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Abstract

Since the early 2000s, digital soil maps have been successfully used for various

applications, including precision agriculture, environmental assessments and

land use management. Globally, however, there are large disparities in the

availability of soil data on which digital soil mapping (DSM) models can be

fitted. Several studies attempted to transfer a DSM model fitted from an area

with a well-developed soil database to map the soil in areas with low sampling

density. This usually is a challenging task because two areas have hardly ever

the same soil-forming factors in two different regions of the world. In this

study, we aim to determine whether finding homosoils (i.e., locations sharing

similar soil-forming factors) can help transferring soil information by means of

a DSM model extrapolation. We hypothesize that within areas in the world

considered as homosoils, one can leverage on areas with high sampling density

and fit a DSM model, which can then be extrapolated geographically to an area

with little or no data. We collected publicly available soil data for clay, silt,

sand, organic carbon (OC), pH and total nitrogen (N) within our study area in

Mali, West Africa and its homosoils. We fitted a regression tree model between

the soil properties and environmental covariates of the homosoils, and applied

this model to our study area in Mali. Several calibration and validation strate-

gies were explored. We also compared our approach with existing maps made

at a global and a continental scale. We concluded that geographic model

extrapolation within homosoils was possible, but that model accuracy dramati-

cally improved when local data were included in the calibration dataset. The

maps produced from models fitted with data from homosoils were more accu-

rate than existing products for this study area, for three (silt, sand, pH) out of

six soil properties. This study would be relevant to areas with very little or no

soil data to carry critical soils and environmental risk assessments at a regional

level.
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Highlights

• Soil mapping models were fitted with soil data within the homosoils

of Mali.

• The fitted models were applied to our study area.

• Model accuracy dramatically improved when including local data.

• Homosoil maps were more accurate for 3 out of 6 soil properties compared

to global and continental maps.

• New opportunity to map the regional soil pattern of areas with limited soil

data coverage.
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1 | INTRODUCTION

Digital soil mapping (DSM) has gained importance for
the last two decades (Minasny and McBratney, 2016)
and soil maps have been effectively used in several
applications, including precision agriculture (Shatar and
McBratney, 1999), land degradation mitigation (Raina
et al., 1993) and environmental and land use management
(Hartemink, 2002). Digital soil maps are usually produced
with statistical techniques that relate soil data collected at
sites with spatially exhaustive environmental covariates
known to influence soil formation. Common techniques
used for DSM are geostatistics (Heuvelink and
Webster, 2001) and machine learning (Wadoux et al., 2020).

Globally however, there are large disparities in the
availability of soil data on which DSM models can be
fitted. Soil data density varies dramatically among areas
(Minasny et al., 2013). For example, Hengl et al. (2017a)
had a sampling density of 1 sample per 1000 km2 for
mapping a wide range of soil properties globally, whereas
Hengl et al. (2017b) had a sampling density of 3 samples
per 10,000 km2 for mapping soil minerals in the whole
continent of Africa. This disparity can be attributed to
the priority given to soil data collection (Minasny
et al., 2013) and to the lack of funding in different coun-
tries. Several areas in the world still have a relatively low
soil data coverage available publicly. This precludes the
development of DSM because DSM models are data-
driven and hence rely on the quantity and spatial distri-
bution of the available soil data (Wadoux et al., 2020).
One obvious solution to this problem is to collect data in
the area of interest through an additional soil survey,
which requires investment. Another solution that may
appear cheaper in terms of new soil data collection and
more readily applied is to extrapolate DSM models from
one area to another. Extrapolation of DSM models relies

on the assumption that the empirical relationships
between the soil property and the environmental covari-
ates are structured similarly between the two areas so
that they can be transferred.

Axiomatically, two regions with similar soil-forming
factors should develop similar soils. Any soil is a function
of factors of soil formation (Dokuchaev, 1883). This con-
cept was later adapted by Jenny (1941) through a state fac-
tor model of soil formation which provided a convenient
theoretical basis for McBratney et al. (2003)' scorpan
equation for DSM. Using the principle that similar soil
forming factors lead to similar soils, several studies
attempted to extrapolate a DSM model between two areas
which were assumed to have similar soils (e.g., by Bui
and Moran, 2003; Thompson et al., 2006; Lemercier
et al., 2012; Cambule et al., 2013; Silva et al., 2016; Abbas-
zadeh Afshar et al., 2018; Du et al., 2021; Summerauer
et al., 2021). Grinand et al. (2008) predicted soil classes
between two adjacent areas using different environmental
covariates (topography, lithology, land-cover) and con-
cluded that upscaling the covariates to represent the
regional trend of soil spatial distribution significantly
improved predictions accuracy. Malone et al. (2016) pre-
dicted soil spectral indices using terrain attributes across
two areas in the same region and found that the extrapo-
lated model's accuracy was dependent on the covariate
similarity between the two areas. Angelini et al. (2020)
predicted quantitative soil properties across geographically
remote areas using structural equation modelling that
combines expert pedological knowledge and statistical cor-
relation. They concluded that differences in the soil-
covariates relationship between the two areas were the
main causes for model prediction accuracy. Overall, these
studies concluded that extrapolation is a challenging task
and that the model's accuracy decreased when applied to
the extrapolated area.
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In our previous study (Nenkam et al., 2022), we used
the homosoil concept to find areas in the world with sim-
ilar soils, with the objective of obtaining new soil data for
an area of interest. Homosoils are any two soils in the
world sharing similar soil-forming factors. This concept
assumes that soils with similar soil-forming factors have
undergone similar soil-forming processes in the past lead-
ing to similar soils today. Homosoils are relevant for
DSM model extrapolation because through the mathe-
matical calculation of covariate similarity indices, it is
possible to find soils that might be similar. This may be
very useful for DSM purposes, because this information
can be used to delineate areas from which DSM models
can be fitted or areas within which they can be trans-
ferred geographically, under the assumption that the soil-
covariate relationship is similar.

