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ABSTRACT  

 
In this work, the TREPAN algorithm is enhanced and extended for extracting decision trees from neural 

networks. We empirically evaluated the performance of the algorithm on a set of databases from real world 

events. This benchmark enhancement was achieved by adapting Single-test TREPAN and C4.5 decision 

tree induction algorithms to analyze the datasets. The models are then compared with X-TREPAN for 

comprehensibility and classification accuracy. Furthermore, we validate the experimentations by applying 

statistical methods. Finally, the modified algorithm is extended to work with multi-class regression 

problems and the ability to comprehend generalized feed forward networks is achieved. 
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1. INTRODUCTION 

 
Artificial neural networks are modeled based on the human brain architecture. They offer a means 

of efficiently modeling large and complex problems in which there are hundreds of independent 

variables that have many interactions. Neural networks generate their own implicit rules by 

learning from examples. Artificial neural networks have been applied to a variety of problem 

domains [1] such as medical diagnostics [2], games [3], robotics [4], speech generation [5] and 

speech recognition [6]. The generalization ability of neural networks has proved to be superior to 

other learning systems over a wide range of applications [7]. 

 

However despite their relative success, the further adoption of neural networks in some areas has 

been impeded due to their inability to explain, in a comprehensible form, how a decision has been 

arrived at. This lack of transparency in the neural network’s reasoning has been termed the Black 

Box problem. Andrews et al. [8] observed that ANNs must obtain the capability to explain their 

decision in a human-comprehensible form before they can gain widespread acceptance and to 

enhance their overall utility as learning and generalization tools. This work intends to enhance 

TREPAN to be able to handle not only multi-class classification type but also multi-class 

regression type problems. And also to demonstrate that X-TREPAN can understand and analyze 

generalized feed forward networks (GFF). TREPAN is tested on different datasets and best 

settings for TREPAN algorithm are explored based on database type to generate heuristics for 
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various problem domains. The best TREPAN model is then compared to the baseline C4.5 

decision tree algorithm to test for accuracy. 

 

Neural networks store their “Knowledge” in a series of real-valued weight matrices representing a 

combination of nonlinear transforms from an input space to an output space. Rule extraction 

attempts to translate this numerically stored knowledge into a symbolic form that can be readily  

comprehended.   The ability to extract symbolic knowledge has many potential advantages:  the 

knowledge obtained from the neural network can lead to new insights into patterns and 

dependencies within the data; from symbolic knowledge, it is easier to see which features of the 

data are the most important; and the explanation of a decision is essential for many applications, 

such as safety critical systems. Andrews et al. and Ticke et al. [9], [10] summarize several 

proposed approaches to rule extraction. Many of the earlier approaches required a specialized 

neural network architectures or training schemes. This limited their applicability; in particular 

they cannot be applied to in situ neural networks. The other approach is to view the extraction 

process as learning task. This approach does not examine the weight matrices directly but tries to 

approximate the neural network by learning its input-output mappings. Decision trees are a 

graphical representation of a decision process. The combination of symbolic information and 

graphical presentation make decision trees one of the most comprehensible representations of 

pattern recognition knowledge.  

 

2. BACKGROUND AND LITERATURE REVIEW 

 
2.1 Artificial Neural Network 

 
Artificial neural networks as the name implies are modeled on the architecture of the human 

brain. They offer a means of efficiently modeling large and complex problems in which there 

may be hundreds of independent variables that have many interactions. Neural networks learn 

from examples by generating their own implicit rules. The generalization ability of neural 

networks has proved to be equal or superior to other learning systems over a wide range of 

applications. 

 

2.2 Neural Network Architecture  

 
A neural network consists of a large number of units called processing elements or nodes or 

neurons that are connected on a parallel scale. The network starts with an input layer, where each 

node corresponds to an independent variable. Input nodes are connected to a number of nodes in a 

hidden layer. There may be more than one hidden layer and an output layer. Each node in the 

hidden layer takes in a set of inputs (X1, X2, …, Xm), multiplies them by a connection weight 

(W1, W2, …, Wm), then applies a function, f(WTX) to them and then passes the output to the 

nodes of the next layer. The connection weights are the unknown parameters that are estimated by 

an iterative training method to indicate the connection’s strength and excitation. The calculation 

of the final outputs of the network proceeds layer by layer [11]. Each processing element of the 

hidden layer computes its output as a function of linear combination of inputs from the previous 

layer plus a bias. This output is propagated as input to the next layer and so on until the final layer 

is reached. Figure 1 shows the model of a single neuron [12] 
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Figure 1. Model of a Single Neuron 

 
The output of the neuron can be expressed as  

 
In the above equations, W is the weight vector of the neural node, defined as  

[ ]T

mwwwwW .......,.........,, 321=
and X is the input vector , defined as 

    [ ]T

mxxxxX .......,.........,, 321=
 

 

Figure 2. Shows a typical neural network architecture representation. 

