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Incoherent dynamics in neutron-matter interaction
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Coherent and incoherent neutron-matter interaction is studied inside a recently introduced approach to
subdynamics of a macrosystem. The equation describing the interaction is of the Lindblad type and, using the
Fermi pseudopotential, we show that the commutator term is an optical potential leading to well-known
relations in neutron optics. The other terms, usually ignored in optical descriptions and linked to the dynamic
structure function of the medium, give an incoherent contribution to the dynamics, which keeps diffuse
scattering and attenuation of the coherent beam into account, thus warranting fulfillment of the optical theorem.
The relevance of this analysis to experiments in neutron interferometry is briefly discussed.
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I. INTRODUCTION

In recent years there has been a rapidly growing inte
in the field of particle optics, especially neutron and ato
optics ~for a recent review see Refs.@1–5# and @6#, respec-
tively, and references quoted therein!, due to a spectacula
improvement of the experimental techniques, connected
the introduction of the single-crystal interferometer in t
first case, and to progress in microfabrication technology
development of intense tunable lasers in the second
Such new achievements provide very important tests ver
ing the validity of quantum mechanics, especially in tha
predicts wavelike behaviors even for single microsystem

At the same time a new challenge arises, linked to
accuracy required in the description of the interaction
tween the microsystem and the apparatus acting as op
device. The question of the description of the dynamics o
microsystem interacting with a system having many degr
of freedom~e.g., matter seen as an optical medium char
terized by an index of refraction! has been extensively stud
ied, and contains some typical quantum-mechanical featu
such as quantum correlations between the two systems
which a reduced description of the microsystem’s degree
freedom can arise only by suitable approximations. T
subtle point is particularly important in the case of partic
optics, where the main interest is devoted to the cohe
wavelike behavior of particles, as can be justified on
basis of the similarity between a Schro¨dinger equation with
an optical potential and the Helmholtz wave equation@3,6#.
The very existence of such an optical description of the
teraction is far from trivial, and depends strongly on the e
perimental conditions. Attention has been mostly devoted
exploiting the optical analogies, while little has been s
about the borderline between the optical regime, in wh
coherent effects are predominant and a classical wave
description plays a major role, and an incoherent regi
where incoherent effects, caused by the interaction betw
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the microsystem and the apparatus and showing typical
ticlelike features, should not be neglected. This attitude
exemplified in neutron optics by the use of the ‘‘cohere
wave’’ formalism, instead of a reduced density-matrix d
scription, as usually adopted in quantum optics.

In this paper we want to address the question of how
describe both regimes consistently, applying a recently
veloped approach to the description of irreversible sub
namics in quantum mechanics@7–9# to the specific case o
neutron-matter interaction. In this approach the use of
effectiveT matrix describing the local interactions as prac
cal starting point leads to the introduction of a time scale a
in the particular case of particle-matter interaction to a d
namical semigroup, whose generator has the typical Li
blad form @10#. The expressions appearing in the genera
are linked to particle-particle interactions, like the Fer
pseudopotential, and to properties of the macroscopic
tem, like the dynamic structure function, first introduced
van Hove@11#. The first part of the generator accounts f
the description of the coherent interaction in terms of opti
potential and index of refraction well known in neutron o
tics @3,12,13#. The remaining part is shown to be related
the dynamic structure function or, equivalently, to the de
sity correlation function, and leads in a straightforward w
to results obtained in the so-called ‘‘rigorous theory of d
persion’’ @3#.

The paper is organized as follows: in Sec. II we give
account of the formalism; in Sec. III it is applied to neutro
optics; in Sec. IV we consider diffuse scattering, the conn
tion to the dynamic structure function, and fulfillment of th
optical theorem; in Sec. V we evaluate possible experime
consequences; in Sec. VI we comment on our results in
cating potential future developments.

II. INTRODUCTION OF THE FORMALISM

In this section we briefly introduce the formal schem
restricted to a description of a microsystem following R
@7#, to which we refer the reader for further details. We i
dicate byH(1) the Hilbert space in which the microsystem
to be described; its energy eigenvalues areEf , with energy
4826 © 1997 The American Physical Society



-
on

m

m
d

e
i
ta
in
re

of
-
g

m

lu

he

e
n
r
c

rs
d

of
can
tion
be

h
e

truc-
ies
opic

ring

ing
ix,
ac-
the
ll
nd

Eq.
ro-

56 4827INCOHERENT DYNAMICS IN NEUTRON-MATTER INTERACTION
eigenstatesuf , spanningH(1). Both systems will be consid
ered confined, e.g., in a box. We shall adopt the sec
quantization formalism, setting, for the HamiltonianH of the
system,

H5H01Hm1V, H05(
f

Efaf
†af , @af ,ag

†#75d f g ,

where af is the destruction operator for the microsyste
either a Fermi or a Bose particle, in the stateuf , andHm is
the Hamilton operator for the sole macrosyste
(@Hm ,af #50). Indicating byHF the whole Fock space, an
by HF

0 its subspace in whichN5(hah
†ah , the number of

microsystems, is equal to zero, we will denote withul& the
basis of eigenstates ofHm spanningHF

0 , Hmul&5Elul&,
andNul&50. V represents the interaction potential betwe
the two systems. Having it in mind to describe situations
which only one particle is observed in each experimen
run, or equivalently a collection of noninteracting particles
each run, we assume for the statistical operator the exp
sion

%5(
g f

ag
†%maf%g f ,

where%m is a statistical operator in the subspaceHF
0 , rep-

resenting the macrosystem, and, therefore

af%
m50 %maf

†50 ; f ,

while % is a statistical operator in the subspaceHF
1 of HF , in

which N51. The coefficients%g f build a positive, trace-1
matrix, which can be considered as the representative
statistical operator%̂ in H(1). Being interested in the subdy
namics of the microsystem we shall exploit the followin
reduction formula, valid for any operator of the for
A5( f ,gaf

†Af gag5( f ,gaf
†^ f uÂug&ag :

TrHF
~A% !5(

f ,g
Af g%g f5TrH~1!~Â%̂ !.

We wish to determine the equation driving the time evo
tion of the statistical operator on a time scalet much longer
than the typical duration of microphysical interactions for t
macrosystem, and therefore we shall approximated%g f /dt
by

Dt%g f~ t !

t
5

1

t
@%g f~ t1t!2%g f~ t !#

5
1

t
@TrHF

„af
†age2 i /\ Ht%~ t !ei /\ Ht

…2%g f~ t !#.