In this study, we aim to determine whether finding
homosoils can help the geographic extrapolation of a
DSM model. We hypothesize that within areas in the
world considered as homosoils, we can leverage on areas
with high sampling density and fit DSM models, which
can then be applied in an area with little or no data. The
paper is organized as follows. First, we find homosoils of
a study area and collect global soil data available within
homosoils. Next, we fit a DSM model using these data,
and transfer it to an area with little/no data. Finally, we
validate the predicted soil maps and compare them with
existing DSM products. We consider clay, organic carbon,

pH, sand, silt, and total nitrogen as soil properties of
interest.

2 | MATERIAL AND METHODS

2.1 | Study area

Our study area covers 440,000 km2 in the Southern part
of Mali in Western Africa (Figure 1). The area is charac-
terized by a North–South gradient of vegetation: open
shrub savanna in the north, dense shrub savanna in the
center, and lightly wooded savanna and woody woodland
in the south (Rian et al., 2009). The parent materials
dominating the area are igneous (intermediate volcanic,
basic and intermediate plutonic) and sedimentary (evapo-
rites and unconsolidated sediments) rocks as shown in
Figure 1. The semi-arid zone in the north is dominated
by Aridisols and receives less than 400 mm of annual
rainfall. The Sudanian zone at the center is dominated by
Alfisols (annual rainfall <800 mm), while Ultisols and
Vertosols dominate the Sudanian-Guinean climatic zone
in the south and receive up to 1200–1400 mm of rainfall
on average annually (FAO, 2000; Giannini et al., 2017).
These soils are often physically and chemically degraded
(erosion, low soil nutrient content, acidification, alumin-
ium and iron toxicity) due to unsustainable management
practices (Mbow et al., 2015; Lal and Stewart, 2019).

FIGURE 1 Area of interest

located in the southern part of

Mali. The map depicts the major

parent material that spans over

the study area.
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The main crop types in the study area are rice, cotton,
maize, peanut, sorghum and pearl millet.

2.2 | Environmental covariates

We used an initial set of 40 environmental covariates as
proxies for the state factors of soil formation. Note that,
state factors refer to soil-forming factors where each fac-
tor comprises one or more environmental covariates, as
shown in Table 1. The covariates consisted of 1 parent
material covariate (16 classes), 3 topographic covariates,
12 bio-vegetal covariates and 24 climate covariates. The
original spatial resolution of these covariates spans from
30 m � 30 m to 1 km � 1 km. All covariates were re-
sampled to the same spatial resolution with grid cells of
1 km � 1 km resolution using the pyramiding policy
toolbox of Google Earth Engine (Gorelick et al., 2017),
which computes the mean or the mode (category that
appears most frequently within the 1 km � 1 km cell)
of lower-level pixels for quantitative or categorical
covariates, respectively. Next, we applied principal com-
ponents analysis to reduce the set of climate and bio-
vegetal covariates and selected a number of components
that explained at least 97% of the original dataset vari-
ance. The parent material covariate (lithology) was con-
verted from categorical to continuous using non-metric
multidimensional-scaling (nMDS). More information on

nMDS and how it was used can be found in the Supple-
mentary Material. Table 1 shows the final list of 18 cov-
ariates after dimension reduction.

2.3 | Homosoils

Homosoils were found by the method described in Nen-
kam et al. (2022), which we summarize here. The study
area was grouped based on the environmental covariates
described in Table 1 using the k-means clustering
method. This was done for computational efficiency,
because a homosoil is found for a spatial location and
there are hundreds of thousands spatial locations in the
area. Therefore, to limit the number of spatial locations
for which we find homosoils, we classified our study area
into five homogeneous clusters whose pattern was inline
with the major agro-climatic regions (Andrieu
et al., 2017). We proceeded by finding the homosoil of
each cluster centroid, leading to five homosoils corre-
sponding to five spatial locations. Finding the homosoil
for a spatial location is done in three steps:

2.3.1 | First, find the homoclime

We sought the homoclime (any two locations in the
world with similar climatic conditions) to the spatial
locations by computing the similarity indices between
its climate and that of each node of a fine grid
(1 km � 1 km) of climate covariates covering the world.
We consider as homoclime the set of nodes whose simi-
larity indices were smaller than a threshold value. A
threshold equivalent to the 10th percentile of the similar-
ity indices was used. This helped remove areas with dif-
ferent climatic conditions from being considered as
homoclime.

2.3.2 | Second, build a covariate database

We built a numerical database of environmental covari-
ates within the homoclime's spatial extent. Covariates
corresponding to each state factor were obtained based
on their global availability (Table 1) and expert pedologi-
cal knowledge on their impact on soil-forming processes.

2.3.3 | Third, identify homosoils

We identified homosoils by (i) computing the similarity
indices between each state factor of the spatial location
and that of each node of the fine grid of covariates within

TABLE 1 Soil forming factors and their corresponding

environmental covariates and sources.

