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Abstract

The main result of this work is a group theoretic approach to partition-
ing integers into an arbitrary number of members of an arbitrary set of
increasing non-negative integers. This work builds upon the existing lit-
erature on partitioning of numbers into triangular numbers and square
numbers. Generating function formulae for the number of partitions and
distinct partitions of the integers into arbitrarily many triangular num-
bers, squares, and centered polygonal numbers are presented as appli-
cations. These formulae arise from the connection between such parti-
tioning and the structure of the symmetric group, namely the size and
cycle structure of the conjugacy classes. Expressions in terms of Young’s
tableaux and several illustrative examples are given.

1 Introduction

The main result of this paper (Theorem 2.2) provides a group theoretic approach to
determining the number of partitions and distinct partitions of the given integer n
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into the sum of m members of a set S of increasing non-negative real integers. In a
typical setting, S would be a special set of interest such as the triangular numbers,
S = Δ. Indeed, the triangular numbers will be explored as will the square numbers,
S = �, and the centered polygonal numbers, S = C.

A secondary goal of the current work is to directly extend the results of an
interesting study in 2004 by Hirschhorn and Sellers [9]. In that work, the authors
build off of their previous work on the representations of an integer as a summation
of three triangular numbers [10] to develop generating function formulae for the
partitions and distinct partitions of an integer into three triangular numbers [9].
The current work shows how to get the partitions and distinct partitions for an
arbitrary number of triangular numbers.

In a more general context, the partitioning of integers into triangular numbers
remains a topic of investigation. Ono, Robbins, and Wahl [11] have utilized the
theory of modular forms to get formulae in terms of the Dedekind η-function for the
representations of cases 2, 3, and even cases up to 12. Cañadas [3, 4] has employed
the use of posets in the study of general partitions, including with triangular numbers
and other polygonal numbers. Additionally, several works have studied combinations
of square and triangular numbers [1, 2, 17, 18, 21].

The current work does not invoke the “heavy machinery” of modular forms, but
rather it takes a more elementary approach by making a connection to group theory,
particularly the properties of the symmetric group, Sm (also called the permutation
group). The fact that the result extends to centered polygonal numbers leads to
several ancillary theorems which are proven and discussed in Section 4.

A typical approach in the study of partitioning of integers is to introduce a
generating function of the form,

ΨS(q) =

∞∑
j=0

qS(j),

where S(j) is referring to the jth member of set S. For the case of the triangular
numbers [9],

ψ(q) := ΨΔ(q) =
∞∑
j=0

q
j(j+1)

2 =
∞∑
j=0

qT (j), (1.1)

(where T (j) represents the jth triangular number) is used. This serves as the basis
for a generating function approach to obtaining the representations of a number
in terms of m triangular numbers, tm. A representation is an ordered summation
(1 + 1+ 3 = 5 is a separate representation from 3+ 1+ 1 = 5 or 1 + 3+ 1 = 5) of m
triangular numbers to obtain a target number, n.

One can readily see that the m-fold product,

ψ(q)m =
∞∑

j1=0

∞∑
j2=0

· · ·
∞∑

jm=0

qT (j1)+T (j2)+···+T (jm)
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will serve as the generating function formula for the representations. Creating a single
summation leads to coefficients that are precisely the number of representations.
That is,

ψ(q)m =
∞∑
n=0

tm(n)q
n. (1.2)

It is also important to note another feature of ψ which is,

ψ(qr) =
∞∑
n=0

qrT (n). (1.3)

The main idea of the work of Hirschhorn and Sellers was to determine, for the
case m = 3, the generating function formula, in terms of ψ, when the summation
is no longer ordered (1 + 1 + 3 = 5, 3 + 1 + 1 = 5, and 1 + 3 + 1 = 5 are all the
same). It is noted that adding zero is allowed (e.g., 0 + 1 + 4 = 5). These values
are called partitions, p3Δ, where 3 represents the number of triangular numbers, and
were shown to be [9]

P3Δ ≡
∞∑
n=0

p3Δ(n)q
n =

1

6

(
ψ(q)3 + 3ψ(q2)ψ(q) + 2ψ(q3)

