numerical order of tile indices.

Tile extraction: The algorithm for extracting a tile M of ext format from a binary file will use the

following functions to locate and extract it:

BinFile = "Dir".(M/10000)*10000. "-ext.bin" 47

NumIndex = M % 10000 48

FirstByte = IndexValue(NumIndex-1) 49

TileSize = IndexValue(NumIndex) – FirstByte 50

47 integer division
48 Modulo
49 IndexValue(n) returns index value at the n position
50 A tile that is not present will have a size of zero (TileSize=0)

37

Publication/distribution: The distribution of a “packaged” HiPS will require the use of a small CGI (or

equivalent) so that the http server can extract the requested tiles from the binary files. The Perl code

below provides a basic implementation.

Hipsgen “traces”

Hipsgen is a very verbose tool and provides a lot of information during processing. An understanding

of the major steps in the process is a real plus for using this tool efficiently.

Launch

Spatial Indexing - INDEX

38

Generation of FITS – TILES

PNG tile generation

Generation of check codes - CHECKCODE

Generation of link tiles to progenitors – DETAILS

39

The properties file in detail

The "properties" file contains all the HiPS metadata: the origin of the images, technical elements

related to the generation of the HiPS, its description, the history of the processing carried out as well

as information intended for clients. Some fields have a controlled vocabulary to be consulted in the

HiPS IVOA standardisation document, others are free. Here is an example of a fairly complete

properties file, with comments...

Description and origin: The fields grouped below give the HiPS identifier, its title (one line), the data

collection from which it came, a fairly complete description (one small paragraph), the rights holder, a

suggested credit, the wavelength, a bibliographic reference, and finally the data type.

Original coverage and resolutions: The following lines group the coverage fields: wavelength, time

range and sky area. The next two fields give the angular size of an original pixel and its coding mode.

HiPS origin and rights: Fields beginning with 'hips_' refer to the HiPS itself, notably the creation

information: tools, standard reference number, dates, persons, rights holder.

40

Technical fields of HiPS: The technical elements are given below. These technical elements are

described in detail in this manual.

Generation mode fields: The following fields provide information on the methods used to generate the

HiPS.

Measurement fields: The following fields provide the HiPS pixel angular size, the total HiPS volume (in

KB), the number of tiles, the numerical validation codes and a suggested default view field.

Processing history: Each time Hipsgen is used on this HiPS, the date and parameters of the command

line - including the parameter file - are logged to provide a processing history.

Fields for clients: The properties file can contain fields for clients or even for a specific client. Below,

the "client_category" field is for Aladin Desktop to present the HiPS in the appropriate branch of its

resource tree.

41

Hipsgen's actions and parameters

Options

 -clean : Delete previous computations
 -n : Just print process information, but do not execute it
 -color : Colorize console log messages
 -nocolor: Uncolorize console log messages
 -nice : [MIRROR] Slow download for avoiding to overload remote http server
 -notouch: Do not touch the hips_release_date
 -hhhcar : [INDEX] Generate hhh file for an all sky image
 -trim : [TILES,CONCAT,APPEND] Trim FITS tiles if possible
 -gzip : [TILES,CONCAT,APPEND] Gzip FITS tiles
 -d : Debug messages
 -h : Inline help
 -man : Full inline man (may be followed by a parameter or an
 action for a full explanation)

 Actions

(by default: "INDEX TILES PNG CHECKCODE DETAILS"):
 INDEX : Build spatial index
 TILES : Build all true value pixel tiles
 PNG : Build PNG preview tiles
 JPEG : Build JPG preview tiles
 MOC : Regenerate the HiPS spatial coverage (MOC)
 MAP : Build an HEALPix map from the HiPS tiles
 ALLSKY : (Re)build all Allsky files
 CLEAN : Delete all HiPS files (except properties file)
 CLEANINDEX : Delete spatial index
 CLEANFITS : Delete all FITS tiles
 CLEANJPEG : Delete all JPEG tiles
 CLEANPNG : Delete all PNG tiles
 CLEANWEIGHT : Delete all WEIGHT tiles
 CLEANCOUNT : Delete counting tiles (HpxCounter dir)
 TREE : (Re)build HiPS hierarchy from existing tiles
 APPEND : Append new images to an already existing HiPS
 CONCAT : Concatenate two HiPS
 CUBE : Create a HiPS cube based on a list of HiPS
 DETAILS : Extends HiPS spatial index for supporting 'progenitor' facility
 STMOC : Build a STMOC.fits based on HpxFinder tile descriptions
 UPDATE : Upgrade HiPS metadata additionnal files to the last HiPS standard
 CHECKCODE : Compute and store the check codes
 MIRROR : Duplication of a HiPS (local or remote)
 RGB : Build and RGB HiPS based on 2 or 3 other HiPS
 CHECK : Basic HiPS integrity check
 CHECKDATASUM : HiPS FITS tiles full integrity check
 CHECKFAST : Fast HiPS integrity test
 LINT : Check HiPS IVOA 1.0 standard compatibility
 MAPTILES : Build HiPS tiles from a HEALPix FITS map
 COUNT : Build progenitor counting HiPS