To proceed further, we will exploit the cyclicity of the trac
operation, shifting the time evolution on the destruction a
creation operators, thus working in the Heisenberg pictu
In this way, no simplifying assumption is made on the stru
ture of%m. We now introduce the following superoperato
that is to say mappings acting on the algebra generate
creation and destruction operators:
d

,

n
n
l

s-

a

-

d
e.
-
,
by

H85
i

\
@H,•#, H085

i

\
@H01Hm ,•#, V85

i

\
@V,•#.

~2.1!

Making use of these mappings we evaluateeH8t(ah
†ak) with

the aid of the following integral representation:

eH8tak5E
2 i`1h

1 i`1h dz

2p i
ezt~z2H8!21ak ,

eH8t~ah
†ak!5~eH8tah

†!~eH8tak!.

Let us stress at this point the relevance of the formalism
second quantization. The operator quantities of interest
be expressed in terms of products of creation and destruc
operators. The study of their time evolution may thus
reconducted to evaluate field operators of the formeH8tah

†

connecting, in Fock space, subspaces withn andn11 par-
ticles ~and similarly foreH8tak , connecting subspaces wit
n andn21 particles!. Thus, even recovering at the end th
usual one-particle quantum mechanics, the Fock space s
ture plays a central role, and accounts for the similarit
between this simple case and the description of macrosc
systems@8,9#. For the mappings defined in Eq.~2.1!, identi-
ties hold that are reminiscent of the usual ones in scatte
theory:

~z2H8!215~z2H08!21@11V8~z2H8!21#

5@11~z2H8!21V8#~z2H08!21. ~2.2!

In particular, we can introduce the superoperatorT(z),

T~z![V81V8~z2H8!21V8, ~2.3!

satisfying

~z2H8!215~z2H08!211~z2H08!21T~z!~z2H08!21,

and

T~z!5V81V8~z2H08!21T~z!, ~2.4!

corresponding to the Lippman-Schwinger equation for theT
matrix. Taking into account the fact that@H,N#50 one can
see that the restriction toHF

1 of the operatorT(z)ak has the
simple general form

i\T~z!akuHF
15(

h
Th

k~ i\z!ah , ~2.5!

whereTh
k(z)is an operator in the subspaceHF

0 . This restric-
tion is the only part of interest to us, since we are consider
a single microsystem. Our formalism points to this matr
whose entries are operators on the Hilbert space of the m
rosystem, as the basic mathematical tool to describe
physics of the microsystem: we will show that it yields a
relevant quantities and, in our opinion, could be a sou
starting point for phenomenological assumptions.Th

k(z)
bears a connection to scattering theory, as it is clear from
~2.4!; it is also related to the thermodynamics of the mac
system, being an operator onHF

0 . To help clarify this con-
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4828 56LUDOVICO LANZ AND BASSANO VACCHINI
nection, we consider a simple case in whichTh
k(z) can be

explicitly calculated. Let the macrosystem be composed
free particles

Hm5(
h

Ehbh
†bh , V5 (

p,j,q,h
ap

†bj
†aqbhVpjqh

wherebh
† is the creation operator of a particle in an eige

statevh with energyEh ~either a Bose or a Fermi particle!.
Recalling that we are describing a single particle and expl
ing the superoperators introduced in Eqs.~2.1!, ~2.2!, and
~2.3!, we can calculateTh

k(z) as defined by Eq.~2.5!. To do
this we bring to normal order the creation and destruct
operators associated with the macrosystem, and restrict
selves to a one-mode dynamics, in which, apart from sta
tical corrections, only one creation and one destruction
erator of the typeb appear: that is to say, we neglect thre
particle collisions. Then one obtains

Tf
k~Ek1 i«!5(

j,h
bj

†^k,juV~2!

1V~2!
1

Ej1Ek1 i«2~H0
~2!1VL!

VLu f ,h&bh ,

where« is a positive quantity and the following relationship
hold:

^k,juH0
~2!u f ,h&5~Ef1Eh!dk fdjh

^k,juVLu f ,h&5~16bj
†bj!^k,juV~2!u f ,h&

5~16bj
†bj!Vkj f h ; ~2.6!

here the superscript~2! denotes operators in the two-partic
Hilbert space, and statistical corrections for scattering in
medium are taken into account in the potential termVL ,
implicitly defined by Eq.~2.6! and by the usual resolven
series~the1 and2 signs stand for Bose and Fermi statistic
respectively!. The connection to the familiarT matrix is evi-
dent.

We now come to the master equation describing the i
versible time evolution of the statistical operator on the c
sen time scale:

d%kh

dt
52

i

\
~Ek2Eh!%kh2

i

\ (
f

Qk f% f h1
i

\ (
g

%kgQhg*

1
1

\ (
f g
lj

~Llj!k f% f g~Llj!hg* , ~2.7!

from which we can read off the structure of the generator
the semigroup driving the time evolution. The quantities a
pearing in Eq.~2.7! are defined in the following ways:

Qk f5TrHF
@Tf

k~Ek1 i«!%m~t!#,

Qhg* 5TrHF
@Tg

h†~Eh1 i«!%m~t!#,

~Llj!k f5A2«pj

^luTf
k~Ek1 i«!uj~ t !&

Ek1El2Ef2Ej2 i«
, ~2.8!
f

-

t-

n
ur-
s-
-

-

e

,

-
-

f
-

with « a positive constant andj~t! a complete system o
eigenvectors of%m(t) with eigenvaluespj(t) . If we now

introduce inH(1) the operatorsĤ0 , Q̂, L̂lj, and%̂,

^guĤ0u f &5Efdg f , ^guQ̂u f &5Qg f ,

^guL̂lju f &5~Llj!g f , ^gu%̂u f &5%g f ,

Eq. ~2.7! becomes

d%̂~t!

dt
52

i

\
@Ĥ01Ĥeff ,%̂~t!#2

1

\
$Ĝ,%̂~t!%

1
1

\ (
j,l

L̂lj%̂~t!L̂lj
† ,

where

Ĥeff5
Q̂1Q̂†

2
, Ĝ5 i

Q̂2Q̂†

2
.

Verification of the conservation of the trace of the statisti
operator within the adopted approximations leads to the
lowing relationship:

Ĝ' 1
2 (

j,l
L̂lj

† L̂lj , ~2.9!

and therefore to

d%̂~t!

dt
52

i

\
@Ĥ01Ĥeff ,%̂~t!#2

1

\ H 1
2 (

j,l
L̂lj

† L̂lj ,%̂~t!J
1

1

\ (
j,l

L̂lj%̂~t!L̂lj
† . ~2.10!

This master equation is a typical result of the formalism
stricted to the case of a single microsystem; for the gen
structure, see Refs.@8,9#.