 
Figure 2. Neural Network Architecture 
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These are different types of activation functions that can be applied at the node of the network.  

Two of the most commonly used neural network functions are the hyperbolic and logistic (or 

sigmoid) functions. They are sometimes referred to as “squashing” functions since they map the 

inputs into a bounded range. Table 1 shows a list of activation functions that are available for use 

in neural networks 

 
Table 1. Activation Functions used in Neural Networks Adapted from [13] 
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2.3 Multilayer Perceptrons 

 
Multilayer Perceptrons (MLOs) are layered feed forward networks typically trained with back 

propagation. These networks have been used in numerous applications. Their main advantage is 

that they are easy to use, and that they can approximate any input/output map. A major 

disadvantage is that they train slowly, require lots of training data (typically three times more 

training samples then network weights)[14].  
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Figure 3. A schematic Multilayered Perceptron Network 

 

A Generalized Feed Forward (GFF) network is a special case of a Multilayer Perception wherein 

connections can jump over one or more layers. Although an MLP can solve any problem that a 

GFF can solve, in practice, a GFF network can solve the problem more efficiently [14]. Figure 4 

shows a general schematic of a Generalized Feed Forward Network. 

 
Figure 4. Generalized Feed Forward Networks 
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2.4 Neural Networks for Classification and Regression  

 
Neural networks are one of the most widely used algorithms for classification problems. The 

output layer is indicative of the decision of the classifier. The cross entropy error function is most 

commonly used in classification problems in combination with logistic or soft max activation 

functions. Cross entropy assumes that the probability of the predicated values in a classification 

problem lie between 0 and 1. In a classification problem each output node of a neural network 

represents a different hypothesis and the node activations represent the probability that each 

hypothesis may be true. Each output node represents a probability distribution and the cross 

entropy measures calculate the difference between the network distribution and the actual 

distribution [15]. Assigning credit risk (good or bad) is an example of a neural network 

classification problem. Regression involves prediction the values of a continuous variable based 

on previously collected data. Mean square error is the function used for computing the error in 

regression networks. Projecting the profit of a company based on previous year’s data is 

regression type neural network problem. 

 

2.5 Neural Network Training 

 
The neural network approach is a two stage process. In the first stage a generalized network that 

maps the inputs data to the desired output using a training algorithm is derived. The next stage is 

the “production” phase where the network is tested for its generalization ability against a new set 

of data.  

Often the neural network tends to over train and memorizes the data. To avoid this possibility, a 

cross-validation data set is use. The cross validation data set is a part of the data set which is set 

aside before training and is used to determine the level of generalization produced by the training 

set. As training processes the training error drops progressively. At first the cross validation error 

decreases but then begins to rise as the network over trains. Best generalization ability of the 

network can be tapped by stopping the algorithm where the error on the cross validation set starts 

to rise. Figure 5 illustrates the use of cross-validation during training. 

 
 

Figure 5.  Use of cross-Validation during Training 
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2.6 Rule Extraction from Neural Networks 

 
Although neural networks are known to be robust classifiers, they have found limited use in 

decision-critical applications such as medical systems. Trained neural networks act like black 

boxes and are often difficult to interpret [16]. The availability of a system that would provide an 

explanation of the input/output mappings of a neural network in the form of rules would thus be 

very useful. Rule extraction is one such system that tries to elucidate to the user, how the neural 

network arrived at its decision in the form of if-then rules. 

 

Two explicit approaches have been defined to date for transforming the knowledge and weights 

contained in a neural network into a set of symbolic rules de-compositional and pedagogical [17]. 

In the de-compositional approach the focus is on the extracting rules at an individual hidden 

and/or output level into a binary outcome. It involves the analysis of the weight vectors and 

biases associated with the processing elements in general. The subset [18] algorithm is an 

example of this category. The pedagogical approach treats neural networks like black boxes and 

aims to extract rules that map inputs directly to its output. The Validity Interval Analysis (VIA) 

[19] proposed by Thrum and TREPAN [20] is an example of one such technique .Andrews et al 

[21] proposed a third category called eclectic which combines the elements of the basic 

categories.  

