
AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 65(2) (2016), Pages 152–169

A set partition number system

Jon T. Butler

Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

U.S.A.
jon butler@msn.com

Tsutomu Sasao∗

Department of Computer Science
Meiji University

1-1-1 Higashi-Mita Tama-ku Kawasaki-shi, Kanagawa 214-8571
JAPAN

sasao@cs.meiji.ac.jp

Abstract

We propose a number system that is based on set partitions. This repre-
sents the third number system that is based on combinatorial objects, the
other two being combinations and permutations. A number system based
on set partitions is useful in the hardware enumeration of set partitions,
which is significantly faster than software enumeration. Specifically, the
restricted growth string (b0b1 . . . bn−1) of a set partition πI allows a unique
index I to be associated with πI , where I is a nonnegative integer in the
number system that is represented as I = b0ω0+. . .+bn−2ωn−2+bn−1ωn−1.
Here, ωi is specified by the set partition tree, a data structure derived
from the generating tree of set partitions. We show another data struc-
ture, the set partition mesh, that is equivalent to the set partition tree.
It also stores all set partitions but is much more compact. Indeed, it
makes possible the design of hardware set partition generators for n-sets
as large as n = 32, compared to the set partition tree, which limits the
sets to size no greater than n = 10.

∗ Supported by a Grant-in-Aid for Scientific Research of the Japan Society for the Promotion of
Science.

J.T. BUTLER AND T. SASAO/AUSTRALAS. J. COMBIN. 65 (2) (2016), 152–169 153

1 Introduction

A number system based on combinations (sometimes denoted as a combinadic [12])
is useful in the design of circuits that encode and decode data transferred on and off
chip [1]. When all data is transferred using codewords with a fixed number of 1’s and
0’s (i.e., combinations), there is little variation in power consumption. Such circuits
resist side-channel attacks that use changes in power consumption to determine the
circuit’s design. Number systems based on permutations are useful in the design of
circuits that produce a permutation given an index of that permutation [2]. Such
circuits are useful for data compression and for mapping shared memory to multipro-
cessors. Traditionally, the enumeration of combinations and permutations has been
restricted to software1 (e.g., [8, 16]). However, the advent of large logic resources
in FPGAs (field-programmable gate arrays), SoCs (systems on chips), and reconfig-
urable computers has made it feasible to implement complex algorithms directly in
hardware. This has made it possible to generate combinatorial objects by hardware
at speeds unattainable by software (e.g., 60,000 times speedup in the generation of
bent Boolean functions [18]).

Definition 1.1 In a combinatorial number system [8], a non-negative integer
I <

(
n
r

)
is represented as crcr−1 . . . c1, where

I =

(
cr
r

)
+

(
cr−1

r − 1

)
+ . . .+

(
c1
1

)
, (1.1)

and cr > cr−1 > . . . > c1 ≥ 0.

Knuth [8] discusses this in detail and credits Pascal [14] for introducing the concept
more than 125 years ago. A permutation number system (sometimes known as a
factorial number system or a factoradic) uses factorials.

Definition 1.2 In a factorial number system [7], a non-negative integer I < n!
is represented as sn−1sn−2 . . . s2s1, where

I = sn−1(n− 1)! + sn−2(n− 2)! + . . .+ s11! + s00!, (1.2)

and 0 ≤ si ≤ i ≤ n− 1.

It is natural to ask if there is a number system based on set partitions. In an
interesting paper, Hankin and West [4] use partitions to solve optimization problems

1We use the term “software” to describe algorithms, code, etc. that is typically run on systems
with a fixed architecture (e.g. a CPU) and whose computation is specified by a language, like C,
Mathematica, MATLAB, FORTRAN, etc.. We use the term “hardware” to describe systems whose
architecture is adapted to the computation (e.g. FPGAs and reconfigurable computers).

J.T. BUTLER AND T. SASAO/AUSTRALAS. J. COMBIN. 65 (2) (2016), 152–169 154

in scheduling, bioinformatics, and forensic science. With respect to scheduling, set
partitions can be used to specify the ways tasks are allocated to processors. Each
task requires some time to complete on one of n processors. The scheduling problem
is the process of assigning tasks to processors so that all tasks are completed in the
minimum time. In this case, one seeks a partition of the set of tasks into n blocks
that corresponds to the shortest computation time. With respect to bioinformatics,
research in computational molecular biology has shown the importance of partitions
in understanding the role of genes in determining global characteristics of species.
This problem requires the enumeration of partitions at a high rate of speed, since so
many partitions must be considered. With respect to forensic science, the goal is to
partition crimes according to perpetrators, so as to identify which perpetrators are
the most likely to have committed which crimes.

While there are many papers on programs and algorithms for enumerating parti-
tions [6, 8, 10, 13, 16, 17], we know of only two devoted to the hardware enumeration
of set partitions, [3] and [9]. The latter considers two-part partitions only. The for-
mer enumerates all set partitions and is the raison d′être for this paper. Specifically,
[3] shows how the results presented in this paper are used to design the hardware
that enumerates set partitions.

2 Definitions

Definition 2.1 Let S = {0, 1, . . . , n − 1} be an n-set. {S0, S1, . . . , Sm−1} is
a partition of S if and only if 1) Si ⊆ S, 2) Si

⋂
Sj = ∅ if i �= j, and 3)⋃m−1

i=0 Si = S.

We can order the partitions. Table 1 shows a subset of the 52 partitions of 5-
sets. Here, the order of the partitions is specified by the increasing lexicographical
ordering of the restricted growth string [5, 19].