)
. (1.4)

They further derived the generating function formula for the case when only three
distinct numbers made up the summation (1 + 1 + 3 = 5 would not be counted
because 1 appears twice). This eventually leads to P d

3Δ which produces the number
of ways a given number can be formed using 3 distinct triangular numbers [9]. This
was shown to be

P d
3Δ ≡

∞∑
n=0

pd3Δ(n)q
n =

1

6

(
ψ(q)3 − 3ψ(q2)ψ(q) + 2ψ(q3)

)
. (1.5)

The above generating function formulae will be recovered below along with the
general expressions for PmΔ(n) and P d

mΔ(n) that hold for any m. One notes in
Eqs. (1.4) and (1.5) that the expression for PmΔ(n) and P d

mΔ(n) are made up of
terms of the form

∏
i ψ(q

λi)νi, where
∑

i λi · νi = m for each term. The main result
of this work is to show that one can obtain a general version of this, both in terms
of arbitrary m and S. One can, in fact, obtain an expression for PmS and P d

mS.

2 General partitioning of integers with the working example

triangular numbers

Several simple ideas come into play in establishing the general case. First, deter-
mination of representations, partitions, and distinct partitions are, at the heart of
the matter, counting problems and, in particular, counting permutations. Second,
the choice of looking for representations, partitions, or distinct partitions effectively
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Table 1: Group theory data for S3.

Int. part. 3 Ci |Ci| χ(2) Young’s
(
ψ(qλi)

)νi
1+1+1 13 1 1 ΨS(q)

3

1+2 1121 3 −1 ΨS(q)ΨS(q
2)

3 31 2 1 ΨS(q
3)

establishes constraints on the permutations allowed to be counted. For example,
should 1 + 1 + 3 = 5 be allowed or not? Finally, these constraints establish equiva-
lence relations. For example, are 1 + 1 + 3 = 5, 3 + 1 + 1 = 5, and 1 + 3 + 1 = 5 all
the same or are they to be counted separately?

Taken together, this leads one to anticipate that the symmetric group of m ele-
ments might well govern the nature of how the different choices of constraints and
equivalence classes impact the counting. Indeed there is a deep connection to the
symmetric group and, in fact, the constraints are connected to the structure of the
group. The upshot is that the full power of group theory can be brought to bear
on this problem. To help matters, the symmetric group is arguably the most well-
studied group, so making such a connection anchors to a strong foundation. The
constraints imposed when one seeks representations, partitions, and distinct parti-
tions are carried in the cycle structure, conjugacy classes, and characters of Sm.
This sets the stage for a couple of theorems which are presented in this section.

Theorem 2.1. The terms making up PmS(n) and P d
mS(n) map to the conjugacy

classes of Sm as

ΨS

(
qλ1
)ν1

ΨS

(
qλ2
)ν2 · · ·ΨS

(
qλl
)νl → (λν11 , λ

ν2
2 , . . . , λ

νl
l ) ≡ Ci.

Proof. The overall power is
∑
λiνi = m. The Ψνi

S gives the number of independent
terms to permute over, while qλi fixes λi terms. Thus a cycle type of the permutations
is determined. A fundamental theorem associated with Sm is that the cycle type
determines the conjugacy classes [8, 15].

It is helpful to consider a couple of illustrative examples of applications of this
theorem. It is also helpful, although not required, to express the conjugacy classes
in the form of Young’s tableaux [8, 12, 15]. The conjugacy classes of Sm are asso-
ciated with the possible integer partitions of m [8, 12]. Young’s tableaux are also
representations of the integer partitions of m [12, 15]. These are collected in Tables
1 and 2 for the cases m = 3 and m = 4.

Consider the case ΨΔ = ψ (the triangular numbers) and m = 3. Here,

ψ(q)3 =

∞∑
a=0

∞∑
b=0

∞∑
c=0

qT (a)+T (b)+T (c)



L.K. MORK ET AL. /AUSTRALAS. J. COMBIN. 80 (3) (2021), 305–321 309

Table 2: Group theory data for S4.