 

2.7 Decision Trees 

 
A decision tree is a special type of graph drawn in the form of a tree structure. It consists of 

internal nodes each associated with a logical test and its possible consequences. Decision trees are 

probably the most widely used symbolic learning algorithms as are neural networks in the non-

symbolic category. 

 

2.8 Decision Tree Classification 

 
Decision trees classify data through recursive partitioning of the data set into mutually exclusive 

subsets which best explain the variation  in the dependent variable under observation[22][23] . 

Decision trees classify instances (data points) by sorting them down the tree from the root node to 

some leaf node. This lead node gives the classification of the instance. Each branch of the 

decision tree represents a possible scenario of decision and its outcome. 
 

Decision tree algorithms depict concept descriptions in the form of a tree structure. They begin 

learning with a set of instances and create a tree structure that is used to classify new instances. 

An instance in a dataset is described by a set of feature values called attributes, which can have 

either continuous or nominal values. Decision tree induction is best suitable for data where each 

example in the dataset is described by a fixed number of attributes for all examples of that 

dataset. Decision tree methods use a divide and conquer approach. They can be used to classify 

an example by starting at the root of the tree and moving through it until a leaf node is reached, 

which provides the classification of the instance. 
 

Each node of a decision tree specifies a test of some attribute and each branch that descends from 

the node corresponds to a possible value for this attribute. The following example illustrates a 

simple decision tree. 
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3. TREPAN ALGORITHM 

 
The TREPAN [24] and [25] algorithms developed by Craven et al are novel rule-extraction 

algorithms that mimic the behavior of a neural network. Given a trained Neural Network, 

TREPAN extracts decision trees that provide a close approximation to the function represented 

by the network. In this work, we are concerned with its application to trained variety of learned 

models as well. TREPAN uses a concept of recursive partitioning similar to other decision tree 

induction algorithms. In contrast to the depth-first growth used by other decision tree algorithms, 

TREPAN expands using the best first principle. Thus node which increases the fidelity of the 

fidelity of the tree when expanded is deemed the best. 

 

In conventional decision tree induction algorithms the amount of training data decreases as one 

traverses down the tree by selecting splitting tests. Thus there is not enough data at the bottom of 

the tree to determine class labels and is hence poorly chosen. In contrast TREPAN uses an 

‘Oracle’ to answer queries, in addition to the training samples during the inductive learning 

process. Since the target here is the function represented by the neural network, the network itself 

is used as the ‘Oracle’. This learning from larger samples can prevent the lack of examples for the 

splitting tests at lower levels of the tree, which is usually a problem with conventional decision 

tree learning algorithms. It ensures that there is a minimum sample of instances available at a 

node before choosing a splitting test for that node where minimum sample is one of the user 

specified parameters. If the number of instances at the node, say m is less than minimum sample 

then TREPAN will make membership queries equal to (minimum sample m) from the ‘Oracle’ 

and then make a decision at the node. The following illustrates a pseudocode of the TREPAN 

algorithm [26]. 

 

 

Root 

Node 

Conditio Alternate 

Branch

Leaf 

Node 1 

Leaf 

Node 2 

Leaf 

Node 3 

Leaf 

Node 4 

Conditio
Alternate 

Class 1 Class 2 
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Algorithm : TREPAN 

Input: Trained neural network; training examples { } = where yi ,    is the class label predicted 

by the trained neural network on the training example Xi   , global stopping criteria. 

Output : extracted decision tree 

Begin  

        Initialize the tree as a leaf node 

        While global stopping criteria are not met and the current tree can be further refined 

        Do  

        Pick the most promising leaf node to expand  

        Draw sample of examples  

        Use the trained network to label these examples 

        Select a splitting test for the node 

        For each possible outcome of the test make a new leaf node 

        End 

End 
 

3.1 M-of-N Splitting tests 

 
TREPAN uses the m-of-n test to partition the part of the instance space covered by a particular 

internal node. An m-of-n expression (a Boolean expression) is fulfilled when at least an integer 

threshold m of its n literals hold true. For example, consider four features a, b, c and d; the m-of-n 

test: 3-of-{a, b > 3.3, c, d} at a node signifies that if any of the 3 conditions of the given set of 4 

are satisfied then an example will pass through that node. TREPAN employs a beam search 

method with beam width as a user defined parameter to find the best m-of-n test. Beam search is 

heuristic best-first each algorithm that evaluates that first n node (where n is a fixed value called 

the ‘beam width’) at each tree depth and picks the best out of them for the split. TREPAN uses 

both local and global stopping criteria. The growth of the tree stops when any of the following 

criteria are met: the size of the tree which is a user specific parameter or when all the training 

examples at node fall in the same class. 