Definition 2.2 A restricted growth string of a partition on n-sets is a sequence
(b0b1 . . . bn−1) of integers, such that b0 = 0 and for i > 0,

0 ≤ bi ≤ max{b0, b1, . . . , bi−1}+ 1. (2.1)

The descriptor “restricted” suggests that growth of elements in the restricted
growth string is limited (to only 1 more than any previously specified element).
Since a set partition is unchanged by a reordering of blocks, denote block 0 as the
block in which n− 1 is located. Then, n− 2 is either in block 0, or a different block,
block 1. Continue in this way until all elements are assigned a block. For exam-
ple, the partitions {{4, 3, 2, 1, 0}}, {{4, 2}, {3, 1}, {0}}, and {{4}, {3}, {2}, {1}, {0}}
correspond to the restricted growth strings (0 0 0 0 0), (0 1 0 1 2), and (0 1 2 3 4),
respectively. Table 1 shows the corresponding number representations of the num-
bers in the set partition number system. It is clear that there is a bijection between
the set partitions of an n-set and the set of n-element restricted growth strings [19].

J.T. BUTLER AND T. SASAO/AUSTRALAS. J. COMBIN. 65 (2) (2016), 152–169 155

Table 1: The Index I, the I-th Set Partition πI , the Restricted Growth String, and
the Corresponding Number System Representation, for n = 5.

Index Partition Restricted Number
I πI Growth System

String Representation
0 {{4, 3, 2, 1, 0}} (0 0 0 0 0) 0+ 0 · 15+ 0 · 5 + 0 · 2+ 0 · 1 = 0
1 {{4, 3, 2, 1}, {0}} (0 0 0 0 1) 0+ 0 · 15+ 0 · 5 + 0 · 2+ 1 · 1 = 1
2 {{4, 3, 2, 0}, {1}} (0 0 0 1 0) 0+ 0 · 15+ 0 · 5 + 1 · 2+ 0 · 1 = 2
3 {{4, 3, 2}, {1, 0}} (0 0 0 1 1) 0+ 0 · 15+ 0 · 5 + 1 · 2+ 1 · 1 = 3
4 {{4, 3, 2}, {1}, {0}} (0 0 0 1 2) 0+ 0 · 15+ 0 · 5 + 1 · 2+ 2 · 1 = 4
5 {{4, 3, 1, 0}, {2}} (0 0 1 0 0) 0+ 0 · 15+ 1 · 5 + 0 · 3+ 0 · 1 = 5
6 {{4, 3, 1}, {2, 0}} (0 0 1 0 1) 0+ 0 · 15+ 1 · 5 + 0 · 3+ 1 · 1 = 6
7 {{4, 3, 1}, {2}, {0}} (0 0 1 0 2) 0+ 0 · 15+ 1 · 5 + 0 · 3+ 2 · 1 = 7
8 {{4, 3, 0}, {2, 1}} (0 0 1 1 0) 0+ 0 · 15+ 1 · 5 + 1 · 3+ 0 · 1 = 8
9 {{4, 3}, {2, 1, 0}} (0 0 1 1 1) 0+ 0 · 15+ 1 · 5 + 1 · 3+ 1 · 1 = 9
10 {{4, 3}, {2, 1}, {0}} (0 0 1 1 2) 0+ 0 · 15+ 1 · 5 + 1 · 3+ 2 · 1 = 10
11 {{4, 3, 0}, {2}, {1}} (0 0 1 2 0) 0+ 0 · 15+ 1 · 5 + 2 · 3+ 0 · 1 = 11
12 {{4, 3}, {2, 0}, {1}} (0 0 1 2 1) 0+ 0 · 15+ 1 · 5 + 2 · 3+ 1 · 1 = 12
13 {{4, 3}, {2}, {1, 0}} (0 0 1 2 2) 0+ 0 · 15+ 1 · 5 + 2 · 3+ 2 · 1 = 13
14 {{4, 3}, {2}, {1}, {0}} (0 0 1 2 3) 0+ 0 · 15+ 1 · 5 + 2 · 3+ 3 · 1 = 14
15 {{4, 2, 1, 0}, {3}} (0 1 0 0 0) 0+ 1 · 15+ 0 · 10+ 0 · 3+ 0 · 1 = 15
16 {{4, 2, 1}, {3, 0}} (0 1 0 0 1) 0+ 1 · 15+ 0 · 10+ 0 · 3+ 1 · 1 = 16
17 {{4, 2, 1}, {3}, {0}} (0 1 0 0 2) 0+ 1 · 15+ 0 · 10+ 0 · 3+ 2 · 1 = 17
18 {{4, 2, 1}, {3}, {0}} (0 1 0 1 0) 0+ 1 · 15+ 0 · 10+ 1 · 3+ 0 · 1 = 18
19 {{4, 2, 1}, {3}, {0}} (0 1 0 1 1) 0+ 1 · 15+ 0 · 10+ 1 · 3+ 1 · 1 = 19
20 {{4, 2, 1}, {3}, {0}} (0 1 0 1 2) 0+ 1 · 15+ 0 · 10+ 1 · 3+ 2 · 1 = 20
··· ··· ··· ···
49 {{4}, {3}, {2, 0}, {1}} (0 1 2 3 2) 0+ 1 · 15+ 2 · 10+ 3 · 4+ 2 · 1 = 49
50 {{4}, {3}, {2}, {1, 0}} (0 1 2 3 3) 0+ 1 · 15+ 2 · 10+ 3 · 4+ 3 · 1 = 50
51 {{4}, {3}, {2}, {1}, {0}} (0 1 2 3 4) 0+ 1 · 15+ 2 · 10+ 3 · 4+ 4 · 1 = 51