State
factor Environmental covariates Source

Climate A set of 10 first principal
components obtained from
24 continuous covariates

Fick and
Hijmans
(2017)

Lithology Lithological classes - 1st level
elevation

Hartmann
and
Moosdorf
(2012)

Topography Slope Rabus et al.
(2003)

Multiscale position
topographic index

Theobald
et al. (2015)

Bio-vegetal First three principal
components of 12
continuous bio-vegetal
covariates

Justice et al.
(2002)

Note: The set of covariates used for finding homosoils are obtained after
dimension reduction. Categorical covariates were transformed to
quantitative covariates prior to this step. We refer to the supplementary

material in Nenkam et al. (2022) for the complete set of covariates before
dimension reduction.
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the spatial extent of the homoclime, and (ii) average
these similarity indices with each state factor being
equally weighted. We consider as homosoil the set of
nodes whose similarity indices are smaller than a thresh-
old value. The threshold equivalent to the 20th percentile
of the similarity indices was selected as a cut-off value
based on trial and error. As discussed in Nenkam et al.
(2022), the cut-off value mainly controls the spatial extent
of the resulting homoclime and homosoils. The Mahala-
nobis distance (Webster, 1977; De Maesschalck
et al., 2000) was used as a similarity index to find both
the homoclime and the homosoils.

2.4 | Collecting soil data

Within homosoils, we collected soil data from the World
Soil Information Services (WoSIS, Batjes et al., 2020). The
soil depth intervals were harmonized using a mass pre-
serving soil-depth function spline (Bishop et al., 1999), to
the standard GlobalSoilMap specification depth intervals
0–5, 5–15, 15–30, 30–60, 60–100 and 100–200 cm. The soil
properties collected are clay, silt and sand (%), organic
carbon (OC, g/kg), pH (H20) and total nitrogen (Total N,
g/kg). The clay, silt and sand values were harmonized so
that their sum equals 100%. These soil properties were
selected primarily for their importance for crop growth
and availability in the WoSIS dataset.

2.5 | Extrapolation

2.5.1 | Model calibration and extrapolation

We used a model-tree, cubist, based on the M5 algorithm
of Quinlan (1992) to define the relationship between the
soil data and the environmental covariates. The tree is
built by partitioning the covariates into different rules
called nodes. Each node consists of a covariate-based con-
dition and an ordinary least square regression model
used to make predictions. The condition at a node can be
nested with the condition of another node (child node)
up to a terminal node referred to as a leaf. Predictions are
made at each node, and smoothed using the predictions
of the parent node. Predictions made by the model at the
terminal node are the final predictions. A cubist model
has two primary parameters: committees and neighbour.
Committees is a boosting-like parameter used to adjust
predictions by creating an iteration of rule-based models
so that predictions from one model is adjusted by the pre-
dictions from the previous model. The estimates from
these individual models are then averaged to generate
the final prediction. On the other hand, neighbour

defines the number of neighbouring points from the
training set and is used to adjust predictions when pre-
dicting new samples. Model trees like cubist are advanta-
geous in that the logical construct of the model rules
require little data pre-processing and can handle non-
linear relationships between the explanatory and the
response variables (Kuhn and Johnson, 2013).

Cubist models were calibrated for each soil property
and horizon depth interval using two calibration strate-
gies. In the first calibration strategy, models were cali-
brated using WoSIS soil data within homosoils
excluding those of the study area. Models were then geo-
graphically extrapolated to predict the soil property
within the study area. In the second calibration strategy,
models were calibrated using the WoSIS soil data col-
lected for both within homosoils and within the study
area, and then used to predict the soil property in the
study area. The objective of the first strategy is to evalu-
ate the prediction accuracy when the model (built
within homosoils only) is extrapolated geographically,
while the second strategy evaluates the prediction accu-
racy of the model when the training dataset include
both the data collected within homosoils and within the
study area. Maps of soil properties at 1 km � 1 km reso-
lution were generated for each depth interval. The map
predictions of clay, silt and sand at any prediction loca-
tion were normalized to satisfy the condition that their
sum should be equal to 100%.

The cubist models were calibrated with 10 commit-
tees for the two calibration strategies, using 0 and 9 neigh-
bours for the prediction of the first and second
calibration strategies, respectively. The implementation
was provided by the Cubist package (Kuhn and
Quinlan, 2020) in the R programming language.

2.5.2 | Map validation

The maps generated from the two models were validated
using the following three approaches: the first approach
was used to validate the maps from the first calibration
strategy. This approach is the most common method for
map validation. The second and third approaches were
used to validate maps from the second calibration strat-
egy. When we used the first calibration strategy, we vali-
dated the predictions using the WoSIS data for the study
area (within Mali). Recall that in this calibration strategy,
the WoSIS data within the study area were not used for
model calibration. Predictions made at validation loca-
tions were compared to the measured values with statisti-
cal indices.

The second approach for validation made use of
models calibrated with the second calibration strategy.
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Predictions were obtained through a 10-fold cross-
validation of the WoSIS data within the study area, and
compared to the measured values of the soil property
using statistical indices.

Finally, maps, from models calibrated with the
second strategy, are validated using an independent
dataset obtained from multiple sources (i.e., Doumbia
et al., 2009; Benjaminsen et al., 2010; Verbree
et al., 2015; Degerickx et al., 2016; Falconnier et al.,
2016; Bayala et al., 2020; Birhanu et al., 2020; Huet
et al., 2020). The units of the soil properties in this
dataset were harmonized to that of the WoSIS dataset.
Their depth intervals were also standardized. However,
because most of the sources measured soil properties
at 0–15 cm depth interval, the values of the 0–5 and
5–15 cm samples were combined to 0–15 cm where
appropriate, and only this dataset was used for valida-
tion. Since this independent data exhibit spatial clus-
tering, we use a model-based validation approach to
obtain the validation statistics (Brus et al., 2011; de
Bruin et al., 2022). This is done by computing the resid-
uals at validation location, and using them to estimate
a variogram of the residuals. The sample variogram is
fitted by the Methods-of-Moment with a spherical cor-
relation function. We use the fitted variogram to gener-
ate 500 simulations of the residuals over a fine grid
(1 km � 1 km) covering the study area using sequential
Gaussian simulation (Webster and Oliver, 2007). From
the 500 residuals fields, we compute the expected
values of the validation statistics and their 0.05 and
0.95 quantiles.