Before applying Eq.~2.10! to a concrete physical situa
tion, it can be useful to gain some further insight into t
structure of the operators appearing in it. As already sta
the quantity that the formalism suggests as a natural ca
date for where to place suitable phenomenological exp
sions is the operatorTf

k(z), an operator whose trace over th
Fock space for the macrosystem calculated with%m gives the
value of theT matrix for scattering from stateuf to stateuk
averaged over the state of the macroscopic system. A q
general phenomenological expression may be obtained in
following way. Suppose thatT(z) has the form

T~z!5
i

\
@V~ i\z!,•#, V~z!5 (

kl fm
Vkl fm~z!ak

†bl
†afbm ,

with b† andb the creation and destruction operators in Fo
space for the macrosystem. We thus have
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56 4829INCOHERENT DYNAMICS IN NEUTRON-MATTER INTERACTION
i\T~z!ak5(
l fm

Vkl fm~ i\z!bl
†afbm5(

f
Tf

k~ i\z!af ,

and, supposing translation invariance in the interaction k
nel,

Tf
k~z!5(

lm
bl

†Vkl fm~z!bm5E d3xE d3y c†~x!uk* ~y!

3t~z,x2y!uf~y!c~x!. ~2.11!
e
u
h

e

r-

Such an ansatz amounts to introducing an effective poten
which should, in the Born approximation, give the full sca
tering amplitude. As a result the potential term in Eq.~2.10!
is linked to the scattering amplitude, as we shall see in
next paragraph, while the incoherent contribution is gen
ally connected to the scattering cross section. To realize
let us consider the last term of Eq.~2.7!, taking the proposed
ansatz into account:
2«

\ (
l,l8
l9

(
f ,g

E d3xE d3y uk* ~y!
t~Ek1 i«,x2y!

Ek1El92Ef2El2 i«
uf~y!^l9uc†~x!c~x!ul&

3^lu%m~t!ul8&% f g~t!E d3x8E d3y8^l8uc†~x8!c~x8!ul9&ug* ~y8!
t* ~Eh1 i«,x82y8!

Eh1El92Eg2El81 i«
uh~y8!, ~2.12!
all
on-
in-
e

van
en-
y
-

and let us specialize to the case of a diagonal matrix elem
Supposing the statistical operator for the microsystem is q
sidiagonal and the macrosystem is at equilibrium, so t
%mul&5%l

mul&, we exploit the usual representation for thed
function, thus obtaining:

(
f

(
ll8

2p

\
d~Ek1El2Ef2El8!U E d3xE d3y uk* ~y!

3^luc†~x!t~Ek1 i«,x2y!c~x!ul8&uf~y!U2

%l8
m

% f f~t!.

In this formula one has the typical transition probability b
tween an initial statef ,l8 and a final statek,l, averaged
nt.
a-
at

-

over all possible initial configurations and summed over
possible final states for the macrosystem; that is to say, c
tributions from both coherent and diffuse scattering are
cluded. It might be instructive to show in a different way th
connection between the last term of Eq.~2.7! and the total
scattering cross section, referring to a famous paper by
Hove @11#. Taking for concreteness the Fermi pseudopot
tial ~see next paragraph!, whose Fourier transform is simpl
the constantṼ5 (2p\2/m) b, we evaluate the diagonal ele
ment of Eq. ~2.12!, assuming thatuf are given by plane
waves~the indexesf , g, h, andk becoming momenta!, thus
obtaining@N(x)5c†(x)c(x)#:
Wigner
2«

\
uṼu2(

l,l8
E d3P

~2p\!3 E d3q

~2p\!3 E d3xE d3ye2~ i /\!$k2@P1~q/2!#%•x ^l8uN~x!ul&

Ek1El82
1

2m S P1
1

2
qD 2

2El2 i«

^P1 1
2 qu%̂uP

2 1
2 q&^lu%m~t!ul&

^luN~y!ul8&

Ek1El82
1

2m S P2
1

2
qD 2

2El1 i«

e~ i /\!$k2@P2~q/2!#%•y,

and supposing%̂ such that the energies in the denominators may be considered approximately equal, introducing the
function for the neutron,

f w~x,p!5E d3q

~2p\!3 e~ i /\!x•q^p1 1
2 qu%̂up2 1

2 q&,

one easily has

2p

\ S 1

2p\ D 4

uṼu2E d3PE dtE d3r e2~ i /\!@~P2/2m!2Ek#t1~ i /\!~P2k!•rE d3X f w~X,P!K NS X2
r

2DNS X1
r

2
,t D L , ~2.13!
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4830 56LUDOVICO LANZ AND BASSANO VACCHINI
where^•••&[TrHF
(•••%m ), andN(x,t) denotes the operato

in the Heisenberg picture. We have thus recovered the t
cal factorized structure appearing in the expression for
scattering cross section of a neutron off a macroscopic
tem: the square modulus of the Fourier transform of the
teraction potential times the dynamic structure function
pending on transferred momentum and energy, with
refinement that it is here weighted according to the posit
and momentum distribution of the incoming particle. For t
nondiagonal matrix element one can expect to obtain an
gous results if the quantities appearing in Eq.~2.12! are suf-
ficiently slowly varying functions of their arguments, so th
in the continuous limit, an interpolation formula of the for

«E dj
g~j!

~a1j1 i«!~b1j2 i«!
'pE dj g~j!d~b1j!

'pE dj g~j!d~a1j!, ua2bu!«

with g(j) a suitably smooth function, may be used. T
failure of such an approximation and thus the relevance
the actual value of the parameter« in the final expression
might be traced back to the breakdown of the approximati
that have led to the Markovian evolution generated by
master equation~2.7!.

III. OPTICAL BEHAVIOR

We now devote our attention to the interaction of ne
trons with matter. This field is well suited to test our forma
ism, both because of the very refined experiments that h
been carried out in neutron interferometry@1,14#, and be-
cause of the very well-studied description of neutron op
phenomena, as developed, for example, in the book by S
@3# that we will take as basic reference. As a first step
want to consider the coherent interaction of neutrons w
matter, and therefore in Eq.~2.7! we neglect the last contri
bution, linked to incoherent processes. As we will see la
this term implies indeed a smaller correction in the case
neutron scattering. We are left with

d%kh

dt
52

i

\
~Ek2Eh!%kh2

i

\ (
f

Qk f% f h1
i

\ (
g

%kgQhg* ,

~3.1!

and we need a suitable expression for the operator

Qk f5TrHF
@Tf

k~Ek1 i«!%m~t!#.