Int. part. 4 Ci |Ci| χ(2) Young’s
(
ΨS(q

λi)
)νi

1+1+1+1 14 1 1 ΨS(q)
4

1+1+2 1221 6 −1 ΨS(q)
2ΨS(q

2)

2+2 22 3 1 ΨS(q
2)2

1+3 1131 8 1 ΨS(q)ΨS(q
3)

4 41 6 −1 ΨS(q
4)

gives all permutations, (hence all the representations). To get to the desired partition
expressions, one must separately account for cases where two of the dummy indices
are equal (a = b),

ψ(q2)ψ(q) =
∞∑
a=0

∞∑
c=0

q2T (a)+T (c).

(This is one of the constraints imposed in going from representations to partitions.)
One must also account for the case when all three dummy indices are equal,

ψ(q3) =
∞∑
a=0

q3T (a).

(This is another one of the constraints imposed in going from representations to
partitions.)

In accordance with Theorem 2.1, this set then maps as

{
ψ(q)3, ψ(q)ψ(q2), ψ(q3)

}→
{
, ,

}
→ {13, 1121, 31}.

Similarly for the case m = 4,

{
ψ(q)4, ψ(q)2ψ

(
q2
)
, ψ

(
q2
)2
, ψ(q)ψ

(
q3
)
, ψ
(
q4
)}→{

, , , ,

}
→ {14, 1221, 22, 1131, 41}.

For notational convenience (albeit abusive), the symbol Ci will be used at times in
place of a product of ψ’s and/or the Young’s Tableaux (YT):∏

i

ψ(qλi)νi ↔ YT ↔ Ci

Of course, the remaining problem is to determine how to construct the generating
function formulae out of the set of conjugacy classes. This leads to the following
theorem and the main result of the paper.
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Theorem 2.2. Writing the set of { ∏iΨS(q
λi)νi } as conjugacy classes {Ci},

PmS =
1

m!

∑
i

χ
(1)
i · |Ci|Ci (2.1)

and

P d
mS =

1

m!

∑
i

χ
(2)
i · |Ci|Ci, (2.2)

χ(1) is the trivial irreducible representation (hence χ
(1)
i = 1), where χ(2) is the sign ir-

reducible representation (hence χ
(2)
i = ±1), and the summation is over the conjugacy

classes.

Remark 2.3. It is unfortunate wording that “representation” is used in the group
sense and also used in the number of representations of an integer. The group sense
case is known as “irreducible representation” and for clarity will be written as “irrep”.

Remark 2.4. The triangular numbers and m = 2 and m = 3 will be used as concrete
examples to assist the presentation of the proof. The m = 2 case is too simple to
stand alone and the m = 3 is to complicated too write out completely and explicitly.
Together the two examples help to manifest the ideas of the proof.

Proof. First consider the explicit expansion of ΨS(q)
m:

∞∑
j1

∞∑
j2

· · ·
∞∑
jm

qS(j1)+S(j2)+···S(jm).

In this expansion there are m! terms in which the set of indices, {ji}, are all distinct.
For the example of S = � and m = 2,

ψ(q)2 =

∞∑
a=0

∞∑
b=0

qT (a)+T (b) (2.3)

and for the example of S = Δ and m = 3,

ψ(q)3 = · · ·+ qT (1)+T (2)+T (3) + · · ·+ qT (2)+T (1)+T (3)

+ · · ·+ qT (1)+T (3)+T (2) · · · qT (2)+T (3)+T (1)

+ · · ·+ qT (3)+T (1)+T (2) + · · ·+ qT (3)+T (2)+T (1) + · · · .
Six (3!) and only six terms of a particular set of distinct indices are in the summation.

The m! terms produce distinct representations but only a single partition, thus
one divides bym!. However, there are only m!