The validation statistics used to evaluate and compare
the maps are the mean error (ME):

ME¼ 1
n

Xn

i¼1

z sið Þ�bz sið Þ, ð1Þ

where z sið Þ and bz sið Þ are observed and predicted soil
property at location si i¼ 1,…,nð Þ, respectively, and n is
the number of validation locations. The ME has an opti-
mal value of 0. Positive and negative ME values indicate
under-prediction and over-prediction, respectively.

The root mean squared error (RMSE):

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1

z sið Þ�bz sið Þð Þ2
s

: ð2Þ

The RMSE is a nonnegative statistic with no upper bound
and optimal value of 0. It indicates the magnitude of the
error in the soil property's unit.

The Pearson's r correlation coefficient:

r¼
PN

i¼1 z sið Þ� zð Þ bz sið Þ�bz
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 z sið Þ� zð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 bz sið Þ�bz

� �r : ð3Þ

where z and bz are the mean of the measured and pre-
dicted values, respectively.

The modelling efficiency coefficient (MEC, Janssen
and Heuberger, 1995) which quantifies the improvement
made by the model over using the mean of the validation
data as prediction,

MEC¼ 1�
Pn

i¼1 z sið Þ�bz sið Þð Þ2
Pn

i¼1 z sið Þ� zð Þ2 : ð4Þ

A value of 1 indicates a perfect prediction, while a value
of 0 indicates that the model prediction is as accurate as
using the mean of the validation data as prediction. Note
that the MEC can be negative if the residual variance is
larger than the variance of the validation data.

2.5.3 | Map comparison with existing
products

The maps generated using the second calibration strategy
were further compared against existing digital soil maps pro-
duced at continental (i.e., iSDAsoil, Hengl et al., 2021) and at
global (i.e., SoilGrids, Hengl et al., 2017a) extents. These
maps were also generated using the WoSIS database. We
compared them using two approaches: first, we carried a
visual comparison to evaluate the predicted spatial pattern of
the soil property at 0–15 cm soil depth interval. Second, we
validated the maps using the third validation approach on
an independent dataset and compared the resulting valida-
tion statistics. Because of the computational demand to carry
the third validation strategy, the global and continental maps
were brought to a common resolution of 1 km � 1 km.

3 | RESULTS

3.1 | Homosoils

The homosoil areas for the five cluster centroids were
merged and the final map is shown in Figure 2. The col-
ored area represents the spatial extent of the homosoils
and shows that many areas in the world have similar
soils as the study area in Mali. These areas include
Mexico, Eastern Brazil and Northern Argentina in Amer-
ica, the Sahelian band in Africa, Southern Africa, Yemen,
Pakistan, India, Myanmar, Thailand and northern
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Australia. The Homosoils of our study area, therefore, fall
within semi-arid and tropical regions of the world.
Figure 2 also shows negligible homosoil areas in Eastern
American, Guatemala, Venezuela and East China.

3.2 | Data collected

The black dots in Figure 2 are the soil OC samples col-
lected from WoSIS for the soil depth interval 5–15 cm.
Many areas within homosoils have high sampling density,
such as in inter-alia Western Mexico (365 samples), Eastern
Brazil (102 samples), the center of the Sahelian band (Bur-
kina Faso: 648, Niger: 451, and Nigeria: 408). India and the
eastern part of the Sahelian band (Tchad, Central Republic,
Sudan, Ethiopia and Kenya), conversely, have few samples
sparsely distributed. Despite the large areas covered by the
latter, they amount to 197 samples.

The total number of soil samples collected for both
the study area and the homosoils for all soil properties
and depth intervals is presented in Figure 3. Clay had the
largest number of soil samples in both areas (565 and
6123 sample for the 5–15 cm intervals within the study
area and homosoils, respectively), while OC had the low-
est number of samples (450 samples at 5–15 cm) within
the study area and total N the lowest number in the
homosoils (3748 samples at 5–15 cm). Total N was, over-
all, the property with the lowest number of samples. For

all properties, the number of available samples decreased
with depth. The deepest depth interval (100–200 cm)
always had the smallest number of samples.

Figure 4 shows the boxplots of the soil properties
within the study area and within homosoils. The spread
of the soil property values within homosoils was nearly
always larger than the spread of the soil property within
the study area. Figure 4 also indicates that the average
value of soil properties within homosoils and the study
area were different. The pH, sand and total N content
were larger for homosoils, whereas soils in the study area
had a relatively high and constant silt content across all
depth intervals. For example, 75% of the measured values
of silt were larger than 19%. The average value of silt con-
tent in Mali was also 60% higher than that within homo-
soils. Clay content increased with depth, while soil OC
and total N content decreased with depth. Overall, the
soil properties in the study area in Mali and in its homo-
soils showed disparities in the range of values but similar
trend across depth intervals.

3.3 | Model calibration and validation

Figure 5 shows the validation statistics (i.e., ME, RMSE,
r and MEC) for the first and second validation
approaches. Validation approaches 1 and 2 refer to vali-
dation of models calibrated using the homosoils only,

FIGURE 2 Homosoils of the study area. These homosoils extend from the far west in Western Mexico, through the Sahelian band and

southern Africa to India and northern Australia. The black dots are locations of soil OC samples collected from WoSIS for the 5–15 cm depth

interval which fall within the homosoil areas
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Sand (%) Silt (%) Total nitrogen (g/kg)
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FIGURE 4 Boxplot of clay (%), OC (g/kg), pH, sand (%), silt (%) and total N (g/kg) collected within the study area and its homosoils.