Following Sears, we adopt the Fermi pseudopotential to
scribe the neutron nucleus interaction in impulse approxim
tion; let us recall the form of theT matrix in the context of
the elementary theory of dispersion,

T5
2p\2

m (
a

ba(
i 51

Na

d3~ x̂2Ri !, ~3.2!

wherex̂ is the position operator for the neutron,Ri the posi-
tion operator for thei th nucleus of typea, ba the bound
scattering length, depending on isotope and spin orienta
m the neutron mass,Na the number of nuclei of typea. An
i-
e
s-
-
-
e
n

o-

,

of

s
e

-

ve

s
ars
e
h

r,
f

e-
-

n,

operator of form~3.2!, that is to say, a sum over one-partic
operators, is expressed in second quantization by

T5
2p\2

m (
a

baE d3x ca
†~x!d3~ x̂2x!ca~x!, ~3.3!

whereca(x) is the field operator, acting in the Fock space
the macrosystem, corresponding to particles of typea. For
the sake of simplicity, from now on we will consider on
kind of particle, thus dropping the subscripta. Furthermore
we will assume thatb is a real quantity, since we are no
going to deal with absorption phenomena. As we shall se
Sec. IV, we concentrate on the non-Hermiticity of the pote
tial connected with incoherent processes and not with
absorption. A phenomenological description as given by
~3.3! falls within the class of effective potentials consider
in the previous paragraph, and corresponds to the follow
interaction kernel:

t~z,x2y!5
2p\2

m
bd3~x2y!, ~3.4!

leading to

Tf
k~Ek1 i«!5

2p\2

m
bE d3xE d3y c†~x!uk* ~y!

3d3~x2y!uf~y!c~x!.

Equation~3.1! thus becomes, in operator form,

d%̂~t!

dt
52

i

\
@Ĥ0 ,%̂~t!#

2
i

\

2p\2

m
bE d3x^c†~x!c~x!&td

3~ x̂2x!%̂~t!

1
i

\

2p\2

m
bE d3x^c†~x!c~x!&t%̂~t!d3~ x̂2x!,

~3.5!

where x̂ is the position operator for the neutron an
^A&t[TrHF

„%m(t)A…. If we consider only pure states an
assume the macrosystem to be at equilibriu
(^•••&t[^•••&), Eq. ~3.5! is equivalent to the following sta
tionary Schro¨dinger equation:

H 2
\2

2m
Dx1

2p\2

m
b^c†~x!c~x!&J f~x!5Ef~x!,

~3.6!

which, remembering that the average particle dens
^( id

3(x2Ri)& is given in second quantization b
^c†(x)c(x)&, is exactly the equation used by Sears to d
scribe all coherent neutron optical phenomena, here rec
ered in a straightforward, alternative way, though in a ve
different framework. The term

2p\2

m
b^c†~x!c~x!&
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56 4831INCOHERENT DYNAMICS IN NEUTRON-MATTER INTERACTION
is called the optical potential, and assumes different exp
sions according to the structure of the system. If the med
can be considered homogeneous, with densityno , Eq. ~3.6!
describes propagation of matter waves with an index of
fraction given by

n5S 12
2p\2

mE
bnoD 1/2

.12
l2

2p
bno , ~3.7!

as first obtained by Goldberger and Seitz@13# in the absence
of absorption. This is the formula currently used to calcul
phase shifts in neutron interferometry experiments@1#:

eix5ei ~n21!~2p/l!D5e2 inoblD, ~3.8!

whereD is the thickness of the sample.
In a similar way, from Eq.~3.1! we can obtain a more

general formula for the refractive index introduced for t
first time by Lax@12#. Starting from the general expressio
~2.11!, the potential term in Eq.~3.1! becomes

(
f

Qk f% f h~t!5(
f

TrHF
E d3xE d3y c†~x!uk* ~y!

3t~Ek1 i«,x2y!uf~y!c~x!%m~t!% f h~t!.

Following Lax, we suppose that the system is homogene
so that

TrHF
@c†~x!c~x!%m~t!#5no .

We have

(
f

Qk f% f h~t!5no(
f
E d3x t~Ek1 i«,x!

3E d3y uk* ~y!uf~y!% f h~t!

5noE d3x t~Ek1 i«,x!%kh~t!,

where we have exploited the orthogonality between
states$uf%, thus obtaining the matrix element of theT op-
erator for forward scattering, averaged over the poss
states of the macrosystem. Taking the relation between thT
operator and scattering amplitude into account, we come

2no

2p\2

m
f ~0,Ek!%kh~t!.

Inserted in the Schro¨dinger equation, this term is equivale
to an index of refraction of the form

n5S 11
2p\2

mEk
nof ~0,Ek! D 1/2

.11
l2

2p
nof ~0,Ek!,

~3.9!

simply linked to the forward scattering amplitude. An ana
gous result holds for electromagnetic waves propagating
material with low density@15#. A similar treatment has bee
proposed@16# and adopted~see, for example, Ref.@17#! in
the description of the propagation of atoms through a dil
s-
m

-

e

s,

e

le

o

-
a

e

medium, showing the interest of similar descriptions also
atom optics. In the case of thermal neutrons the scatte
amplitude is isotropic within a very good approximation a
is given in terms of the scattering length by the simple f
mula f 52b, which reduces Eq.~3.9! to Eq. ~3.7!.

So far we have shown how, starting from Eq.~2.7! and
neglecting the incoherent term, we can recover some imp
tant results obtained within the framework of multipl
scattering theory and used to describe the coherent inte
tion of neutrons with matter. Our formalism puts in
evidence the statistical operator of the macrosystem, thT
matrix and the scattering amplitude, so that phenomenol
cal inputs are rather direct. Further improvements of the f
mulas obtained are allowed by the presence of%m(t) and
depend on its evaluation. The correction factorc that Lax
includes in Eq.~3.9! to obtain the index of refraction

n.11
l2

2p
noc f~0,Ek!,

is connected to fulfillment of the optical theorem, which,
our formalism, as we will see in Sec. IV, is related to t
presence of the incoherent contribution.