λ1!λ2!···λl!
terms in the expansion of ΨS(q)

m

when the set of indices {ji} have repeated values (λi is the multiplicity of a particular
value). Using the example again,

ψ(q)3 = · · ·+ qT (1)+T (1)+T (3) + · · ·+ qT (1)+T (3)+T (1)

+ · · ·+ qT (3)+T (1)+T (1) + · · · .
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As a consequence, the division by m! has overcompensated for these types of “self-
terms” and, as such, more of these terms must be added in. A particular self-term
{λ1, λ2, . . . , λl} is generated by

ΨS

(
qλ1
)ν1

ΨS

(
qλ2
)ν2 · · ·ΨS

(
qλl
)νl .

For the example of S = � and m = 2, one sees that, when a �= b in Eq. (2.3), this
double sum produces twice as many representations as partitions. Dividing by 2 then
gives

1

2
ψ(q)2 =

1

2

∞∑
a=0

∞∑
b=0

qT (a)+T (b).

However, this overcompensates for the “self-terms” (a = b). To alleviate this, half of
the self-terms must be added back in to yield the final form of the expression,

1

2
ψ(q)2 +

1

2
ψ
(
q2
)
=

1

2

∞∑
a=0

∞∑
b=0

qT (a)+T (b) +
1

2

∞∑
a=0

q2T (a).

For example,
ψ(q2)ψ(q) = · · ·+ q2T (1)+T (3) + · · · .

In this case, one and only one term of this particular set of indices appear in the
summation.

Theorem 2.1 established a correspondence between these products of ΨS functions
and conjugacy classes of Sm. Each term (e.g., q2T (1)+T (3)) is a representative of a
conjugacy class. Therefore one corrects the overcompensation by adding in |Ci| terms
of this type. In the example, |C1121 | = 3 so 3q2T (1)+T (3) is added in. In total,

1

3!

(
ψ(q)3 + 3ψ(q2)ψ(q)

)
= · · ·+ 3 + 3

6
q2T (1)+T (3) + · · · ,

which gives one distinct partition of the form 1+1+6 as expected. Note that in
this example, C31 is not needed. Of course, in general all conjugacy classes are
required. Thus, Eq. (2.1) provides the correct counting in general. Finally, while

trivial, the factor from the trivial irrep, χ
(1)
1 , multiplies each term, it is explicitly

included in the formula to better compare with the case of distinct partitions and
for the completeness of connection with group theory.

Similar lines of reasoning can be made for the distinct partition case. Starting
again with ΨS(q)

3, there are m! terms for a given set of distinct indices, {ji}, ap-
pearing in the expansion. These alone give the single distinct partition associated
with that set of indices. Thus, as above, one must divide by m!. In addition how-
ever, ΨS(q)

3 contains the various self-terms that need to be subtracted out. This
cannot, however, be done in one step, but instead, as an iterative process of adding
and subtracting odd and even permutations of elements. Group theoretically, this
corresponds to multiplying by the appropriate character from the sign irrep.

Returning to the working example, −3ψ(q2)ψ(q) will correctly subtract
3q2T (1)+T (3) but it will also subtract the full self-terms, such as q2T (1)+T (1). Thus
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one must add that term back in as |C31|ψ(q3) = + · · · + 2q3T (1). Taken together
results in

1

3!

(
ψ(q)3 − 3ψ(q2)ψ(q) + 2ψ(q3)

)
.

In general the systematic subtraction and addition is determined by the sign irrep,
χ
(2)
i of Sm. This accounts for the multiplication by χ

(2)
i and completes the proof.

The proof of Theorem 2.2 relies on the fact that a particular conjugacy class is
obtained from a particular integer partition ofm [8]. All such integer representations
will occur within the collection of terms for a given product of ΨS functions.

Here too, examples are helpful. Consider again the case m = 3. One can now
quickly recover the formulae of Hirschhorn and Sellers (Eqs. (1.4) and (1.5)) The
integer representations of 3 are {1 + 1+ 1, 1 + 2, 3}. The 1 + 1+ 1 integer partition
has the cycle structure (1), the 1 + 2 partition has a cycle structure of (12), and the
3 partition has a cycle structure of (123). Knowing the cycle structure immediately
gives the conjugacy classes and their respective orders. For S3, |C(1)| = 1, |C(12)| = 3
and |C(123)| = 2. Thus, from Theorem 2.2, one has

P3Δ =
1

3!