The summary statistics are available in the supplementary material
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200 300 400 500 2000 4000 6000

100−200

60−100

30−60

15−30

5−15

0−5

Number of Samples

D
e

p
th

 (
c

m
)

Soil properties

Clay

Organic carbon

PH

Sand

Silt

Total nitrogen

FIGURE 3 Number of soil samples collected from WoSIS within the study area and the homosoils for each soil properties and for six

depth intervals (0–5, 5–15, 15–30, 30–60, 60–100, 100–200 cm). Lines are added for visualisation purposes
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and homosoils plus data in Mali, respectively, for each
soil property and soil depth interval. Figure 5 shows a sig-
nificant difference between the two model calibration
strategies. The models validated using the second valida-
tion approach overall performed better than those vali-
dated using the first validation approach, as indicated by
the ME and RMSE which were always closer to zero than
those of the first calibration strategy. The ME and RMSE
from validation approach 2 were on average 100% and
32% smaller than those from validation approach 1. The
Pearson's r correlation values of the second validation
approach were on average 190% higher than those of the
first validation approach, indicating a better linear rela-
tionship between the measured and predicted values by
the model. Finally, the MEC of the first validation

strategy was nearly always negative for all soil properties
and all horizon depth intervals. This suggests that the
models from the first calibration strategy performed
poorly, and that using the mean of the measured values
as an estimate would be a better predictor than the pre-
dictions from the models from the first calibration strat-
egy. Models from the second calibration strategy,
conversely, had positive MEC values (on average 160%
larger than that from the first calibration strategy). Thus,
Figure 5 shows that the performance of an extrapolated
model calibrated on homosoils values of soil properties
dramatically changed whether or not it included training
dataset from the area of study within Mali.

While maps generated by the second calibration strat-
egy were on average more accurate, Figure 5 further
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shows that the accuracy of the model predictions vali-
dated with this second approach varied greatly between
soil properties and depth intervals. The accuracy of
models for clay, silt and sand was rather constant across
soil depth intervals while it was not the case for that of
pH, OC and total N. The ME values of the second valida-
tion approach show that predictions were unbiased.
However, the model predictions for silt and pH always
overestimated and underestimated the measured values,
respectively. The model accuracy of pH increased with
depth, while that of OC and total N showed an opposite
trend, as indicated in Figure 5 by the increase of the aver-
age error indices (ME and RMSE) and the decrease in
r and MEC values for pH, and by the validation statistics
of OC and total N showing an opposite trend with depth.
For instance, for OC, the ME and RMSE values at soil
depth 0–5 cm were 0.47 and �0.3 g/kg respectively, while
they were �0.06 and 1.8 g/kg at soil depth 100–200 cm.
This trend can be attributed to the variance of the mea-
sured values which was increasing with depth for pH,
whereas decreasing with depth for OC and total N
(Figure 4). Overall, for the second validation strategy,
clay had the best prediction accuracy as indicated by the
relatively high and stable values across depth intervals of
the MEC (the average value is 0.31 across depth intervals)
and r (the average value is 0.59 across depth intervals).
Conversely, total N had the lowest prediction accuracy
with an average MEC and r values of 0.08 and 0.51,
respectively.

Table 2 shows the validation statistics obtained by the
third validation approach for the 0–15 cm soil depth
interval along with their 90% interval. The lower and
upper limits of the 90% intervals were represented by the
0.05 and 0.95 quantiles obtained from 500 realizations of
the residuals and denoted q0.05 and q0.95. Recall that this
validation strategy refers to the validation of maps
obtained by the second calibration strategy. The negative
ME values show that the maps are overestimating the soil
properties, with the exception of sand, whose ME value
was positive. The maps explained at least 15% of the vari-
ation of the measured values, for all soil properties.

Positive values of the MEC are large for total N (MEC is
0.53) and relatively low for pH (MEC is 0.15). The 90%
interval of the validation statistics, however, showed
large variation in the range of values. The magnitude of
the MEC variation, for example, was largest for OC (1.40)
and lowest for pH (0.44).

3.4 | Maps and comparison with existing
products

Figure 6 shows the maps of clay content predicted with
models from the second calibration strategy for all soil
depths. The maps show considerable spatial variation in
clay content over the area. Large clay content (i.e., clay
>40%) was consistently found in the East and West of the
center of the study area across all soil depth intervals,
while the northern part of the area consistently had
the lowest clay content (clay ¡ 10%). Moreover, clay
content in the study area in Mali increased with depth;
the 0–5 cm soil depth interval contains 18% clay on aver-
age, while the 60–100 and 100–200 cm depth intervals
contain 31% and 28%, respectively.

Figure 7 shows maps of all soil properties for the top-
soil (0–5 cm). The maps show substantial magnitude in
spatial variation but a similar pattern for all soil proper-
ties. There is a south–north decreasing gradient except
sand and pH which increase towards the North. The
southern part of the study area is relatively more acidic
(pH <5.5). On average, the topsoil contained 57% of sand,
25% of silt, a pH of 6.2, an OC content of 7.6 g/kg and a
total N of 0.64 g/kg. We refer to the Supplementary mate-
rial for the maps of all soil properties at all depth
intervals.