3 Set Partition Tree

We show a logic circuit [3] that converts the index of a set partition into its restricted
growth string using the set partition tree. The set partition tree is based on a
popular enumerative approach, the generating tree. This allows the enumeration
of set partitions at a rate that is much faster than software. That is, the indices
can be produced by a fast counter circuit, while the index-to-set-partition circuit
converts the index to a partition represented by its restricted growth string. When n
is large, even this high speed circuit cannot exhaustively enumerate all set partitions
in a reasonable time. For example, when n is 32, there are about 1.39 × 1026 set
partitions, which would take roughly 4.4 × 108 years to exhaustively enumerate at
one per clock using a 100 MHz clock (a typical FPGA clock frequency). In this case,
Monte Carlo simulations replace exhaustive enumeration. The hardware to produce
Monte Carlo simulations is easily obtained by replacing the counter circuit with a
hardware random number generator. In this application, hardware enumeration is
still considerably faster than software enumeration, about 10 times faster [3].

J.T. BUTLER AND T. SASAO/AUSTRALAS. J. COMBIN. 65 (2) (2016), 152–169 156

le
ve

l

0

ve
l1

le
vv

2
3

0

1
0

0 0
0

0
0 0 1 1 2

1 0

0 1

0
0

0 0 1 2
1

0 1 1 2 0 1 2 2 0 1 3 2 0 0 1

1

0

0

0 1

1

1 0 2

le
ve

l

1

0

0

0

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 23 3 3 3 03 3 3 4

1 0 0 0 01 1 1 12 2 2 2 3

2 1 1 0

0
1

ve 2

le 3
4

0
1

1 1 2
0

0 1

1 1 1 0 1 1 1 1 2 2 2 2 2 2 3

0
1

1
2

0
1

0
1

1
2

1
2

1
2

2
3

0
1

1
2

1
2

1
2

2
3

1
2

1
2

2
3

1
2

1
2

2
3

2
3

2
3

2
3

3
4

Figure 1: Applying the Iterative Algorithm for the Set Partition Tree on 5-Sets

3.1 Introduction to the Set Partition Tree

Fig. 1 shows the process of setting up a set partition tree. It starts with a single
root node labeled by 0, representing the first element of all restricted growth strings.
This is shown on the upper-left side of Fig. 1. The second element is represented as
two successor nodes to the root node labeled 0 and 1 using the substitution shown
on the left side of Fig. 2. This process continues, as the substitution rules shown in
Fig. 2 are used to fill out the set partition tree shown in Fig. 1.

0 0
0

0
1

1
2

0 1

0
1

m

m
m+1

0
m

m+1

1
m

m+1

m
m+1
m+2

m+1

0-m

m+1

0-m
m 1

2

0-1
1

1
2

1

0-1

1
2

0
2

3

2

Figure 2: Substitution Rules for the Set Partition Tree

3.2 Formal Specification of the Set Partition Tree

We use the enumeration approach of generating trees of Example 2.79 in [11].

Definition 3.1 A generating tree is a labeled plane tree such that, if v1 and v2 are
any two nodes with the same label L, then v1 and v2 have exactly the same number
of children, L. To specify a generating tree, it is sufficient to specify:

1. Root: the label of the root, and

2. Rule: the labels of the children nodes as a function of the label of the parent.

Regarding generating trees for set partitions, from Example 2.79 in [11],

1. Root: [2]

J.T. BUTLER AND T. SASAO/AUSTRALAS. J. COMBIN. 65 (2) (2016), 152–169 157

2. Rule: L → [LL−1 L+1],

where the children of L are 1) L−1 copies of L and 2) one copy of L+1. Iterating
four times yields the generating tree shown in Table 2.

Table 2: The Generating Tree for Set Partitions

Level Node Labels in the Generating Tree for Set Partitions
0 [2]
1 [2 3]
2 [2 3 3 3 4]
3 [2 3 3 3 4 3 3 4 3 3 4 4 4 4 5]
4 [23 334 334 334 4445 334 334 4445 334 334 4445 4445 4445 4445 55556]

The tree formed in this way has node labels that specify the number of children
nodes. So, for example, the root node, labeled 2 at level 0, has two children, labeled
2 and 3 (i.e., L → [LL−1 L+1]L=2 = [2 3]). Similarly, the node labeled 2 at level 1
has two children, while the node labeled 3 at level 1 has three children. Specifically,
[2 3] → [2 3 3 3 4]). These five nodes at level 2, in turn, have two, three, three,
three and four children at level 3, as shown in Table 2.

To form the set partition tree, replace each node label with the node’s rank,
which is its position among the sibling nodes, with rank 0 being the leftmost sibling
node, rank 1 being the next sibling node to the right, etc.. The rightmost sibling
has rank c− 1, where c is the number of children nodes of the parent. For the root
node, the rank is 0.

Assign the weight ωln of each leaf node as an integer in order from left to right, as
0, 1, 2, . . . , Bn−1 (green labels in Fig. 3 below). This creates the index I in ascending
lexicographical order on the restricted growth strings.

Form the weights ωe of the edges, as follows. For each edge e, derive two partial
weights, ωln predecessor and ωln successor. Set ωln predecessor to the weight of the leaf node
η1 that is obtained by traversing from the predecessor (upper) node of e to η1 along
edges with weight 0 (along the extreme left edge). Similarly, set ωln successor to the
weight of the leaf node η2 that is obtained by traversing from the successor (lower)
node of e to η2 along edges with weight 0 (along the extreme left edge). Set the
weight ωe of the current edge to ωln predecessor − ωln successor.