(
1 + 3 + 2

)
=

1

6

(
1 ψ(q)3 + 3ψ(q)ψ(q2) + 2ψ(q3)

)
,

which is indeed Eq. (1.4). The distinct partition case is immediately obtained by
replacing χ(1) with χ(2) = (1,−1, 1),

P3Δ =
1

3!

(
1 − 3 + 2

)
=

1

6

(
1 ψ(q)3 − 3ψ(q)ψ(q2) + 2ψ(q3)

)
,

which is indeed Eq. (1.5).

Theorem 2.2 is now very simple to use for any order of m. The case m = 4 is,

P4Δ =
1

4!

(
1 + 6 + 3 + 8 + 6

)
(2.4)

=
1

4!

(
1ψ(q)4 + 6ψ(q)2ψ

(
q2
)
+ 3ψ

(
q2
)2

+ 8ψ(q)ψ
(
q3
)
+ 6ψ

(
q4
))
.

and, using χ(2) = (1,−1, 1, 1,−1),

P d
4Δ =

1

4!

(
1 − 6 + 3 + 8 − 6

)
(2.5)

=
1

4!

(
1ψ(q)4 − 6ψ(q)2ψ

(
q2
)
+ 3ψ

(
q2
)2

+ 8ψ(q)ψ
(
q3
)− 6ψ

(
q4
))
.

The cases m = 5 through m = 8 are given in the Appendix. So, from data like those
shown in Tables 1 and 2, one can construct the desired formula immediately. The
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most convenient place to find these data is online at the Group Properties Wiki [7].
Mathematica has this information built into its database up to the case S17 and
one can use the built-in functions to write simple code to go beyond m = 17 [20].

As a quick concrete example, consider the partitioning of the integer 52 when
m = 3, m = 4, and m = 5. First for the case m = 3, Eq. (1.4) gives p3Δ(52) = 5.
Explicitly those five partitions are the summation of each of the rows in the array,

1 6 45
1 15 36
3 21 28
6 10 36
10 21 21

.

The value of pd3Δ(52) = 4 from Eq. (1.5) is obtained by eliminating the last row.

For the case m = 4 one uses Eqs. (2.4) and (2.5) to get p4Δ(52) = 10 and
pd4Δ(52) = 6 respectively. The first five of p4Δ(52) are obtained from the array
above by simply adding 0. The remaining five are

1 3 3 45
1 15 15 21
3 3 10 36
3 6 15 28
6 10 15 21

.

Elimination of the non-distinct partitions gives the six distinct partitions.

Finally, consulting the Appendix for the case m = 5, one obtains p5Δ(52) = 20
and pd5Δ(52) = 2. The first five are obtained by adding 0 twice to the first array
above. This means none of those partitions will contribute to pd5Δ(52). To obtain
the next five, a 0 is added to the second array above. The last ten are

1 1 1 21 28 1 10 10 10 21
1 3 6 6 36 3 3 3 15 28
1 3 6 21 21 3 3 10 15 21
1 3 10 10 28 6 6 6 6 28
1 6 15 15 15 6 6 10 15 15

.

All of these last ten are non-distinct, leaving only 0 + 3 + 6 + 15 + 28 = 52 and
0 + 6 + 10 + 15 + 21 = 52 as the distinct partitions.

3 Square partitions

The most powerful thing about Theorem 2.2 is that it is relying on a correspondence
from the set of generating functions making up PmΔ to the set of conjugacy classes.
As such, the precise nature of ψ is not important. In fact Theorem 2.2 works for
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partitioning into squares (S = �) as well which is briefly shown here and into centered
polygonal numbers which is discussed in more detail in Section 4.