 

3.1 Single Test TREPAN and Disjunctive TREPAN 

 
In addition to TREPAN algorithm, Craven has also developed two of its important variations. The 

single test TREPAN algorithm is similar to TREPAN in all respects except that as its name 

suggests it uses single feature tests at the internal nodes. Disjunctive TREPAN on the other hand, 

uses disjunctive “OR” tests at the internal nodes of the tree instead of the m-of-n tests.  A more 

detailed explanation of the TREPAN algorithm can be found in Craven’s dissertation [27]. 

 

Baesens et al [28] have applied TREPAN to credit risk evaluation and reported that it yields very 

good classification accuracy as compared to the logistic regression classifier and the popular C4.5 

algorithm.  

 

4. C4.5 ALGORITHM 

 
The C4.5 algorithm [29] is one of the most widely used decision tree learning algorithms. It is an 

advanced and incremental software extension of the basic ID3 algorithm [30] designed to address 

the issues that were not dealt with by ID3. The C4.5 algorithm has its origins in Hunt’s Concept 
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Learning Systems (CLS) [31]. It is a non-incremental algorithm, which means that it derives its 

classes from an initial set of training instances. The classes derived from these instances are 

expected to work for all future test instances. The algorithm uses the greedy search approach to 

select the best attribute and never looks back to reconsider earlier choices. The C4.5 algorithm 

searches through the attributes of the training instances and finds the attribute that best separates 

the data. If this attribute perfectly classifies the training set then it stops else it recursively works 

on the remaining in the subsets (m = the remaining possible values of the attribute) to get their 

best attribute. Some attributes split the data more purely than others. Their values correspond 

more consistently with instances that have particular values of the target class. Therefore it can be 

said that they contain more information than the other attributes. But there should be a method 

that helps quantify this information and compares different attributes in the data which will 

enable us to decide which attribute should be placed at the highest node in the tree. 

 

4.1 Information Gain, Entropy Measure and Gain Ratio 

 
A fundamental part of any algorithm that constructs a decision tree from a dataset is the method 

in which it selects attributes at each node of the tree for splitting so that the depth of the tree is the 

minimum. ID3 uses the concept of Information Gain which is based on Information theory [32] to 

select the best attributes. Gain measures how well a given attribute separates training examples 

into its target classes. The one with the highest information is selected. Information gain 

calculates the reduction in entropy (or gain information) that would result from splitting the data 

into subsets based on an attribute. 

 

The information gain of example set S on attribute A is defined as, 

 

( ) ( ) ( )∑−= v

v
SEntropy

S

S
SEntropyASGain ,

 
 

In the above equation, S is the number of instances and |Sv| is a subset of instances of S where A 

takes the value v. Entropy is a measure of the amount of information in an attribute. The higher 

the entropy, the more the information is required to completely describe the data. Hence, when 

building the decision tree, the idea is to decrease the entropy of the dataset until we reach a subset 

that is pure (a leaf), that has zero entropy and represents instances that all belong to one class. 

Entropy is given by, 

( ) ( ) ( )∑−= IpIpSEntropy 2log
 

 

where p(I) is the proportion of S belonging to Class I. 

 

Suppose we are constructing a decision tree with ID3 that will enable us to decide if the weather 

is favorable to play football. The input data to ID3 is shown in table 2 below adapted from 

Quinlan’s C4.5. 

 

 

 

 

 

 

Eq.1 

Eq.2 
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Table 2. Play Tennis Examples Dataset 

 

 

Day 

 

Outlook 

 

Temperature 

 

Humidity 

 

Wind 

 

Play Tennis 

1 Sunny Hot High Weak No 

2 Sunny Hot High Strong No 

3 Overcast Hot High Weak Yes 

4 Rain Mild High Weak Yes 

5 Rain Cool Normal Weak Yes 

6 Rain Cool Normal Strong No 

7 Overcast Cool Normal Strong Yes 

8 Sunny Mild High Weak No 

9 Sunny Cool Normal Weak Yes 

10 Rain Mild Normal Weak Yes 

11 Sunny Mild Normal Strong Yes 

12 Overcast Mild High Strong Yes 

13 Overcast Hot Normal Weak Yes 

14 Rain Mild High Strong No 

 
In this example, 

( ) 9450.0
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5
log

14
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14

9
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14

9
22 =
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(Note: Number of instances where play tennis = yes is 9 and play tennis = No is 5) 

The best attribute of the four is selected by calculating the Information Gain for each attribute as 

follows, 

 

( ) ( ) ( ) ( ) ( )RainEntrOvercastEntrSunnyEntrSEntrOutlookSGain .
14

5
.