In the process of traversing any edge within the set partition tree, one progresses
left-to-right across the leaf nodes. For example, consider the two edges incident to
the leaf node labeled by 0 and 15. The edge labeled 15 signifies that the minimum
weight of a leaf node that can be reached from the successor node ηa to the weight
15 edge is 15. This minimum is achieved only if all remaining edges traversed from
ηa have weight 0. Similarly, the edge labeled 0 incident to the root node signifies
that the minimum weight of a leaf node that can be reached by the successor node
ηb to the weight 0 edge is 0. Again, this minimum is achieved only if all remaining
edges from ηb traversed have weight 0.

J.T. BUTLER AND T. SASAO/AUSTRALAS. J. COMBIN. 65 (2) (2016), 152–169 158

The set partition tree is constructed in such a way that a complete traversal from
the root node to a leaf node yields a total weight identical to the weight originally
assigned to the leaf node above.

Example 3.2 Fig. 3 shows the set partition tree for n = 5. Here, the rank of each
node is shown adjacent to the node, and the weight of each leaf node is shown just
below the leaf node. The weight of each edge is shown adjacent to each edge. The
level of the nodes is shown along the vertical line to the left of the set partition tree.

 15 0

0

0

0 1
2 3 0

0

0

0

5

6 6 3

10 20

12 8 4 0 3 6 0

1 0 2 1 0 2 0 2 0 2 0 2 0 2 1 1 1 1 1 2 0 1 2 4 3 1 0 2 3 0 2 3 1 0 2 3 1 0 2 3 1 0 2 3 1 0 2 3 1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

1

0

0

0

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 1 1 1 1 1 1 1 1 1 1 1 1 1 12 2 2 2 2 2 2 2 2 2 2 2 2 23 3 3 3 3 3 3 4

1 0 0 0 0 1 1 1 1 2 2 2 2 3

2 1 1 0

 Node labels are elements of restricted growth strings
 Edge labels are weights to indices of set partitions
 Leaf node labels are indices to set partitions

0
1
2
3
4

le
ve

l

Figure 3: The Set Partition Tree for 5-Part Set Partitions

Traversing the leftmost path from the root node to the terminal node 0 yields the
edge labels (0 0 0 0 0), which is the restricted growth string of partition {{4, 3, 2, 1, 0}}.
The rightmost path from the root node to the terminal node 51 yields the edge labels
(0 1 2 3 4), which is the restricted growth string of partition {{4}, {3}, {2}, {1}, {0}}.

The index associated with each terminal node can be obtained by summing the
weights of edges along the path from the root node to a terminal node. In a traverse
of the set partition tree, we have an index, and we use it to make decisions as to the
path from the root node to a terminal node.

3.3 Traversal of a Set Partition Tree

Algorithm 3.3 Traversal of the Set Partition Tree: Given an index I, such
that 0 ≤ I < Bn, find the corresponding restricted growth string (b0b1 . . . bn−1).

Set the level � = 0. Set the current node ηcur to the root node. Set b0 to the label of
the ηcur; i.e., set b0 = 0. Iterate the following until � = n.

1. At the current node, ηcur, identify the outgoing edge e with the largest weight
ωe, such that ωe ≤ I. Let ηnew be the successor node to e.

2. Set b�+1 to the label of ηnew.

3. Set I to I − ωe.

4. Set ηcur to ηnew.

J.T. BUTLER AND T. SASAO/AUSTRALAS. J. COMBIN. 65 (2) (2016), 152–169 159

5. Set � to �+ 1.

Example 3.4 Fig. 4 shows the traverse associated with index 20. Applying the
traverse in Algorithm 3.3 yields the sequence of edge weights ωe of 15, 0, 3, and 2
(which sum to 20), and the restricted growth string of (01012).

2 0

2

1

0

0

0

0

0 0 0 0 0 0 0 0 0 0 0 0 01 1 1 1 1 1 1 1 1 1 1 1 1 1 12 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4

1 0 0 0 0 1 1 1 1 2 2 2 2 3

2 1 1 0

0
1
2
3
4

le
ve

l

20
3 15

15

3

0

Traversal with an index of 20 and
restricted growth string (01012).

0 0

Figure 4: Example of a Traversal of the Set Partition Tree.

4 Set Partition Mesh

4.1 Introduction to the Set Partition Mesh

Even for moderate n, the number of nodes in the set partition tree is large. For
example, consider just the leaf nodes, which are counted by the Bell Numbers Bn.
From [8], this number is Bn = Θ(n/ logn)n. The total number of nodes affects a
MATLAB program that provides threshold values for circuits in the index-to-set-
partition converter. To compute these thresholds, the data structure must be small
enough so that it can be explored in a reasonable time. The very large number
of nodes in the set partition tree strictly limits the size of the n-sets that can be
explored. Indeed, it is not possible to design the index-to-set-partition converter
circuit [3] using the set partition tree for n > 10 because the tree is too large.
For n = 11, the design algorithm will take approximately 9.5 hours (based on the
computation times for lower values of n on an Intel Core TM2 Duo P8400 processor
running at 2.30 GHz using MATLAB). For n = 12, it is estimated to take 15.0 days.
Paradoxically, there is enough logic to design an index-to-set-partition circuit for n
up to 32. To achieve such a value, we must use a more compact representation.

4.2 Formal Specification of the Set Partition Mesh

An examination of the set partition tree in Fig. 3 reveals repetitive structures. For
example, at level 2, there are three nodes that are root nodes of subtrees that are
identical with respect to structure (black lines and circles), edge weights (red), and
node weights (black). They differ only in the index labels (green).