Let

σ(q) := Ψ�(q) =

∞∑
j=0

qj
2

(3.1)

be the generating function for the representations of a target integer n as the sum
of squares. Note: only non-negative component integers are considered. For an
m-partition one begins with,

σ(q)m =
∞∑
n=0

sm(n)q
n,

where sm(n) is the number of ways to represent n as the sum of m squares. One
can apply Theorem 2.2, now using the notation Pm� to indicate partitioning into
squares. So for example,

P3� =
1

6

(
1 σ(q)3 + 3σ(q)σ(q2) + 2σ(q3)

)
and

P d
3� =

1

6

(
1 σ(q)3 − 3σ(q)σ(q2) + 2σ(q3)

)
,

and so on for larger m.

4 Centered polygonal numbers

The centered polygonal numbers are presented as an example because the parameter,
k, which gives the number of sides of the particular polygon, provides some versatility
in some situations. It is interesting to determine what behavior is k-dependent and
what is k-independent. The centered polygonal numbers have an intimate relation
to the triangular numbers which provides some connection between these two sets.
In addition to partitioning by centered polygonal numbers, several ancillary lemmas
and theorems are presented. The set of centered k-gonal numbers where j ∈ N

+ is
given by [5, 6, 13, 19]

C(k) =

{
kj2 − kj + 2

2

}
. (4.1)

When it is necessary to identify a particular member of C(k), the notation C(k)(j) will
be used for the jth member of the set. Centered polygonal numbers are intimately
related to triangular numbers as given by the following lemma.

Lemma 4.1.
C(k)(j + 1)− 1

k
= T (j). (4.2)
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Proof.

1

k

(
k(j + 1)2 − k(j + 1) + 2

2
− 1

)

=
1

k

(
kj2 + 2kj + k − kj − k + 2− 2

2

)

=
1

k

(
kj2 + kj

2

)
= T (j).

The generating function is 1 plus the centered polygonal lacunary function [16],

Γ(k)(q) := ΨC(q) = 1 +

∞∑
j=1

qC
(k)(j), (4.3)

such that the number of representations of an integer by m centered polygonal num-
bers is given by Γ(k)(q) in analogy with Eq. (1.2).

The generating function Γ(k)(q) is related to ψ(q) as shown by the following
theorem.

Theorem 4.2.
Γ(k)(q)− 1 = qψ(qk).

Proof. Starting from the right hand side of the theorem and using Eq. (4.2), one sees

qψ(qk) = q
∞∑
n=0

(
qk
)n2+n

2 =
∞∑
n=0

q
kn2+kn+2

2

=
∞∑
n=1

q
kn2−kn+2

2 = Γ(k)(q)− 1,

where the adjustment of dummy index, n → n + 1, was used in going from the
top line to the bottom line. The last expression is the centered polygonal lacunary
function which completes the proof.

Definition 4.3. Let the set of numbers that can be represented by the sum of r
triangular numbers be Tr. Further define T0 ≡ {0, 0, . . .} (not the empty set). The
jth member of the set will be τr(j) and τr(0) ≡ 0.

Remark 4.4. T1 is just the triangular numbers themselves, Tr≥3 are the non-negative
integers by Gauss’ Eureka Theorem. So T2 is the only non-trivial set which is se-
quence A020756 in the OEIS [14].

Lemma 4.5. The exponents present in
(
Γ(k)(q)

)b
are of the form r + kτr(j), where

j ≥ 0 ∈ Z and 1 ≤ r ≤ b.
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Proof. The proof will be done by induction, where b = 2 is the base case. Here,

(
Γ(k)(q)

)2
=

(
1 +

∞∑
i=1

qC
(k)(i)

)(
1 +

∞∑
j=1

qC
(k)(j)

)
.

Expressing C(k)(i) allows the summation to be written as

∞∑
i=1

qC
(k)(i) =

∞∑
i=1

q
ki2+ki+2

2 =
∞∑
i=1

q
ki(i−1)

2
+1 =

∞∑
i=1

qkT (i−1)+1.

Shifting the dummy index gives
∑∞

i=0 q
kT (i)+1. So,

(
Γ(k)(q)

)2
=

(
1 +

∞∑
i=0

qkT (i)+1

)(
1 +

∞∑
j=1

qkT (j)+1

)
.