Parameters

 in=dir : Source directory
 out=dir : Ouput directory
 order=nn : HiPS order
 minOrder=nn : HiPS min order
 frame=equatorial|galactic|ecliptic: HiPS coordinate frame
 tileWidth=nn : HiPS tile width
 bitpix=8|16|32|64|-32|-64: HiPS bitpix
 dataRange=min max : Original pixel range
 pixelCut=min max [fct]: 8 bits pixel mapping
 img=filename : Reference image for default initializations

42

 hdu=n1,n2-n3,...|all: List of FITS HDU numbers (original images)
 blank=nn|key : Alternative BLANK value (or alternate BLANK fits keyword)
 validRange=min max : Range of valid pixels
 skyVal=key|auto|%info|%min %max: Background removal method
 expTime=key : Method of adjusting the exposure time
 maxRatio=nn : Image source pixel ratio test
 fov=true|x1,y1.. : Masks on the original images.
 border=nn|N W S E : Edge removal
 shape=rectangle|ellipse: Image FoV
 mode=m1,m2.. : Coadd pixel modes
 incremental=false|true: Incremental HiPS
 region=inline moc|moc.fits: Working region
 partitioning=false|nnn: Splitting large original images into blocks
 maxThread=nn : CPU thread limitation
 fastCheck=true|false: Mirror check method
 fitsKeys=key1,key2...: FITS keywords for image characteristics extraction
 id=AUTH/P/... : HiPS identifier
 title=title : HiPS title
 creator=name : HiPS creator
 target=ra dec [rad] : Default HiPS target
 status=private|public [clonable|clonableOnce|unclonable]: HiPS status
 color=jpeg|png : Tile format of a colour HiPS
 inRed=hipspath : Red HiPS path
 inGreen=hipspath : Green HiPS path
 inBlue=hipspath : Blue HiPS path
 cmRed=min [mid] max [fct]: Red color mapping
 cmGreen=min [mid] max [fct]: Green color mapping
 cmBlue=min [mid] max [fct]: Blue color mapping
 luptonQ=x : Q coef Lupton RGB builder
 luptonS=x/x/x : Scale coefs Lupton RGB builder
 luptonM=x/x/x : M coefs Lupton RGB builder
 cache=dir : Alternative cache directory
 cacheSize=nnMB : Alternative cache size limit
 cacheRemoveOnExit=true|false: Removing cache disk control
 mocOrder=nn [<nnMB] : Specifical MOC order an/or size limit
 mapNside=nn : HEALPix map NSIDE
 format=fmt1 fmt2 ...: Tile formats
 mirrorSplit=size;altPath ...: Multi disk partition split
 pilot=nn : Pilot HiPS for testing

Table of contents

Introduction ... 3

HiPS structure .. 4

How Hipsgen works ... 4

Implementation ... 5

Visualisation, distribution and publication .. 6

Generating a HiPS from FITS images ... 6

Additional standard parameters ... 7

Generating a HiPS from compressed colour images ... 13

Control and performance .. 14

HiPS computation recovery ... 17

HiPS update ... 19

43

Concatenation of 2 HiPS .. 19

Update by Generation & Concatenation ... 19

HiPS generation by arithmetic combinations .. 20

Generating a HiPS using a cluster of machines ... 20

Generation of a HiPS composed of pointed outreach images .. 21

Generation of one colour HiPS from 3 greyscale HiPS .. 22

Metadata of a HiPS .. 23

Moc - the spatial coverage of a HiPS ... 24

STMoc - space-time coverage? .. 25

Allsky or not? ... 25

Cover page: index.html ... 25

Generating a weight HiPS .. 26

Information and links to the Progenitors of a HiPS ... 27

Generating a HiPS from a single image covering the full sky .. 29

Generating a planetary HiPS ... 30

Generating a HiPS from a "HEALPix map" ... 31

Generating a HEALPix map from a HiPS .. 31

Generating a HiPS from the deepest level tiles ... 31

Generation of a HiPS cube from several HiPS ... 32

Generating a HiPS cube from FITS cubes .. 32

Duplication of a HiPS ... 33

HiPS compliance check .. 34

HiPS tile packaging (Hipsgen version 12.135 and later) .. 35

Hipsgen “traces” .. 37

The properties file in detail ... 39

Hipsgen's actions and parameters .. 41

Options .. 41

Actions ... 41

Parameters .. 41

44

Hipsgen – User manual
January 2023 version – with additions

© 2023-2024 - Université de Strasbourg/CNRS – under Open Licence (CC-BY compatible)