14

4
.

14

5
., −−−=  

( ) 2670.03364.003364.09450.0, =−−−=OutlookSGain
 

 

Similarly, 
( ) 42.0, −=TempSGain

 and 
( ) 1515.0, =WindSGain

 

 

The attribute outlook has the highest gain and hence it is used as the decision attribute in the root 

node. The root node has three branches since the attribute outlook has three possible values, 

(Sunny, Overcast, and Rain). Only the remaining attributes are tested at the sunny branch node 

since outlook has already been used at the node. This process is recursively repeated until: all the 

training instances have been classified or every attribute has been utilized in the decision tree. 

The ID3 has a strong bias in favor of tests with many outcomes. Consider an employee database 

that consists of an employee identification number. Every attribute intended to be unique and 

partitioning any set of training cases on the values of this attribute will lead to a large number of 

subsets, each containing only one case. Hence the C4.5 algorithm incorporates use of a statistic 

called the “Gain Ratio” that compensates for the number of attributes by normalizing with 

information encoded in the split itself. 

( )

( )AI

ASGain
GainRatio

,
=

 

Eq.3 

Eq.4 

Eq.5 
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In the above equation, 

( ) ( ) ( )∑−= AA IpIpAI 2log
 

 

C4.5 has another advantage over ID3; it can deal with numeric attributes, missing values and 

noisy data.  

 

5. EXPERIMENTATION AND RESULT ANALYSIS 

 
We analyze three datasets with classes greater than two and we compare the results of Single-test 

TREPAN and C4.5 with that of X-TREPAN in terms of comprehensibility and classification 

accuracy. A generalized feed forward network was trained in order to investigate the ability of X-

TREPAN in comprehending GFF networks. The traditional ‘using-network’ command was used 

to validate that X-TREPAN was producing correct outputs for the network. In all the 

experiments, we adopted the Single-test TREPAN as the best variant for comparison with the 

new model. 

 

5.1 Body Fat  

 
Body Fat is a regression problem in the simple machine learning dataset category. The instances 

are sought to predict body fat percentage based on body characteristics. A 14-4-1 MLP with 

hyperbolic tangent function was used to train the network for 1500 epochs giving an r (correlation 

co-efficient) value of 0.9882. Figure 6 shows the comparison of classification accuracy of body 

fat by the three models.  

 
 

Figure 6. Comparison of classification accuracy of Body fat by the three algorithms 

 

TREPAN achieves a classification accuracy of 94% and C4.5 produces a classification accuracy 

of 91% while X-TREPAN achieves a comparatively much higher accuracy of 96%. Additionally, 

both X-TREPAN and TREPAN generate similar trees in terms of size but accuracy and 

comprehensibility attained by X-TREPAN are comparatively higher. 

 

Eq.6 
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The tables below show the confusion matrix of the classification accuracy achieved by TREPAN 

in comparison with X-TREPAN. While TREPAN produces a classification accuracy of 92.06% 

X-TREPAN produces a comparatively much higher accuracy of 96.83% as indicated in Table 3 

below. 
Table 3. Body Fat Confusion Matrix (X-TREPAN) 

 

Actual/Predicted Toned Healthy Flabby Obese 

Toned 13 0 0 0 

Healthy 1 21 0 0 

Flabby 0 0 9 1 

Obese 0 0 0 18 

Classification 

Accuracy (%) 

92.86% 100.00% 100.00% 94.74% 

Total Accuracy (%)      96.83%  

 

Table 4. Body Fat Confusion Matrix (TREPAN) 

 

Actual/Predicted Toned Healthy Flabby Obese 

Toned 13 0 0 0 

Healthy 1 20 0 0 

Flabby 0 0 9 0 

Obese 0 0 3 16 

Classification 

Accuracy (%) 

92.86% 95.24% 75.00% 100.00% 

Total Accuracy (%)      92.06%  

 
Additionally, both TREPAN and X-TREPAN generate identical trees in terms of size but 

accuracy attained by X-TREPAN is comparatively higher. 