The maps from three different products: homosoils
maps made by the second calibration strategy, and two
existing products: SoilGrids and iSDAsoil, are shown in
Figure 8 for the depth interval 0–15 cm. The maps had
differences in spatial pattern, both in terms of magnitude
and spatial variation. Spatial pattern of clay maps varied
greatly between products, but was similar in magnitude:

TABLE 2 Validation statistics of

the maps using the third validation

approach

ME q0.05 q0.95 RMSE q0.05 q0.95 MEC q0.05 q0.95

Clay �0.16 �4.74 4.12 11.9 10.25 14.06 0.17 �0.23 0.47

Silt �2.27 �8.39 3.24 13.89 12.32 16.24 0.26 �0.09 0.52

Sand 2.32 �4.72 10.05 19.28 17.25 22.08 0.3 0.03 0.5

OC �1.4 �3.36 0.47 3.5 2.75 4.98 0.24 �0.56 0.64

pH �0.14 �0.35 0.07 0.69 0.64 0.77 0.15 �0.1 0.34

Total N �0.13 �0.24 �0.01 0.27 0.2 0.37 0.53 0.12 0.76

Note: q0.05 and q0.95 are the 0.05 and 0.95 quantiles of the validation statistics from 500 realisations of the
validation residuals.
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minimum and maximum values of clay content are simi-
lar. Maps of silt, sand, OC, pH and Total N have both
similar spatial pattern and magnitude of values, but maps
from iSDAsoil were consistently smoother than those
from homosoils and SoilGrids.

The validation statistics of the homosoils, SoilGrids
and iSDAsoils maps using the third validation
approach are shown in Figure 9 for all soil properties
at a soil depth interval of 0–15 cm, along with their

90% interval. Figure 9 showed significant differences
between the accuracy of the different maps. Maps from
homosoils had a higher MEC for silt, sand, pH and
total N. The MEC of sand, for example, is 0.3 for homo-
soils, 0.22 for SoilGrids, while it is 0.05 for iSDAsoil.
The SoilGrids map explained the largest amount of var-
iation for clay (MEC is 0.22), while the largest amount
of variation explained for OC is by the iSDAsoil map
(MEC is 0.33). These MEC values were supported by

FIGURE 6 Maps of clay (%) for the six soil depth intervals (0–5, 5–15, 15–30, 30–60, 60–100, 100–200 cm)

FIGURE 7 Maps of clay, silt and sand (%), OC and total N in g/kg for the topsoil (0–5 cm)
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FIGURE 8 Maps of from homosoils, SoilGrids and ISDAsoils (1 km � 1 km) for the soil depth of 0–15 cm. Clay, silt and sand are in

percent, OC and Total N are in g/kg
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low ME and RMSE values which indicated relatively
small bias and error between the predictions and the
observed values except for total N. Despite the map
from homosoils having a slightly higher MEC value
than that of iSDAsoil for total N, predictions from
iSDAsoil have the smallest bias. The 90% interval of
the 500 realizations of the validation statistics showed
variable range across the maps and soil properties. The
magnitude of the range varied greatly between the
maps for MEC and RMSE, while it was relatively

constant for ME as shown by the greyed area of MEC,
RMSE and ME in Figure 9.

4 | DISCUSSION

4.1 | Homosoils and soil data

We found that many areas in the world have soil forming
factors similar to those from our study area in Mali,

FIGURE 9 Validation statistics of the homosoils, ISDAsoils and SoilGrids maps using the third validation approach and for the depth

interval 0–15 cm. The shaded area represents the 90% interval
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which suggest that there could also be similar soils.
Within these areas, large regions in India and the Eastern
part of the Sahelian band had relatively low sampling
density, whereas areas within Australia, Brazil,
Burkina Faso, Bostwana, Mexico, Niger and Nigeria had
higher sampling density. Mexico, for example, has 0.64%
of its area covered by homosoils (i.e., 125,213 km2), from
which we sourced 365 OC samples from WoSIS for the 5–
15 cm depth interval. These samples have a relatively
good spatial coverage of the area and represented a den-
sity of 3 samples per 1000 km2. This sampling density is
higher than usual density of many large-scale digital soil
mapping studies (see also the studies reported in Wadoux
et al., 2020). A similar density was found in
Burkina Faso, where homosoils cover 78% of the country
(i.e., 213,823 km2), from which 648 samples were col-
lected with a sampling density equivalent to 2 samples
per 1000 km2. In India, conversely, 48% of the country
was covered by homosoils (i.e., 1,504,226 km2), but with
only 0.3 samples per 1000 km2. One reason for the dense
soil sampling density in Mexico and Burkina Faso,
among others, was the presence of well-established soil
survey systems through which soil data are consistently
and regularly collected (Van Wesemael et al., 2011).
Another reason may be the development of specific soil-
related projects, in the 1960s, which allowed soil data col-
lection for many decades (Van Ranst et al., 2010). For
instance, the WoSIS soil data gathered for Burkina Faso
were collected between 1966 and 2000. The low sampling
density, as found in India, reflects the difficulty in acces-
sing country data (Reddy et al., 2021). Overall, it was pos-
sible to find some areas in the world that share similar
soil-forming factors as our area of study, which suggest
they might also have similar soils, and these areas also
have a relatively high sampling density.