J.T. BUTLER AND T. SASAO/AUSTRALAS. J. COMBIN. 65 (2) (2016), 152–169 160

Definition 4.1 The set partition mesh for n-sets is formed from the set partition
tree as follows. Remove the weights from all leaf nodes. For each node η in the set
partition tree, trace the sequence of nodes to the root node and assign the maximum
label among those nodes to η (include η’s label). Call this maximum label value
Mη. Coalesce all nodes at level � with the same Mη into one node labeled Mη.
Assign to the coalesced edges a weight that is the smallest non-zero weight among
all descendant edges of the coalesced node labeled Mη. This descendent (coalesced)
edge is on the left. Remove the weight from the edge that is on the right.

5

15

Le
ve

l

1

2

0
41 20 3

3

4

2 3

1 1 1

Factors Relating Tree Edge
Weight to Mesh Edge Weight

Restricted Growth String
Max Element Value

Edge Weight We

4 3 2 1
0123 012 01 0

10

4

1

1 0

5 0

01 2

3 6 0

012 3

3 0 1 2

Set Partition
Tree Structures

Figure 5: The Set Partition Mesh for 5-Sets.

Example 4.2 Fig. 5 shows the set partition mesh for n = 5. Here, the vertical edges
formed by coalescing edges in the set partition tree of Fig. 3 are shown as thick lines
(including vertical edges along the left hand side that result from the coalescing
of one edge). The labeling along the top shows the maximum value of restricted
growth string elements, while the labeling along the bottom shows factors fe used to
establish correspondence between the edge weights in the set partition mesh to edge
weights in the set partition tree. So, the thick vertical lines correspond to edges in
the set partition tree with labels 0×, 01×, 012×, and 0123× depending on whether
the maximum value in the restricted growth string is 0, 1, 2, or 3, respectively. The
× notation represents the factors (fe) associated with the individual edges of the set
partition tree. For example, 0123× means that the corresponding thick line in the
set partition mesh represents four edges in the set partition tree, where one tree edge
weight has 0 times the mesh edge weight, one tree edge weight has 1 times the mesh
edge weight, one tree edge weight has 2 times the mesh edge weight, and one tree edge
weight has 3 times the mesh edge weight. The inserts shown on the right of Fig. 5
illustrate how three parts of the set partition mesh (rounded triangles on the left)

J.T. BUTLER AND T. SASAO/AUSTRALAS. J. COMBIN. 65 (2) (2016), 152–169 161

correspond to parts of the set partition tree (ellipses on the right). The thin (oblique)
lines correspond to the first (leftmost) occurrence of a maximum restricted growth
string element value. Such edges increase the maximum value by 1, as indicated by
the fact that they go from a smaller maximum element value on the left to a larger
maximum element value on the right. For example, 2× next to an oblique line in the
set partition mesh represents the first occurrence of a 2 as a restricted growth string
causing the maximum element value to go from a 1 on the left to a 2 on the right.
It is also an edge weight and represents an edge in the set partition tree whose edge
weight is 2 times the edge weight shown in the set partition mesh.

Recall the three nodes at level 2 in Fig. 3 showing the set partition tree for n = 5
that are root nodes of subtrees that are identical with respect to structure (black lines
and circles), edge weights (red), and node weights (black). These occur in the set
partition mesh of Fig. 5 as a single node at level 2 incident to a thick line labeled by
a red 3 and an unlabeled thin line. A green triangle with rounded corners surrounds
it which is connected to green circle within which the set partition tree structure is
expanded.

The leftmost path from the root node to a terminal node yields the node la-
bels (0 0 0 0 0), which is the restricted growth string of partition {{4, 3, 2, 1, 0}}.
The rightmost path from the root node to a terminal node yields the node labels
(0 1 2 3 4), which is the restricted growth string of partition {{4}, {3}, {2}, {1}, {0}}.

In Section 6 we derive a recursion relation for the edge labels (red) in the set
partition mesh.

4.3 Traversal of a Set Partition Mesh

Algorithm 4.3 Traversal of the Set Partition Mesh: Given an index I, such
that 0 ≤ I < Bn, find the corresponding restricted growth string (b0b1 . . . bn−1) as
follows.

Set the level � = 0. Set the current node ηcur to the root node. Set b0 to the label of
the ηcur; i.e., set b0 = 0. Iterate the following until � = n.

1. At the current node, ηcur, identify the edge e such that the factor fe from among
the edges for which ηcur is a predecessor node, where fe (0 ≤ fe ≤ �+ 1) is the
largest factor such that I ≥ ωefe. Let ηnew be the successor node to e.

2. Set b� to the label of ηnew.

3. Set I to I − ωefe.

4. Set ηcur to ηnew.

5. Set � to �+ 1.

J.T. BUTLER AND T. SASAO/AUSTRALAS. J. COMBIN. 65 (2) (2016), 152–169 162

Note that e is a specific edge in the set partition mesh. For example, considering
Fig. 5, it is either among the edges represented by a thick line or it is the edge
represented by a single thin line. The value of fe distinguishes which edge it is.

Example 4.4 For example, considering Fig. 5, traverse the set partition mesh using
index 20. Applying the traverse in Algorithm 4.3 yields the sequence of edge weights
ωe of 15, 0, 3, and 2 (which sum to 20), and the restricted growth string of (0 1 0 1 2).

5 Extracting the I-th Set Partition

We consider the extraction of the I-th set partition from the set partition tree and
from the set partition mesh. First, consider the tree.

Theorem 5.1 Using an index I, where 0 ≤ I < Bn, a traverse of the set partition
tree for set partitions on n-sets, under Algorithm 3.3, yields the I-th set partition in
lexicographical order of the restricted growth string.