Multiplying this out and remembering that one is only concerned with the exponents
present gives

(
Γ(k)(q)

)2
= 1 + x1

∞∑
i=0

qkT (i)+1 + x2

∞∑
i=0

∞∑
j=1

qk(T (i)+T (j))+2.

Indeed the first term gives an exponent of 0, the middle term give exponents of the
form 1+kτ1 = 1+kT (i) and the last term gives exponents of the form 2+kτ2. Thus
the base case holds.

Now assume the b = m case holds which is written out as

(
Γ(k)(q)

)m
= 1 + x1

∞∑
i=0

qkT (i)+1 + x2

∞∑
i=0

∞∑
j=1

qk(T (i)+T (j))+2 + · · ·

+ xl

∞∑
i=0

∞∑
j=1

· · ·
∞∑
u=1

qk(T (i)+T (j)+···+T (u))+l + · · ·+

+ xm

∞∑
i=0

∞∑
j=1

· · ·
∞∑
v=1

qk(T (i)+T (j)+···+T (v))+m. (4.4)

Moving to the m+ 1 case,

(
Γ(k)(q)

)m+1
=

(
1 + x1

∞∑
i=0

qkT (i)+1 + x2

∞∑
i=0

∞∑
j=1

qk(T (i)+T (j))+2 + · · ·

+ xl

∞∑
i=0

∞∑
j=1

· · ·
∞∑
u=1

qk(T (i)+T (j)+···+T (u))+l + · · ·

+xm

∞∑
i=0

∞∑
j=1

· · ·
∞∑
v=1

qk(T (i)+T (j)+···+T (v))+m

)
×

(
1 +

∞∑
w=1

qkT (j)+1

)
.
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Upon multiplying out this becomes

(
Γ(k)(q)

)m+1
=

(
1 + x′1

∞∑
i=0

qkT (i)+1 + x′2

∞∑
i=0

∞∑
j=1

qk(T (i)+T (j))+2 + · · ·

+ xl

∞∑
i=0

∞∑
j=1

· · ·
∞∑
u=1

∞∑
w=1

qk(T (i)+T (j)+···+T (u)+T (w))+l+1 + · · ·

+xm

∞∑
i=0

∞∑
j=1

· · ·
∞∑
v=1

∞∑
w=1

qk(T (i)+T (j)+···+T (v)+T (w)+m+1

)
.

This indeed holds and completes the proof.

Lemma 4.6. The exponents present in Γ(k)(qa) are of the form a(1 + kT (n)).

Proof. Expressing the summation in Eq. (4.3) as was done in the proof of Lemma
4.5 and substituting qa for q gives

(
Γ(k)(qa)

)
= 1 +

∞∑
i=0

(qa)kT (i)+1

= 1 +

∞∑
i=0

qa(kT (i)+1)

and the proof is complete.

Corollary 4.7. The exponents present in
(
Γ(k)(qa)

)b
are of the form a(r + kτr(j)).

Proof. The proof follows immediately Lemmas 4.5 and 4.6. The details are omitted
in the interest of space.

Theorem 4.8. The exponents present in PmC are of the form r + kτr(j), where
j ≥ 0 ∈ Z and 1 ≤ n ≤ m.

Proof. Note, again, that this theorem is not concerned with the coefficients of the
terms. By Theorem 2.2,

(
Γ(k)(q)

)m
will always be present because this corresponds

to the identity conjugacy class which is obviously present in any Sm group. Then
by Lemma 4.5, exponents of the form r+ kτr(j) are present. Again by Theorem 2.2
and now Corollary 4.7, the other conjugacy classes will simple give rise to multiples
of r + kτr(j). Hence only those exponents appear.