 

5.2 Outages 

 
Outages constitute a database from the small dataset category. A12-3-1 MLP network with a 

hyperbolic tangent and bias axon transfer functions in the first and the second hidden layer 

respectively gave the best accuracy. The model was trained for 12000 epochs and achieved an r 

(correlation co-efficient) value of 0.985 (or an r2 of (0.985)2). Figure 7 shows the comparison of 

classification accuracy of outages by the three algorithms. 
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Figure 7. Comparison of classification accuracy of Outages by the three algorithms 
 

In terms of classification accuracy, as can be seen in the figure above, TREPAN achieves 84%, 

C4.5 achieves 91% while X-TREPAN achieves 92%. 
 

However, here TREPAN, C4.5 and X-TREPAN all generate very different trees in terms of size 

with C4.5 producing the largest and most complex decision tree while X-TREPAN produces the 

simplest and smallest decision tree with comparatively higher accuracy and comprehensibility. 

The tables below show the confusion matrix of the classification accuracy achieved by both 

algorithms. X-TREPAN achieves 85% while TREPAN achieves 76%. 
 

Table 5. Outages Confusion Matrix (X-TREPAN) 

 

Actual/Predicted C11 C12 C13 C14 C15 

C11 3 0 0 0 0 

C12 4 48 5 0 0 

C13 0 1 8 0 0 

C14 0 0 1 5 0 

C15 0 0 0 0 0 

Classification 

Accuracy (%) 

42.86% 97.96% 57.14% 100% 0.00% 

Total Accuracy (%)      85.33%   

 
Table 6. Outages Confusion Matrix (TREPAN) 

 

Actual/Predicted C11 C12 C13 C14 C15 

C11 2 5 0 0 0 

C12 3 43 3 0 0 

C13 0 6 7 1 0 

C14 0 0 0 5 0 

C15 0 0 0 0 0 

Classification 

Accuracy (%) 

40.00% 79.63% 70.00% 83.33% 0.00% 

Total Accuracy (%)      76.00%   



International Journal of Artificial Intelligence & Applications (IJAIA) Vol. 6, No. 5, September 2015 

83 

5.3 Admissions  

 
A typical University admissions database model based on a 22-15-10-2 MLP network. Two 

hidden layers with the hyperbolic tangent transfer functions were used for modeling. The best 

model was obtained by the X-TREPAN with a minimum sample size of 1000, tree size of 50 and 

classification accuracy of 74%. Figure 8 gives the comparison of classification accuracy of 

Admissions by the three models.  

 

 
 

Figure 8. Comparison of classification accuracy of Admissions by the three algorithms 

 

On the other hand, C4.5 achieved an accuracy of 71.97% (not rounded) almost equaling that of 

TREPAN of 72%, but produced a significantly large and complex decision tree. 

   

In terms of Confusion Matrix, TREPAN achieved an accuracy of 71.6% very close to that of X-

TREPAN. The confusion matrix is shown in the Tables below.    

  

 
Table 7. Admissions Confusion Matrix (X-TREPAN) 

 

Actural/Predicted Yes No 

Yes 401 279 

No 168 754 

Classification Accuracy (%) 70.47% 72.99 

Total Accuracy (%) 72.10% 
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Table 8. Admissions Confusion Matrix (TREPAN) 

 

Actural/Predicted Yes No 

Yes 379 190 

No 259 774 

Classification Accuracy (%) 59.40% 80.29 

Total Accuracy (%) 71.67% 

 

6. PERFORMANCE ASSESSMENT  
 

6.1 Classification Accuracy 

 
The classification accuracy or error rate is the percentage of correct predictions made by the 

model over a data set. It is assessed using the confusion matrix. A confusion matrix is a matrix 

plot of predicted versus actual classes with all of the correct classifications depicted along the 

diagonal of the matrix. It gives the number of correctly classified instances, incorrectly classified 

instances and overall classification accuracy. 

 

The accuracy of the classifier is given by the formula, 

 

( )
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Where true positive = (TP), true negative = (TN) false positive = (FP) and false negative = (FN). 

A false positive (FP) is when a negative instance incorrectly classified as a positive and false 

negative (FN) is when a positive instance is incorrectly classified as a negative. A true positive 

(TP) is when an instance is correctly classified as positive and true negative (TN) is when an 

instance is correctly classified as negative and so on. 