The soil data collected within the homosoils and the
study area showed a similar vertical pattern with differ-
ent variability (Figure 4) for most soil properties. The
average pH content, for example, was generally con-
stant across soil depth intervals, but higher in homo-
soils compared to our study area. This is expected
because of the dominating climate regime (semi-arid to
arid) covering the homosoils. In semi-arid to arid envi-
ronments, the presence of evaporites or carbonate
rocks, or the accumulation of salt due to the evapora-
tive behaviour of the soil may be the main source of
high pH in the soil (Weil and Brady, 2018; Lal and
Stewart, 2019). Silt content was also constant across
depth intervals, but systematically higher in our study
area than in the homosoils. This is because Mali is
exposed to local environmental factors such as airborne
dust storm which originates from the Sahara-desert
from which aeolian sediments (particles of 10–50 μm)

are transported to Mali, thus contributing to the accu-
mulation of silt (Nickling and Gillies, 1993;
Schütz, 1980). On the other hand, for both the homo-
soils and the study area, clay content increased with
depth as a result of vertical clay movement (eluviation/
illuviation), whereas sand content decreased with
depth. This opposite trend suggested the presence of
contrast soil texture within the areas. Moreover, homo-
soils had larger sand content compared to our study
area, because they span over a wide range of semi-arid
to arid environments whose soils experience large sand
particles accumulation (Department, 2014). The homo-
soils defined in our study did not take into account aeo-
lian processes. For other properties such as OC and
total N content, there was more variability in homosoils
than in our study area, but the trend with depth was
similar (i.e., total N and OC content decreased with
depth). The large variability in homosoils can be
ascribed to differences in land management practices
which greatly influenced the dynamics of both OC and
total N in the soils.

4.2 | Model extrapolation

Our study showed that extrapolating soil mapping
models between homosoil areas was a challenging task.
We tested two extrapolation strategies and found that
nearly all the models built using only homosoils data
had quasi-null accuracy when extrapolated to the study
area (except for 19% of these models which included one
to three soil depth intervals of the dynamic properties –
OC, total N and pH). These results confirm the results
reported in Angelini et al. (2020), in which it was found
that the predictive performance of the models for map-
ping OC, cation exchange capacity (CEC), and clay was
quasi-null when extrapolated between two geographi-
cally remote areas considered as homosoils. On the
other hand, a more recent study found contradictory
results. Du et al. (2021) extrapolated topographical ran-
dom forest models from one area to a geographically
close area (15 km away), and showed that the models
could explain most variance (i.e., 73%) of the measured
soil OC without including local data (i.e the data within
the extrapolated area). Our results and the studies of
Angelini et al. (2020) and Du et al. (2021) suggest that
geographical proximity plays an important role when
transferring soil mapping models. This might be a rea-
son for the low predictive power of the models. This is
reflected in Figure 4 by the high variation in the soil
properties between the study area and the homosoils
which certainly led to differences in the soil-covariate
relationship between the two regions, and which then
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affected the predictions when the models were extrapo-
lated. Another possible reason for the low predictive
power is probably the influence of other soil forming
factors which we disregarded in this study. Our results
suggest that the global soil-forming factors defined by
the homosoils may miss important soil processes that
affect local soil variation. Such processes include
anthropogenic activities and/or site-specific environ-
mental factors (e.g., aeolian sediments deposits men-
tioned earlier), among others, which greatly vary per
region and can influence the soil dynamics differently.
A third reason is that homosoils are defined for a single
spatial location which highly depends on the conditions
of surrounding spatial locations following the soilscape
concept presented in Lagacherie et al. (2001). Further
work could integrate this concept at a local scale by
including the surrounding conditions of the spatial loca-
tions when defining homosoils, to homosoilscape.

We found that including soil data from within the
study area increased prediction accuracy. In particular,
adding local soil samples dramatically improved the
MEC and RMSE by 160% and 32%, respectively. These
results corroborate previous studies (e.g., from Lemercier
et al., 2012; Du et al., 2021). Lemercier et al. (2012)
extrapolated models to a region that included the area
within which the models were built, and found that the
models could explain up to 49% of the variation of parent
material, and 52% of the variation of soil drainage. Simi-
larly, Du et al. (2021) increased the amount of variance
explained for OC by 8% and decreased the prediction
error by 25% through the addition of local soil sample
information. Our study suggests, similarly, that extrapola-
tion between homosoil areas is possible but that local
samples from within the extrapolated area are necessary.

We recognise the similarity between our approach for
local mapping using homosoils and approaches based on
machine learning models calibrated with global data. It is
likely that machine learning models such as used in Soil-
Grids and iSDAsoil assign higher weights when predict-
ing to observations that come from similar environments
(i.e., observations that are close to each other in the
covariate space), so effectively applying the homosoils
concept developed in this study for DSM. Comparing the
two approaches could be the purpose of further research.
In our study, when comparing the maps made with
models fitted on data within homosoil areas and Soil-
Grids and iSDAsoil maps, we found that, generally, our
approach performed slightly better. This is, however,
made at the expense of adding an extra step before model
calibration to find the homosoils. Moreover, finding
homosoils leads to more soil science discovery (such as
knowing where similar soils might be and what are their
properties) rather than the global DSM approach.

4.3 | Interpretation of the maps

Here, we summarize the most striking map features in
our study area. The pattern of soil texture is linked to the
dominating soil types. Clay accumulated in deeper soil
horizons due to the dominating soils types alfisols and
ultisols (USAID, 1983). Moreover, clay content was con-
sistently higher (>35%) in the east of the center of the
study area. This region corresponds to the inland delta of
the Niger river in Mali (Thom and Wells, 1987) and is
dominated by hydromorphic soils which are generally
silty with clayey alluvial deposits (Diarra et al., 2004;
Ajayi et al., 2012). A large portion of the study area has
high (i.e., >25%) silt content which mainly originated
from aeolian sediments deposits. The pattern of sand
content in the north east of the study area was character-
ized by the presence of aridisols (Nettleton and Peter-
son, 1983). Climate regime controls the spatial variation
of pH with Alkaline soils (pH >7) being common in arid
regions due to the presence of carbonate rocks or the
accumulation of soluble salt (Weil and Brady, 2018). OC
and total N followed the distribution of climate and land-
cover, respectively. High and low values of the dynamic
properties (OC and Total N) were found in humid (in the
south) and arid (in the north) regions of the study area,
respectively, which reflect higher and lower net-primary
production. The distribution of OC in our study corrobo-
rates findings from Akpa et al. (2016) in Nigeria. The soil
maps presented in our study area share similar spatial
pattern to the coarse-resolution global maps from Soil-
Grids (Poggio et al., 2021) and the African maps from
iSDAsoil (Hengl et al., 2021) products for Mali (shown in
Figure 8). These soil maps were calibrated mainly using
the WoSIS dataset as used in this study, however because
they were generated with limited soil data coverage, they
may only be useful at a regional scale, inhibiting their
application at a local scale where availability of soil infor-
mation is more critical. In such circumstances, only new
soil data collection might reverse this issue.