IV. INCOHERENT CONTRIBUTION

We now come to the main statement of this paper,
connection between the contributions other than the com
tator in Eq. ~2.10! and the dynamic structure function, to
gether with the relevance of this relationship to the opti
theorem. As observed by Sears, an expression of the f
~3.7! or ~3.9! for the refractive indexdoes not include the
contribution to the attenuation of the coherent wave in t
medium due to diffuse scattering and, hence, violates
‘‘optical theorem’’ of scattering theory@5,3,18#. To over-
come this difficulty, he refrained from ad hoc assumptions
in Ref. @19#, which amount to introducing a suitable imag
nary contribution to the potential, and considers a rigoro
theory of dispersion. In this more accurate treatment,
~3.2! is replaced by

T5
2p\2

m (
a

f a(
i 51

Na

d3~ x̂2Ri !,

and f a has the general expression~k is the incident neutron
momentum!

f a52ba1
i

\
kba

21O~k2!,

where the second term had been previously omitted bec
of its smallness, since typically (1/\) kb<1024. Further-
more, the scattering amplitude is to be multiplied by a co
stantc which should take local-field corrections into accou
and whose value depends only on the temperature, den
and chemical composition of the medium. Sears obtained
estimate for this constant in terms of the structure function
the macroscopic scatterer in the case of an homogen
medium, applying a multiple wave formalism to solve th
scattering problem, and drawing strong analogies to the u
descriptions of propagation of electromagnetic waves. In
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way he recovered a correspondence between the attenu
of the coherent wave in the medium and diffuse scattering
the following we shall setf a5 f ;a and consider only rea
b, in order to concentrate upon diffuse scattering, neglec
absorption. By diffuse scattering we intend all scattering t
is not coherent in the absolute sense, that is, elastic and
herent~for the distinction between absolute and relative
coherence see for example@3,12#!. To compare with these
more refined results we have to consider all contributions
Eq. ~2.10!. Let us stress from the very beginning some ge
eral features of this expression, thanks to which it can
scribe more general physical situations than those arisin
an evolution driven by a Schro¨dinger-like equation. The las
two terms

2
1

\ H 1
2 (

j,l
L̂lj

† L̂lj ,%̂J 1
1

\ (
j,l

L̂lj%̂L̂lj
† ~4.1!

allow for the presence of a non-self-adjoint potential wh
is nevertheless not linked to real absorption. This is the c
for the present treatment, in which the imaginary part of
optical potential is to be traced back to the existence of
fuse scattering, as opposed to the coherent wavelike be
ior. Attenuation of the ‘‘coherent wave’’ is due to the pre
ence of the anticommutator term, responsible for
imaginary potential, balanced by the last contribution, ty
cally incoherent in that it leads from a pure state to a m
ture. This last term is given by a sum over subcollectio
formally similar to the expression that we would obtain f
the statistical operator after the measurement of a given
servable~see Ref.@7#!. The subcollections are denoted by t
indexeslj, which specify a change of the state of the ma
roscopic system, caused by interaction with the microsyst
thus making this contribution to the dynamics incoherent
fact, we will see in the case of neutron-matter interaction t
the trace of this term gives all the contributions to incoher
scattering, that is, the total diffusion cross section. The b
ance between the two terms of Eq.~4.1! accounts for the
fulfilment of the optical theorem.

To see this let us now consider Eq.~4.1! in more detail.
Starting from Eqs.~2.8! and ~2.11!, introducing a Laplace
transform for the energy dependence of the effectiveT ma-
trix

t~E,x!5E
0

`

ds e~ i /\!Es t̄~s,x!,
tion
In

g
t
o-

-

n
-
-
in

se
e
f-
v-

e
-
-
,

b-

-
,

n
t
t
l-

together with the following expression for the density nu
ber operator in terms of creation and destruction opera
with specified momentum:

N~x!5c†~x!c~x!5
1

V (
k,P

e2~ i /\!k•xbP1~k/2!
† bP2~k/2! ,

we obtain

L̂lj5
i

\
A2«pj

1

V (
k,P

E
0

`

dt e2~«/\!t

3E
0

`

dsE d3x9e2~«/\!se2 i /\Ĥ0~t2s! t̄~s,x92 x̂!

3e~ i /\!Ĥ0te2~ i /\!k•x9^lue2~ i /\!Hmt

3bP1~k/2!
† bP2~k/2!e

~ i /\!Hmtuj&,

whereV is the volume of the region in which the system
supposed to be confined. Indicating byt̃(E,k) the Fourier
transform of the potential with respect to space

t̃~E,k!5E d3x t~E,x!e2~ i /\!k•x,

and after some simple manipulations one comes to

L̂lj5
i

\
A2«pj

1

V (
k,P

E
0

`

dt e2~«/\!t t̃~Ĥ01 i«,k!

3e~ i /\!~k2/2m!te~ i /\!~k•p̂/m!t

3e2~ i /\!k• x̂

3^lue2~ i /\!HmtbP1~k/2!
† bP2~k/2!e

~ i /\!Hmtuj&,

to be inserted into Eq.~4.1!. Before doing this let us intro-
duce the useful notation

e2~ i /\!HmtAe~ i /\!Hmt5(
D

e2~ i /\!Dt~A!D ,

~A!D5(
E

uE1D&^E1DuAuE&^Eu,

~A!D
† 5~A†!2D .

We have
1

\ (
j,l

L̂lj%̂L̂lj
† 5

2«

\3V2 (
k,P

(
k8,P8

E
0

`

dt e2~«/\!te~ i /\!~k2/2m!te~ i /\!~k•p̂/m!t t̃~Ĥ01 i«,k!e2~ i /\!k• x̂%̂e~ i /\!k8• x̂t̃ †~Ĥ01 i«,k8!

3E
0

`

dt8e2~«/\!t8e2~ i /\!~k82/2m!t8e2~ i /\!~k8•p̂/m!t8

3 (
D,D8

e2~ i /\!Dt TrHF
@~bP1~k/2!

† bP2~k/2!!D%m~bP82~k8/2!

†
bP81~k8/2!!2D8#e

i /\D8t8,
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and similarly for the anticommutator part. An important sim
plification takes place if one can use symmetry under ti
and space translations. Time translation invariance occur
at least with reference to the interaction with the micros
tem, matter can be considered at equilibrium; then

TrHF
~AD%mB2D8!5dD,D8 TrHF

~AD%mB2D!.

Similarly, space translation invariance implies

TrHF
@~bP1~k/2!

† bP2~k/2!!D%m~bP82~k8/2!

†
bP81~k8/2!!2D8#

5dD,D8dk,k8 TrHF
@~bP1~k/2!

† bP2~k/2!!D%m

3~bP82~k/2!
† bP81~k/2!!2D#;

such a symmetry can be implemented at equilibrium in
thermodynamic limit, and can be practically assumed fo
microsystem interacting with a homogeneous portion o
macrosystem. Then one has, also thet, t8 integrals perform-
ing,

2
1

\ H 1
2 (

j,l
L̂lj

† L̂lj ,%̂J 1
1

\ (
j,l

L̂lj%̂L̂lj
†

52
«

\V2 (
k,D S H %̂,e~ i /\!k• x̂

1

k•p̂

m
1

k2

2m
2D2 i«

3 t̃ †~Ĥ01 i«,k! t̃~Ĥ01 i«,k!