Proof: By its construction, the sequence of node labels resulting from any traverse
from the root node to a leaf node is a restricted growth string, as described in (2.1).
Further, all restricted growth strings occur as a unique path in the set partition tree,
again by construction. In the set partition tree, smaller node labels are to the left
and larger are to the right, this being imposed by the ascending left-to-right order of
child node labels. Thus, the restricted growth strings are in ascending lexicographical
order from left to right. Since the leaf node weights are also in ascending order from
left-to-right, ranging from 0 to Bn − 1, the hypothesis follows. �

Next, consider the mesh.

Theorem 5.2 Using an index I, where 0 ≤ I < Bn, a traverse of the set partition
mesh under Algorithm 4.3, yields the I-th set partition in lexicographical order of the
restricted growth string.

Proof: A traversal of the set partition mesh according to Definition 4.3 corresponds
to a traversal of the set partition tree according to Definition 3.3 and both yield the
same restricted growth string, as follows. Initially, both traversals traverse the root
node with a label of 0. Thus, b0 is the same for both traversals. In the set partition
tree, the successor edge to the root node has weight Bn−1, and this edge is traversed
if and only if i > Bn−1, and it follows that b1 = 1 if and only if i > Bn−1. In the
set partition mesh, the left successor edge of the root node is labeled Bn−1, which
means the right successor edge is traversed if and only if i > Bn−1.

Suppose that the tree and the mesh yield identical values b0, b1, . . ., b�−1 in the
restricted growth string for all indices i. In the set partition mesh, two nodes η1

J.T. BUTLER AND T. SASAO/AUSTRALAS. J. COMBIN. 65 (2) (2016), 152–169 163

and η2 at level � are coalesced if the maximum label of the nodes along the paths
from η1 and η2 to the root node are identical including the labels of η1 and η2. Let
bmax = max{b0, b1, . . . , b�−1} in the case of η1 and η2. The set partition tree at η1 and
η2 are the same and have the same form as the set partition mesh at this point. �

6 The Set Partition Number System

In the traverse of a generating tree/mesh for set partitions, we are given an index I,
and we derive the I-th restricted growth string. Because there is a bijection between
set partitions and restricted growth strings, this process therefore derives a unique
I-th set partition. At each step in the traverse, we use I to choose an element of
the restricted growth string. Then, we modify I and repeat until I is 0. In effect,
a traversal “dissects” I into a sequence of weights of the edges traversed. The first
weight in the sequence is either 0 or Bn−1 corresponding to the weights of the two
edges whose predecessor is the root node, and correspond to the label on the successor
node, b1 = 0 or b1 = 1, respectively. Therefore, either 0 or Bn−1 of the leaf nodes
along the bottom is extracted. The successor node is the predecessor node of the next
edge weight, which extracts an adjacent segment of leaf nodes (including possibly 0
nodes). Further, another successor node to the next edge weight is generated, etc..
As the edge weights are extracted, so are the nodes along the leaf node side of the
set partition tree until they meet at the leaf node corresponding to the index I.

One can invert this process and use the restricted growth string to find the index
I. That is, as the traverse proceeds, it is the restricted growth string that specifies
the choices made at each level. Here, the accumulation of the edge weights yields
the value of I. The restricted growth string serves as the digits of a number system,
while the edge weights serve as the coefficients. It is this viewpoint that we take to
present the following result.

Theorem 6.1 In a set partition number system, a non-negative integer I, where
I < Bn, is uniquely represented as b0b1 . . . bn−2bn−1, where

I =
n−1∑
i=1

ω(i,M)bi, (6.1)

such that (b0b1 . . . bn−2bn−1) is a restricted growth string, M = max{b0 = 0, b1, . . . ,
bi−1}, and ω(i,M) is computed recursively, as follows:

ω(i, 0) = Bi, (6.2)

ω(i,M)=ω(i+1,M−1)−Mω(i,M−1), for 0≤M<n, (6.3)

where Bi is the i-th Bell number (B1 = 1, B2 = 2, B3 = 5, B4 = 15, B5 = 52, . . .).

J.T. BUTLER AND T. SASAO/AUSTRALAS. J. COMBIN. 65 (2) (2016), 152–169 164

Proof: The proof is based on the observation that a traverse of the set partition
tree guided by a restricted growth string yields a unique index I. The elements of
the restricted growth string are digits of the number, I is the value of that number,
and certain edge weights are the coefficients. It remains to show that the values of
ω(i,M) given in (6.2) and (6.3) are the edge weights of the set partition mesh. Fig.
6 shows how the edge weights are specified.

M

0

ω(i,M-1)

ω(i,M-1)

ω(i,M-1) ω(i,M)

ω(i+1, M-1)

M ω(i,M-1) + ω(i,M) = ω(i+1,M-1)

0 00

0
0 00

0

0 00

0

0 00

0

ω(i,M-1)

(M-1) ω(i,M-1)
M ω(i,M-1)

0 1 M-1

0
0

0

M-1 is the maximum restricted
growth string element value in
the traverse from the Root Node
to node η. Solid lines are edges,
and dotted lines are paths.

0

η1

η2

T0 T1 TM-1 TM

Root Node

0

These weights
are multiples of
ω(i+1,M-1).

1
η

Figure 6: Calculation of Edge Weights in the Set Partition Tree.