As a concrete example, consider the case P3C . Here the exponents present will
be of the form 1 + τ1(j)k, 2 + τ2(j)k, and 3 + τ3(j)k. For the case k = 3, 1 +
τ3(j)3 generates {1, 4, 10, 19, 31, 46, . . .}, 2 + τ2(j)3 generates {2, 5, 8, 11, 14, 20, . . .},
and 1 + τ3(j)3 generates {3, 6, 9, 12, 15, . . .}. Their union along with T0 = {0} is
{0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, . . .} (only 7 is absent for numbers less than 12). Ex-
pressing the first few terms of P3C indeed gives

P3C = 1 + q + q2 + q3 + q4 + q5 + q6 + q8 + q9 + q10 + q11 + 2q12.
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Corollary 4.9. (a) The set of non-zero partition values, {pmC}, are independent
of k for k ≥ m. (b) The set of non-zero distinct partitions values, {pdmC}, are
independent of k for k ≥ m.

Remark 4.10. Note for this corollary one is considering only the values of pmC as a
set that is stripped of any connection to the target integer n.

Proof. (a) By Theorem 4.8 exponents of the form r+kτr(j) are the only ones present.
Let a = τr(j) ∈ N. Now, r ∈ {1, 2, . . . , m}. Let r1 �= r2 and one seeks to show that
the intersection of the sets of exponents generated by r1 and by r2 is the empty set.
To begin, assume r1+ ka1 = r2+ ka2 which rearranges to r1− r2 = k(a1− a2). Now
for k ≥ m and a1 �= a2, the right hand side is greater than or equal to m where as the
left hand side is less than m and the equation cannot be satisfied. The case a1 = a2
gives r1 = r2. The intersection of the sets of exponents generated by r1 and by r2 is,
indeed, the empty set. Part (b) follows immediately.

Connecting with example of P3C above, this corollary manifests, for k = 4, 5, 6
respectively, as

P4C = 1 + q + q2 + q3 + q5 + q6 + q7 + q10 + q11 + q13 + q14 + 2q15,

P5C = 1 + q + q2 + q3 + q6 + q7 + q8 + q12 + q13 + q16 + q17 + 2q18,

and
P6C = 1 + q + q2 + q3 + q7 + q8 + q9 + q14 + q15 + q19 + q20 + 2q21.

One sees the non-zero coefficients are the same for all the k values shown. The
exponents associated with those coefficients are, of course, different.

5 Conclusion

This work built upon the 2004 work of Hirschhorn and Sellers [9] in developing general
generating function formulae for the number partitions and distinct partitions of
integers into arbitrarily many triangular numbers. These formulae arose from the
connection between such partitioning and the structure of the symmetric group,
namely the size and cycle structure of the conjugacy classes. A simple procedure
was given to use data from the symmetry group to construct PmΔ and P d

mΔ. The
use of Young’s tableaux added additional insight.

Because this technique did not depend in a fundamental way on the precise
nature of the generating functions, it was able to be generalized. Square partitions
and centered polygonal number partitions were explored. It is hoped that this work
will aid in further explorations of partitioning, perhaps along the lines of looking for
relations between terms and among combinations of generating functions [1, 2, 3, 17,
18, 21].
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6 Appendix

Generating function formulae (in Young’s tableaux form) for P d
mS are collected here

for the casesm = 5 throughm = 8. Formulae for PmS are immediately obtained from
those of P d

mS by simply changing all the minus signs to plus signs. In the interest
of space savings, tables for S5 through S8 like those in the body of the text are
omitted. The interested reader can readily find the information in standard texts [8]
or online [7].

P d
5S =

1

5!

(
1 − 10 + 15 + 20 − 20

−30 + 24

)

P d
6S =

1

6!

⎛
⎝1 − 15 + 45 − 15 + 40 − 120

+ 40 − 90 + 90 + 144

−120

)

P d
7S =

1

7!

⎛
⎜⎝1 − 21 + 105 − 105 + 70 − 420

+ 210 + 280 − 210 + 630 − 420

+504 + 504 − 840 + 720

)
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P d
8S =

1

8!

⎛
⎜⎝1 − 28 + 210 − 420 + 105 + 112

− 1120 + 1680 + 1120 − 1120 − 420

+ 2520 − 1260 − 3360 + 1260

+ 1344 − 4032 + 2688 − 3360

+3360 + 5760 − 5040

)
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