3
1

k•p̂

m
1

k2

2m
2D1 i«

e2~ i /\!k• x̂J
22

1

k•p̂

m
1

k2

2m
2D1 i«

t̃~Ĥ01 i«,k!e2~ i /\!k• x̂

3%̂e~ i /\!k• x̂ t̃ †~Ĥ01 i«,k!
1

k•p̂

m
1

k2

2m
2D2 i«D

3%M~k,D!,
e
if,
-

e
a
a

where

%M~k,D![TrHFF S (P
bP1~k/2!

† bP2~k/2!D
D

3%mS (
P

bP2~k/2!
† bP1~k/2!D

2D
G , ~4.2!

or, equivalently, introducing thex̂, p̂-dependent amplitude

ť~Ĥ01 i«,k,x̂!5e~ i /\!k• x̂t~Ĥ01 i«,k!e2~ i /\!k• x̂

in the form

2
1

\V2 (
k,D S H %̂, ť†~Ĥ01 i«,k,x̂!

«

S k•p̂

m
2

k2

2m
2D D 2

1«2

3 ť~Ĥ01 i«,k,x̂!22«e2~ i /\!k• x̂ť~Ĥ01 i«,k,x̂!

3
1

k•p̂

m
2

k2

2m
2D1 i«

%̂
1

k•p̂

m
2

k2

2m
2D2 i«

3 ť†~Ĥ01 i«,k,x̂!e~ i /\!k• x̂%M~k,D!. ~4.3!

Introducing this explicit representation in Eq.~2.10!, one ob-
tains the typical master equation of Brownian motion, th
can be further simplified in the assumption of small mome
tum transfer, i.e., expanding the expression with respec
k• x̂ and k•p̂. Exploiting the fact that%M(0,D) contains a
dD,0 factor, one can immediately see by inspection that
k50 contributions cancel each other, provided the effect
T matrix is a slow function of energy,

^ku%̂uf& t̃~Ek,0! t̃ †~Ef ,0!'^ku%̂uf& 1
2 @ t̃ †~Ek,0! t̃~Ek,0!

1 t̃ †~Ef ,0! t̃~Ef ,0!#;

on the other hand, for a homogeneous medium thek50
contributions are equal to those obtained by writing the c
relation function as a factorized product
o
rward
TrHFF S (P
bP1~k/2!

† bP2~k/2!D
D

%mS (
P

bP2~k/2!
† bP1~k/2!D

2D
G

→TrHFF S (P
bP1~k/2!

† bP2~k/2!D
D

%mGTrHFF S (P
bP2~k/2!

† bP1~k/2!D
2D

%mG ,

provided we assume the condition of ‘‘normal density fluctuations,’’ (^N2&2^N&2)/V2!no
2 . Instead of restricting the sum t

the kÞ0 contributions, we can therefore subtract from the correlation function its factorized part. After straightfo
manipulations, using

(
P

bP1~k/2!
† bP2~k/2!5E d3x c†~x!c~x!e~ i /\!k•x, TrHF

@~A!D%m~B!2D#5E dt

2p\
e2~ i /\!Dt^BA~ t !&,

we come to
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TrHFF S (P
bP1~k/2!

† bP2~k/2!D
D

%mS (
P

bP2~k/2!
† bP1~k/2!D

2D
G2TrHFF S (P

bP1~k/2!
† bP2~k/2!D

D

%mG
3TrHFF S (P

bP2~k/2!
† bP1~k/2!D

2D

%mG
5E dt

2p\
e2~ i /\!DtE d3xE d3y e~ i /\!k•~x2y!^dN~y!dN~x,t !&,

where

^N~x!&5TrHF
@N~x!%m#, dN~x!5N~x!2^N~x!&,

and, finally,

2
1

\ H 1
2 (

j,l
L̂lj

† L̂lj ,%̂J 1
1

\ (
j,l

L̂lj%̂L̂lj
† 52

«

\V2 (
k,D S H %̂,e~ i /\!k• x̂

1

k•p̂

m
1

k2

2m
2D2 i«

t̃ †~Ĥ01 i«,k! t̃~Ĥ01 i«,k!

3
1

k•p̂

m
1

k2

2m
2D1 i«

e2~ i /\!k• x̂J 22
1

k•p̂

m
1

k2

2m
2D1 i«

t̃~Ĥ01 i«,k!

3e2~ i /\!k• x̂%̂e~ i /\!k• x̂ t̃ †~Ĥ01 i«,k!
1

k•p̂

m
1

k2

2m
2D2 i«D

3E dt

2p\
e2~ i /\!DtE d3xE d3y e~ i /\!k•x^dN~y!dN~x1y,t !&. ~4.4!

Thanks to the last term of Eq.~2.10!, it is possible to take into account collisions that modify the state of the macrosc

system~see Ref.@7#!. The probability per unit time of such collisions is given by the trace of 1/\ (j,lL̂lj%̂L̂lj
† , as seen in Sec

II. In the case considered this trace may be written as

2p

\

no

~2p\!4 E d3kE d3k^ku%̂uk&u t̃~Ek ,k2k!u2E dtE d3xe2~ i /\!@~k2/2m!2~k2/2m!#t1~ i /\!~k2k!•xE d3y
1

N
^dN~y!dN~x1y,t !&,

~4.5!

thus again recovering the van Hove structure for the scattering cross section@compare Eq.~2.13!#, with the difference that now
the system is considered to be homogeneous, so that only the momentum distribution of the incoming microsyst
relevance. Let us observe that subtraction of the uncorrelated part of the response function accounts for the fact
diffuse scattering, that is, scattering that does not leave the macroscopic system unchanged@3#, contributes to this term. We
now specialize to the case of neutrons, adopting the Fermi pseudopotential given by Eq.~3.4!, so that Eq.~4.5! becomes

1

\
no

b2

m2 E d3kE d3k^ku%̂uk&ScS 1

\
@k2k#,

1

\ F k2

2m
2

k2

2mG D , ~4.6!