4.4 | Validation with clustered data

We acknowledge that the comparison of the maps
(homosoils, SoilGrids, iSDAsoils) was made using an
independent and spatially clustered sample, which may
result in biased estimates of the map accuracy. Clustered
data in the geographic space often lead to a clustering in
the covariate space (Elliott and Valliant, 2017) and failure
in assessing map accuracy in areas with zero sampling
density, thus leading to over-optimistic map accuracy
estimates. However, unbiased estimates of digital soil
maps accuracy can only be obtained through the
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collection of a post-mapping independent soil dataset
with probability sampling and design-based statistical
inference methods (Brus et al., 2011). Due to the pan-
demic, we could not collect an additional probability
sampling for map validation and therefore used a model-
based validation approach using a geostatistical model,
where the map residuals were kriged with ordinary kri-
ging and the sampling distribution of the map accuracy
indices was computed using 500 simulations of the resid-
uals. We considered this approach suitable to deal with
the clustered data. Moreover, in case of clustered data,
model-based validation approaches based on weighted
cross-validation had smaller bias than conventional
cross-validation (de Bruin et al., 2022). In our case, the
model-based approach showed a high uncertainty of the
map accuracy indices as shown by the 90% interval. Vali-
dating digital soil maps using clustered data is not
straightforward and needs further research.

4.5 | Limitations

One major limitation of this study is the inaccuracy of
the covariate that describes the state factor lithology. The
global lithology dataset (Hartmann and Moosdorf, 2012)
is described with multiple orders: first, second and third
lithology orders. The highest order, wherever present,
provides further granular differentiation within a given
first-order lithological unit. This surely has had an effect
on the soil classes and properties due to the different
mineral content and morphology (particularly texture)
that it represents. In our study, we only used lithological
information of the first order because higher orders were
not publicly available. The effect of lithology is reflected
in the statistical indices (RMSE, r and MEC) presented
in Figure 5, where those of the texture maps (i.e., stable
properties clay, sand and silt) significantly improve for
validation approach 2, whereas that of the dynamic soil
properties (OC, pH and total N) shows no significant dif-
ference. This may reflect differences in lithology between
our study area and its homosoils, and part of these differ-
ences could be ascribed not only to the unavailability of
the highest order lithological units but also, probably, to
the spatial resolution at which the homosoils were
found. Recall that the lithology variable was upscaled
from 250 m to 1 km which may have decreased the gran-
ularity of the information and thus contributed to these
differences. Therefore, accessing lithological units at a
finer resolution would require finding homosoils at a
much higher resolution (e.g., 250 m and below), besides
accessing higher order lithological units below 100 m
may be practically challenging when working at a global
scale.

Another limitation of this study was the omission of
the anthropogenic soil forming factor in both identifying
the homosoils and in generating the maps, because these
were not available at global scale. Several studies have
stressed that human activities greatly influence soil
dynamics (Amundson and Jenny, 1991; Hooke, 2000;
Wilkinson, 2005; Richter Jr et al., 2007) and may be the
main soil forming factor (Kuzyakov and Zamanian, 2019)
because of their critical influence on soil-forming pro-
cesses. This implies that data on anthropogenic activities
are critical for digital soil mapping exercise. However,
both actual and historical management practices are
needed, which is practically impossible to obtain. Besides,
data on actual anthropogenic activities are barely avail-
able at local scale, and much less at the continental and
global scale. Generating such spatially exhaustive infor-
mation at large scale and on a time-scale would certainly
make a valuable extension to future soil mapping studies.

5 | CONCLUSION

We tested the geographic extrapolation of a model to map
soil properties. The model was applied to our area of interest
in Mali after being calibrated with data from its homosoil
area. We tested different calibration and validation strate-
gies, including or not local data for calibration. From the
results and discussion, we draw the following conclusions:

• Within areas considered as homosoils, we can leverage
on areas with relatively high sampling density and
build a soil mapping model which can be applied on
areas with limited soil data.

• The soil data collected within the homosoils showed a
similar vertical pattern but large variability compared
to our study area.

• Homosoils help transfer soil information from one area
to another by means of DSM model extrapolation
methods. The model built within the homosoils per-
formed poorly when extrapolated to our study area,
however this accuracy increased dramatically when
local soil samples were also used to calibrate the model.

• The maps generated from homosoils were more accu-
rate than those generated at the continental and global
scale for our study area in Mali, for three (silt, sand,
and pH) out of six soil properties. However, the spatial
pattern was similar.

• Homosoils represent an opportunity to generate digital
soil maps for areas that are scarce in soil data, because
it is cheap and usually fast to implement compared to
new soil surveys.

• Validating the soil maps in this study was challenging
due to the lack of reliable soil data and poor spatial
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coverage of the existing observations. The collection of
new soil data (through the establishment of sustain-
able soil survey systems) remains necessary and is
required to tackle the issue with soil data gap. That
is the one and only way accurate soil maps can
be generated and confidently used to mitigate soil-
environmental issues.
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