Consider the edge in the upper right corner that is incident to both nodes η1 and η2.
Let its edge weight be ω(i+1,M−1). Here, i+1 specifies a level in the set partition
tree, and M −1 is the maximum value in the restricted growth string up through η1.
Recall that an edge weight represents the number of leaf nodes of a sub-tree of the
set partition tree whose beginning and end are defined by projecting the predecessor
node and the successor node to the leaf nodes by specifying remaining edge weights as
0. In Fig. 6, these projections are shown two paths of 0-edges beginning with nodes
η1 and η2 going down to the leaf nodes. The number of leaf nodes is the number
of leaf nodes across the subtrees T0, T1, . . ., TM−1, and TM . The first M subtrees,
T0, T1, . . ., and TM−1 are identical; their structures depend on M − 1, the maximum
element in the restricted growth string specified so far. All have ω(i,M − 1) leaf
nodes. The rightmost subtree, TM , has a different structure because its root node is
M , increasing by 1 the maximum restricted growth string maximum element value
as compared to all the previous M subtrees. TM has ω(i,M) leaf nodes. Totaling
the number of leaf nodes, yields ω(i + 1,M − 1) = Mω(i,M − 1) + ω(i,M), from

J.T. BUTLER AND T. SASAO/AUSTRALAS. J. COMBIN. 65 (2) (2016), 152–169 165

which (6.3) follows.

All edges on the extreme left side of the set partition tree have weight 0. The
predecessor nodes to each of these edges each have two successor nodes. The right
successor nodes are the root nodes of subtrees that themselves are complete set
partition trees, all of which have a Bell number of leaf nodes. Therefore, traversing
such nodes is equivalent to passing over a Bell number of leaf nodes. The weights of
the right edges are given by (6.2).

Table 3(a) shows the values of ω(i,M) for n = 5. Blank values are unspecified by
(6.2) and (6.3) and do not occur as edge weights. Here, the values specified by (6.2)
are shown along the left column headed by M = 0.

Table 3: Set Partition Tree Coefficients for n = 5

Restr. Gr. Str.→ (0 0 0 0 0) (0 1 0 1 2) (0 1 2 3 4)
Max.Value → (0 0 0 0 0) (0 1 1 1 2) (0 1 2 3 4)

i\M 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
4 15 15 15 15
3 5 10 5 10 5 10 5 10
2 2 3 4 2 3 4 2 3 4 2 3 4
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

I = 0·15+0·5+0·2+0·1 1·15+0·10+1·3+2·1 1·15+2·10+3·4+4·1
= 0 = 20 = 51

(a) (b) (c) (d)

�

Example 6.2 Consider the 5-set restricted growth string (b0b1b2b3b4) = (0 0 0 0 0).
In this case, ω(4, 0)ω(3, 0)ω(2, 0)ω(1, 0) = 15 5 2 1, and I = 0+0·15+0·5+0·2+0·1 =
0. Table 3(b) shows how the coefficients are selected from all possible coefficients.
In the case of (b0b1b2b3b4) = (0 1 0 1 2), ω(4, 0)ω(3, 1)ω(2, 1)ω(1, 1) = 15 10 3 1, and
I = 0 + 1 · 15 + 0 · 10 + 1 · 3 + 2 · 1 = 20. Table 3(c) shows how the coefficients
are selected from all possible coefficients. In the case of (b0b1b2b3b4) = (0 1 2 3 4),
ω(4, 0)ω(3, 1)ω(2, 2)ω(1, 3) = 15 10 4 1, and I = 0+1·15+2·10+3·4+4·1 = 51. Table
3(d) shows how the coefficients are selected from all possible coefficients. This shows
how the maximum value vector directly specifies how the coefficients are chosen from
the set of all possible coefficients, as specified in (6.2) and (6.3).

We remark that the triangle of numbers in Table 3(a) is just the set of coefficients
of the set partition mesh. This is similar to the Peirce Triangle [15]; indeed, the Peirce
Triangle is described by (6.2) and (6.3) with the term −Mω(i,M−1) in (6.3) replaced
by −ω(i,M−1) (viz. [8]).

J.T. BUTLER AND T. SASAO/AUSTRALAS. J. COMBIN. 65 (2) (2016), 152–169 166

7 The Number of Nodes in the Set Partition Tree/Mesh

An insight as to why the set partition mesh has so few nodes compared to the set
partition tree comes from observing how the index is stored. In the set partition
tree, there is one leaf node for every value of the index. In the set partition mesh,
the index is stored as a quantity that is accumulated as the mesh is traversed. The
number of leaf nodes is much smaller in comparison. Because the number of nodes
is an important factor in determining whether or not we can design the hardware to
enumerate set partitions, we compute the number of nodes in this section. Let T (n)
be the number of nodes in the set partition tree on n elements.

Theorem 7.1 The number of nodes T (n) in the set partition tree on n elements is

T (n) =

n∑
i=1

Bi, (7.1)

where Bi is the i-th Bell number.

That is, at each step in the construction of the set partition tree for n-sets, a set
partition tree for i-sets is formed, for 1 ≤ i ≤ n. So, at each step in the construction,
Bi leaf nodes are added to the total node count. For example, (7.1) yields T (5) = 75,
which can be verified in Figure 3.

For the set partition tree, the nodes form a triangle of size n× n× n. Counting
along the diagonals, there are M(n) = 1 + 2 + . . .+ n nodes. Thus,

Theorem 7.2 The number of nodes M(n) in a set partition mesh for n elements is

M(n) =
n(n+ 1)

2
. (7.2)

For example, (7.2) yields M(5) = 15, which can be verified in Figure 5.

Table 4 compares the number of nodes in the set partition tree with that in the
set partition mesh for various values in the range 2 ≤ n ≤ 32. Clearly, the set
partition tree has many more nodes than the set partition mesh. Experimental data
for the logic circuits described in [3] shows that, when the set partition tree is used
to store data for the circuit realization, the circuit specification can accommodate
up to only n = 10. However, when the set partition mesh was used, an n up to 32
can be accommodated.