where, denoting byv andq energy and momentum transfer, respectively,

Sc~q,v!5
1

2pN E dtE d3x e2 i ~vt2q•x!E d3y^dN~y!dN~x1y,t !&. ~4.7!
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56 4835INCOHERENT DYNAMICS IN NEUTRON-MATTER INTERACTION
If the momentum distribution of the incoming particle is su
ably peaked aroundp0 with respect to the momentum depe
dence ofSc , we have, from Eq.~4.6!,

nob2

\m2 E d3kE d3k^ku%̂uk&ScS 1

\
@p02k#,vp0

2vkD
5

nob2

\m2 E d3k Sc S 1

\
@p02k#,vp0

2vkD ,

in particular, in the static limit, expression~4.6! becomes

nob2
p0

m E dVqSc~q!5no

p0

m
sd ,

where

Sc~q!5
1

N E d3x eiq•xE d3y^dN~y!dN~x1y!&,

and we have denoted byq the momentum transfer and bysd
the total diffusion cross section per particle. This is the res
derived by Sears for the attenuation of the coherent be
due to incoherent scattering, which he obtained by an ev
ation of the local-field effects, neglected in the equation g
ing the optical neutron dynamics~3.6! ~see Refs.@3,5,18#!. In
our approach, however, the incoherent contribution is
ready present in the equation giving the dynamics of
microsystem, being connected to the thermodynamic pro
ties of the macrosystem through the response func
Sc(q,v). This new feature is obtained by means of the m
general formalism adopted, leading to a master equatio
the Lindblad type for the statistical operator, in which due
the optical theorem a close correlation exists between
incoherent contribution and the imaginary part of the opti
potential which is not connected to absorption. To see
correction to the optical potential let us exploit the simp
relation

Â5Â†, B̂5B̂†,

Û5Â1 i B̂ ⇒ Û%̂2%̂Û†5@Â,%̂#1 i $B̂,%̂%

and write the commutator and anticommutator term of E

~2.10! in the form2( i /\)(Û%̂2%̂Û†). The calculation ofÛ
is essentially given by the anticommutator on the right-ha
side of Eq.~4.4! and the commutator in Eq.~3.5!. In the case
of the Fermi pseudopotential, using Eq.~4.7!, one has

Û5
2p\2

m
noFb2 i

b2

4p E d3kuk&^ku

3E dvkE dVk

k

\
ScS 1

\
@k2k#,

1

\ F k2

2m
2

k2

2mG D G ,
~4.8!

or, in the static limit,

Û5
2p\2

m
noFb2 i

b2

4p E d3kuk&^ku
k

\ E dVqSc~q!G ,
~4.9!
lt
m
u-
-

l-
e
r-
n
e
of

e
l
is

.

d

whereq denotes as usual the momentum transfer. Neglec
diffuse scattering we would haveÛ5(2p\2/m)nob, simply
a c number giving the usual refractive index; the remaini
part is, in a sense, induced by the optical theorem. To co
pare with the results derived by Sears we have to cons
the expression obtained for the static limit~4.9! applied to a
plane wave of momentump0 , which gives an idealized de
scription of the preparation of the incoming microsyste
thus leading to

Û5
2p\2

m
noFb2 i

b2

4p

p0

\ E dVqSc~q!G ; ~4.10!

this expression agrees with the results obtained relying
the idea of local-field corrections~see Ref.@3#, Chap. 4!;
however, here Eq.~4.9! is a direct consequence of the equ
tion driving the dynamics and of ansatz~2.11!. The analysis
that we put forward relies on the assumption that the m
contribution to the dynamics is given by the commuta
term in Eq.~2.10!, while the terms in Eq.~4.1! may, as a first
approximation, be neglected. This leads to an optical
scription, as for the case of neutrons, in which, consider
the dimensionless parameter (2p\2/mE)nob, the terms
other than the commutator are of second order. The oppo
situation takes place if the interaction is such that the m
contribution is given by Eq.~4.1!, while the commutator may
be neglected. This happens when dissipative effects are
dominant, as in the case of Brownian motion mentioned
low Eq. ~4.3!, where incoherent interactions through col
sions involving energy and momentum transfer play
main role, a case we intend to deal with in a future pape

V. EXPERIMENTAL IMPLICATIONS

We now address our attention to potential experimen
implications of the above-introduced description of neutro
matter interaction. Of course possible new features in
dynamics are linked to the presence of the last two terms
the right-hand-side of Eq.~2.10!, as given by Eq.~4.4!, and
such corrections will be generally small, being of seco
order in (2p\2/mE)nob @typically (2p\2/mE)nob<1025

at thermal neutron energies#. In this respect interferometric
experiments, in which the experimental setup is conceive
order to enhance the coherent behavior, should be par
larly relevant: think, for example, of the beautiful expe
ments realized by the Rauch group in Wien exploiting t
perfect crystal neutron interferometer@1,2,14#.

Now consider Eq.~2.10!: the map on the right-hand sid
is affine and trace preserving, and therefore clearly pred
neutron conservation. Nevertheless the last contribu
which offsets the anticommutator term is linked to diffu
scattering: one has neutron conservation if diffuse partic
also contribute to the experimental observation. This is
so for interferometric experiments. In such cases only
wavelike behavior affects the observed dynamics, and t
only the commutator part of the evolution map is of re
evance: the net result is an imaginary correction to the
herent scattering length as in Eq.~4.10!, that is to say a
reduction of the neutron flux responsible for the interferen
pattern. This fact is usually taken into account by adding
imaginary part proportional to the total scattering cross s



re
te
is
in

us
in
so
de
nn
t
ed
q

n
tit
q
ly

of
ot
ce
eu
te

e

-
an

e
,
th

-
s to
ibu-
d
y
g

nd

any

-

the
ery

-of-

cy
ac-

4836 56LUDOVICO LANZ AND BASSANO VACCHINI
tion s t to the phase shift calculated as in Eq.~3.8!, thus
including both absorption and diffuse scattering~see Refs.
@2,20#! according to the formulas

x5x81 ix952noblD1 inos t

D

2
,

exp~ ix!5expS 2 inoblD2nos t

D

2 D .

In the absence of absorption this correction is conside
negligible, and the relevant incident flux is often evalua
simply closing one of the two beam paths. This attitude
however, at least in principle incorrect, as it appears tak
the whole dynamics as given by Eq.~2.10! into account. In
fact, when one closes the path without the sample, diff
neutrons, which are lost for the interference pattern, hav
their path ‘‘labeled’’ by scattering with the sample, may al
contribute to the transmitted intensity. The experimental
vice no longer acts as an interferometer, and therefore ca
select only those neutrons that have undergone coheren
teractions. This additional contribution to the transmitt
neutron flux is given by the trace of the last term of E
~2.10!, that is to say by Eq.~4.6!. In calculating the ampli-
tude of the interference pattern one should therefore rely
simply on the measured transmitted flux, but on this quan
minus the additional incoherent contribution given by E
~4.6!, thus obtaining a reduction of this amplitude: the pure
‘‘optical’’ treatment leads in principle to an overestimate
the visibility of the interference pattern. This is normally n
the case in real experiments, since the angle of acceptan
diffuse neutrons is very small, as for the perfect crystal n
tron interferometer. Let us give some quantitative estima
of the aforementioned effect.