 

A confusion matrix is a primary tool in visualizing the performance of a classifier. However it 

does not take into account the fact that some misclassifications are worse than others. To 

overcome this problem we use a measure called the Kappa Statistic which considers the fact that 

correct values in a confusion matrix are due to chance agreement.  

 

The Kappa statistic is defined as, 
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In this equation, P(A) is the proportion of times the model values were equal to the actual value 

and, P(E) is the expected proportion by Chance. 
 

For perfect agreement, Kappa = 1. For example:  a Kappa statistic of 0.84 would imply that the 

classification process was avoiding 84% of the errors that a completely random classification 

would generate. 
 

6.2 Comprehensibility  
 

The comprehensibility of the tree structure decreases with the increase in the size and complexity. 

The principle of Occam’s Razors says “when you have two competing theories which make 

Eq.5 

Eq.6 
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exactly the same projections, the one that is simpler is the better” [33]. Therefore, among the 

three algorithms, X-TREPAN is better as it produces smaller and simpler trees as against Single-

test TREPAN and C4.5 in most scenarios.  
 

7. CONCLUSION 
 

The TREPAN algorithm code was modified (X-TREPAN) to be able to work with multi-class 

regression type problems. Various experiments were run to investigate its compatibility with 

generalized feed forward networks. The weights and network file were restructured to present 

GFF networks in a format recognized by X-TREPAN. Neural Network models were trained on 

each dataset varying parameters like network architecture and transfer functions. The weights and 

biases obtained from the trained models of the three datasets were fed to X-TREPAN for decision 

tree learning from neural networks. For performance assessment, classification accuracy of 

Single-test TREPAN, C4.5 and X-TREPAN were compared. In the scenarios discussed in the 

paper, X-TREPAN model significantly outperformed the Single-test TREPAN and C4.5 

algorithms in terms of classification accuracy as well as size, complexity and comprehensibility 

of decision trees. To validate the results, we use classification accuracy not as the only measure of 

performance, but also the kappa statistics. The kappa statistical values further validate the 

conclusions that X-TREPAN is a better one in terms of decision tree induction.  
 

REFERENCES 
 

[1] A. B. Ticle, R. Andrews, M. Golea, J. Diederich The truth will come to light: Directions and 

challenges in extracting the knowledge embedded within trained  artificial neural networks, IEEE 

Trans. Neural Networks, vol. 9, no 6, pp. 1057-1068. 1998. 

[2] G. Papantonopoulos, K. Takahashi, T. Bountis, B. G. Loos, Artificial Neural Networks for the 

Diagnosis of Aggressive Periodontitis Trained by Immunologic Parameters. PLoS ONE 9(3):  

e89757. (doi:10.1371/journal.pone.0089757), 2014. 

[3] D. Puzenat, Behavior Analysis through Games Using Artificial Neural Networks, Third  International 

Conference on Advances in Computer-Human Interactions (IEEE), pp. 134–138, Saint Maarten,  

France, 2010. 

[4] M. Mano, G. Capi, N. Tanaka, S. Kawahara, An Artificial Neural Network Based Robot Controller 

that Uses Rat’s Brain Signals, Robotics, 2,54-65,  doi:10.3390/robotics2020054. 

(www.mdpi.com/journal/robotics), 2013. 

[5] E. V. Raghavendra, P. Vijayaditya, K. Prahallad, speech generation National Conference on 

Communications (NCC), Hyderabad, India 2010. (doi: 10.1109/NCC.2010.5430190) 

[6] A. Hossain, M. Rahman, U. K.Prodhan, F. Khan, Implementation Of Back-Propagation  Neural 

Network For Isolated Bangla Speech Recognition, International Journal of  Information Sciences and  

Techniques (IJIST) vol. 3, no. 4, 2013. 

[7] S. Ayat, Z. A. Pour, Comparison between Artificial Neural Network Learning Algorithms for 

Prediction of Student Average considering Effective Factors in Learning and Educational Progress, 

Journal of mathematics and computer science 8, pp. 215 – 225,  2014. 

[8] R. Andrews, J. Diedrich, A. Ticle, Survey and critique of techniques for extracting rules from trained 

artificial neural networks, Knowledge-Based System,  vol. 8, no 6, pp. 373-389. 1995. 

[9] A. B. Ticke, R. Andrews, M. Golea, J. Diederich, The truth will come to light: Directions and 

challenges in extracting the knowledge embedded within trained artificial neural networks, IEEE 

Trans. Neural Network, vol. 9 no. 6, pp. 1057 - 1068, 1998. 