8 Conclusions

This paper makes two contributions. First, it introduces the set partition number
system. The digits are elements of the restricted growth string of a given set partition,

J.T. BUTLER AND T. SASAO/AUSTRALAS. J. COMBIN. 65 (2) (2016), 152–169 167

Table 4: Comparison of the Number of Nodes in the Set Partition Tree, T (n), with
that in the Set Partition Mesh, M(n).

T (n) - No. of M(n) - No. of
n Nodes in Set Nodes in Set

Partition Tree Partition Mesh
2 3 3
3 8 6
4 23 10
5 75 15
6 278 21
7 1, 155 28
8 5, 295 36
9 26, 442 45
10 142, 417 55
11 820, 987 66
12 5, 034, 584 78
13 32, 679, 021 91
14 223, 578, 343 105
15 1, 606, 536, 888 120
16 1.2087× 1010 136
32 1.3928× 1026 528

and the number’s value is a unique index to the set partition. This is an extension
to what is known about number systems based on combinatorial objects. That is,
only two other such number systems are known, one based on combinations and the
other based on permutations.

Second, this paper introduces the set partition mesh, a data structure for storing
set partitions. We show that the set partition mesh is much more compact than the
set partition tree. It makes possible the design of hardware set partition generators
for n-sets as large as n = 32, compared to the set partition tree, which limits the sets
to a size no more than n = 10. Readers interested in the hardware to enumerate set
partitions, are invited to read [3].

Acknowledgments

We appreciate the helpful comments of three referees.

J.T. BUTLER AND T. SASAO/AUSTRALAS. J. COMBIN. 65 (2) (2016), 152–169 168

References

[1] J. T. Butler and T. Sasao, Index to constant weight codeword converter, Proc.
7th Int. Symp. on Applied Reconfigurable Computing, Proc. Lec. Notes Comp.
Sci. (LNCS 6576), Springer-Verlag Berlin Heidelberg, 2011, A. Koch et al. (Eds.),
Belfast, N. Ireland, March 23-25, 2011, 193–204.

[2] J. T. Butler and T. Sasao, Hardware index to permutation converter, 19th Recon-
figurable Architectures Workshop, (RAW-2012), Proc. 26th IEEE Int. Parallel
and Distributed Processing Symp., Shanghai, China, May 21-22, 2012, 424–429.

[3] J. T. Butler and T. Sasao, High-speed hardware partition generation, ACM
Trans. on Reconfigurable Technology and Systems, Dec. 2014, 7 Issue 4, 1–17.

[4] R.K. S. Hankin and L. J. West, Set partitions in R, J. Statist. Software, 23,
Code Snippet 2, Dec. 2007, http://www.jstatsoft.org/.

[5] G. Hutchinson, Partitioning algorithms for finite sets, Comm. ACM, 6, 1963,
613–614.

[6] S. Kawano and S. Nakano, Constant time generation of set partitions, IEICE
Trans. Fundamentals, E88-A, No. 4, 930–934, April 2005.

[7] D.E. Knuth, Vol. 2: Seminumerical Algorithms, The Art of Computer Program-
ming, (3rd ed.), Addison-Wesley, 209, 1997.

[8] D.E. Knuth, Vol. 4: Generating all combinations and permutations, The Art of
Computer Programming, Fascicle 3, Addison-Wesley, 65, 2005.

[9] D. Lavenier and Y. Saouter, Computing Goldbach partitions using pseudo-
random bit generator operators on an FPGA systolic array, 8th Int. Workshop,
FPL’98, Proc. Lec. Notes Comp. Sci. (LNCS 1482), R.W. Hartenstein and A.
Keevallik (Eds.), Tallinn, Estonia, Aug.-Sept. 1998, 316–325.

[10] T. Mansour and G. Nassar, Gray codes, loopless algorithm and partitions, J.
Math. Model. Algorithms, 7 (3) (2008), 291–310.

[11] T. Mansour, Combinatorics of Set Partitions, Chapman & Hall/CRC, CRC
Press, Boca Raton, FL, 2012.

[12] J. McCaffrey, Generating the mth lexicographical element of a mathemat-
ical combination, http://msdn.microsoft.com/en-us/library/aa289166

%28VS.71%29.aspx, July 2004.

[13] J.K. S. McKay, Algorithm 263, Partition Generator, Comm. ACM 8 No. 8
(1965), 493.

[14] E. Pascal, Giornale di Matematiche 25 (1887), 45–49.

J.T. BUTLER AND T. SASAO/AUSTRALAS. J. COMBIN. 65 (2) (2016), 152–169 169

[15] C. S. Peirce, On the algebra of logic, Amer. J. Math. 3 (1) (1880), 15–57.

[16] E. Reingold, J. Nivergelt and N. Deo, Combinatorial Algorithms, Theory and
Practice, Prentice-Hall, 1977.

[17] I. Semba, An efficient algorithm for generating all partitions of the set {1,2, . . . ,
n}, J. Inf. Proc., 7 (1) (1984), 41–42.

[18] J. L. Shafer, S.W. Schneider, J. T. Butler and P. Stanica, Enumeration of bent
Boolean functions by reconfigurable computer, The 18th Annual Int. IEEE Sym-
posium on Field-Programmable Custom Computing Machines, Charlotte, NC,
May 2-4, 2010, 265–272.

[19] S.G. Williamson, Ranking algorithms for lists of partitions, SIAM J. Comput.
5 (1976), 602–617.

(Received 16 July 2015; revised 6 Apr 2016)