In order to evaluate Eq.~4.6! we have to make a definit
choice for the structure functionSc(q,v), in fact Eq.~4.6! is
given by

A[
1

\
TrH~1!(

j,l
L̂lj%̂L̂lj

†

5
nob2

\m2 E d3kE d3k ^ku%̂uk&

3ScS 1

\
@k2k#,

1

\ F k2

2m
2

k2

2mG D ,

where the quantityA takes diffusion at any angle into ac
count. In the static approximation, for a homogeneous
isotropic medium, such as a liquid or a gas, one has@3#

Sc~q,v!5Sc~q!d~v!,

Sc~q!511noE d3r eiq•r @g~r !21#, ~5.1!

where g(r ) is the pair-correlation function. A possibl
choice forg(r ), allowing Sc(q) to be evaluated analitically
is the following, valid for a dilute hard sphere gas wi
atomic diametera:
d
d
,
g

e
g

-
ot
in-

.

ot
y
.

of
-
s

d

g~r !5 H0,
1,

r ,a
r .a.

The quantity of interest for us isA in its dependence from
the maximal angular acceptancew, determined by the experi
mental apparatus, multiplied by the time the neutron take
go through the sample. Supposing the momentum distr
tion of the incoming particle is sufficiently well peake
aroundp0 , we rewriteA introducing the expression given b
Eq. ~5.1! and multiplying by the time interval, thus comin
to

A~w!52pnob2DE
0

w

du sinuH 12
2pnoa3

~12cosu! S \

ap0
D 2

3F sinS apo

\
A2~12cosu! D

apo

\
A2~12cosu!

2cosS apo

\
A2~12cosu! D G J ,

where cosu5(p0•k)/p0
2. The primitive of this integral can be

straightforwardly evaluated by a change of variables, a

exploiting the fact that in our modelSc(0)512 4
3 pa3no ,

we have an explicit representation of diffuse scattering at
anglew:

A~w!52pnob2DH ~12cosw!13@12Sc~0!#

3S \

ap0
D 2F sinS apo

\
A2~12cosw! D

apo

\
A2~12cosw!

21G J ;

considering in particular smallw, the expression may be ap
proximated as

A~w!.pnob2DH w2Sc~0!1w4F 1

20
@12Sc~0!#S ap0

\ D 2

2
1

12
Sc~0!G1O~w6!J .

Let us now consider the experiments performed using
perfect crystal interferometer. The angular acceptance is v
small, only a few microradians for thermal neutrons@21#.
Taking, for instance, a gaseous sample, an order
magnitude estimate givesA(w).10214, that is to say an
extremely small quantity, in agreement with the accura
obtained using this interferometer based on Bragg diffr
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tion. An interferometer based on a different physical pr
ciple could possibly lead to a higher angular acceptance,
enhancing this effect connected to diffusion. In view of t
next equation~5.2!, a completely different situation arises
one considers systems with abnormally large density fluc
tions, as would be the case near a first-order phase-trans

Another point of interest is the linear dependence
Sc(0) of the leading term inA~w!. The quantitySc(0) is
particularly relevant from the physical point of view, bein
connected to the isothermal compressibilityxT and to the
fluctuations in the number of particles in the sample@22#:

Sc~0!5nokBTxT5
~DN!2

N
. ~5.2!

The actual value ofSc(0) cannot be measured experime
tally from scattering experiments, and has to be obtained
an analytical continuation. The analysis we propose co
provide an independent way to measureSc at q50. In fact in
the static approximation, independently of the particu
form of Sc(q), for very smalluqu, that is to say for very smal
w, one has, in a good approximation,

A~w!.pnob2DSc~0!w2.

The value ofSc(0) could then be obtained, at least in pri
ciple, comparing the amplitude of the interference patt
with the measured transmitted intensity.

VI. SUMMARY AND OUTLOOK

The example of neutron interaction with matter has be
discussed inside the approach outlined in Refs.@7–9# to de-
scribe the subdynamics of a microsystem interacting wit
system having many degrees of freedom. The formal sch
leads to a generator for the irreversible time evolution of
Lindblad form, whose expression relies on suitable choi
for the potential term related to theT matrix and the statis-
tical operator describing the thermodynamic state of the s
tem. In the example considered the main ingredient is gi
by the Fermi pseudopotential adopted to describe
neutron-nucleus interaction in impulse approximation. Th
m
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from Eq.~2.7! we obtain, neglecting the incoherent contrib
tion, the equation used by Sears to describe all neutron o
cal phenomena, as well as known expressions for the in
of refraction. The incoherent contribution is necessary to f
fill the optical theorem and take diffuse scattering, that
tenuates the coherent beam, into account. We have
shown how it may be connected to properties of the mac
system, as expressed by the dynamic structure function.
thermore possible experimental implications were discus
in Sec. V.

Even though it introduces a smaller correction the inc
herent contribution is very important from the theoretic
point of view. We expect that it will help in studying th
tricky borderline between a pure optical wavelike behav
and the fully incoherent particlelike one, based on a diffus
equation: in fact, Eq.~2.10! leads in a direct way to the
theory of Brownian motion, as stressed under Eq.~4.3!; a
somewhat similar treatment, in the case of an ideal gas,
given in Ref. @23#. It is not surprising that the incoheren
contribution to the dynamics has grown out of a thoroug
quantum-mechanical treatment, as shown by the typ
quantum-structure of the Lindblad equation, relying on no
commutating operators, in which an essential role is pla
by the statistical operator%, rather then by the wave functio
c. This point is of central relevance, since the terms wh
describe the incoherent dynamics cannot be introduced in
formalism of the wave function, and are therefore unavo
ably absent in an optical-like treatment, simply reminisce
of classical optical descriptions.

We hope that this study of the emergence of incohere
in neutron-matter interaction will lead to a better understa
ing of the general problem of irreversibility and of descri
tion of nonequilibrium systems. Typically, coexistence of
incoherent particlelike behavior, described by a quant
Boltzmann equation, and a wave-function description
means of Gross-Pitaevskii equation, is important for und
standing Bose-Einstein condensation@24#. In Refs. @8,9# it
was shown how the formalism we used in the present pa
copes with the more general problem of nonequilibriu
macroscopic systems. However, a systematic treatmen
irreversibility in the very similar problem of atomic interfer
ometry involves QED and is a future challenge.
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