[10] A. Ticke, F. Maire, G. Bologna, R. Andrews, J. Diederich, Lessons from past current issues and 

future research directions in extracting knowledge embedded in artificial neural networks in Hybrid 

Neural Systems, New York: Springer-Verlag,  2000. 

[11] H. Lohminger, Teach/Me Data Analysis, Springer-Verlag, Berlin-New York-Tokyo, 1999. 



International Journal of Artificial Intelligence & Applications (IJAIA) Vol. 6, No. 5, September 2015 

86 

[12] C. Aldrich, Exploratory analysis of metallurgical process data with neural networks and related 

methods, Elsevier 2002. 

[13] StatSoft, Inc. (2004). Electronic Statistics Textbook. Tulsa, OK: StatSoft. 

[14] M. M. Nelson, W.W. Illingworth,  A Practical Guide to Nerual Nets. 4th ed. 1992. 

[15] K. Plunkeet, J. L. Elman, (1997). Exercises in Rethinking Innateness: A handbook for connectionist 

simulations, MIT Press, pp. 166. 

[16] G.G. Towell, J. W. Shavli, Extracting Refined Rules from Knowledge-based Neural Networks, 

Machine Learning, 13:71-101 1993.  

[17] M.W Craven, J. W. Shavlik, Using sampling and queries to extract rules from trained neural 

networks, Machine Learning. Proceedings of the Eleventh International Conference, Cohen W. W & 

Hirsh H.(Eds), San Francisco, CA:Morgan Kaufmann 1995.  

[18] L. Fu, Rule Learning by searching on adopted nets, In Proceedings of the 9th National Conference on 

Artificial Intelligence, Anaheim, CA, pp.590-595, 1991. 

[19] S. Thrums, Extracting rules from artificial neural networks with distributed representations, In 

Advances in Neural Information Processing Systems 7, Cambridge, MA:Mit press, pp 505-512, 1995. 

[20] M. W. Craven, Extracting Comprehensible models from trained Neural Network, PhD Thesis, 

Computer Science Department, University of Wisconsin, Madison, WI, 1996. 

[21]  R. Andrews, J. Diederich, A. B. Tickle, A survey and critique of techniques for extracting rules from 

trained neural networks. Knowledge Based Systems, 8(6), 373-389, 1995. 

[22] D. Biggs, B. de Ville, E. Suen, A method of choosing multiway  partitions for  classification and 

decision tree. Journal of Applied Statistics 18(1): 49-62, 1991. 

[23] G. Liepins, R. Goeltz, R. Rush, Machine Learning techniques for  natural resource data analysis . AI 

Applications 4(3):9-18, 1990. 

[24] M. W. Craven, J. W. Shavlik, Using sampling and queries to extract rules from trained neural 

networks, Machine Learning. Proceedings of the Eleventh Inter-national Conference, Cohen W. W & 

Hirsh H. (Eds), San Francisco, CA. 1995. 

[25] M. W. Craven,  J. W. Shavlik, Extracting tree-structured representations of trained networks. In 

Advance in Neural Information Procession Systems, volume 8, pages 24-30, Denver, Com,MIT Press. 

1996. 

[26] F. Chen, Learning accurate and understandable rules from SVM classifiers, M. Sc. Thesis, School of  

computing science, Simon Fraser University. 2004. 

[27] M.W. Craven, Extracting Comprehensible models from trained Neural Network, PhD Thesis, 

Computer Science Department, University of Wisconsin, Madison, WI. 1996. 

[28] B. Baesens, R. Setiono, C. Mues, J. Vanthienen, Using Neural Network  Rule Extraction and 

Decision Tables for Credit-Risk Evaluation management Science, vol. 49, no. 3,  pp. 312, 2003. 

[29] J. R. Quinlan, C4.5: Programs for Machine Learning. San Mateo, CA: Morgan Kaufmann, 1993. 

[30] J. Ross Quinlan, ID3 Algorithm, Machine Learning, University of Sydney, book vol. 1, no.1, Syney, 

Australia. 1975. 

[31] E. Hunt, J. Marin, P. Stone, Experiments in Induction, New York, Academic Press, 1966. 

[32] L. J. Breiman, R. Friedman, C. Olshen, Classification and regression trees, Wadsworth and         

Brooks, Belmont, CA. 1984. 

[33] L. Breiman, J. Friedman, R. Olshen, C. Stone, Classification and regression trees, Wadsworth and  

Brooks, Belmont, CA. 1984. 


