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Fine  scale  maps  of vegetation  biophysical  variables  are  useful  status  indicators  for  monitoring  and  manag-
ing national  parks  and  endangered  habitats.  Here,  we assess  in  a comparative  way  four  different  retrieval
methods  for  estimating  leaf  area  index (LAI)  in  grassland:  two  radiative  transfer  model  (RTM)  inversion
methods  (one  based  on look-up-tables  (LUT)  and  one  based  on  predictive  equations)  and  two  statistical
modelling  methods  (one  partly, the other  entirely  based  on  in  situ  data).  For  prediction,  spectral  data  were
used that  had  been  acquired  over Majella  National  Park  in  Italy by  the  airborne  hyperspectral  HyMap
instrument.  To  assess  the  performance  of  the  four  investigated  models,  the  normalized  root  mean  squared
error (nRMSE)  and  coefficient  of  determination  (R2)  between  estimates  and  in  situ  LAI  measurements  are
reported (n = 41).  Using  a jackknife  approach,  we  also  quantified  the  accuracy  and  robustness  of  empirical
models  as a function  of the  size  of  the  available  calibration  data  set.  The  results  of  the  study  demonstrate
that  the  LUT-based  RTM  inversion  yields  higher  accuracies  for LAI  estimation  (R2 =  0.91,  nRMSE  = 0.18)  as
compared  to RTM  inversions  based  on  predictive  equations  (R2 =  0.79,  nRMSE  =  0.38).  The  two  statistical
methods  yield  accuracies  similar  to  the  LUT  method.  However,  as  expected,  the accuracy  and  robustness

of  the  statistical  models  decrease  when  the  size  of  the  calibration  database  is  reduced  to  fewer  samples.
The  results  of  this  study  are  of  interest  for the  remote  sensing  community  developing  improved  inver-
sion  schemes  for spaceborne  hyperspectral  sensors  applicable  to different  vegetation  types.  The  examples
provided  in  this  paper  may  also  serve  as illustrations  for the drawbacks  and  advantages  of  physical  and
empirical  models.

©  2015  The  Authors.  Published  by  Elsevier  B.V.  This  is  an  open  access  article  under  the  CC  BY-NC-ND
ntroduction

Maps of leaf traits and vegetation biophysical characteristics
uch as leaf area index (LAI) are useful in ecological research and for
odelling of surface energy balance, vegetation productivity, water

nd CO2 exchange, as well as biodiversity assessment (Pereira et al.,

013; Pu et al., 2003; Turner et al., 1999). Compared to classi-
al multi-spectral instruments, the quality of such maps has been
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/).
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

significantly enhanced through hyperspectral remote sensing (Lee
et al., 2004; Schaepman et al., 2009).

Although studies quantifying vegetation biophysical param-
eters using imaging spectroscopy are numerous, relatively few
studies deal with grassland canopies. High quality vegetation
maps will help managers of National parks to protect these sen-
sitive ecosystems. More research on the usefulness of imaging
spectroscopy for vegetation characterisation is also warranted for
preparing the remote sensing community for the upcoming (space-
borne) imaging spectrometers such as EnMap (Segl et al., 2010).

Two  main approaches are commonly used for estimating vege-
tation biophysical characteristics from remotely sensed data (Baret

and Buis, 2008; Rivera et al., 2014a):

• Statistical approaches.
• Approaches using physically-based radiative transfer models.
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In the statistical approach, regression models are developed
rom in situ data to relate the parameter(s) of interest to the spectral
ata. To minimize topographic, soil background and atmospheric
ffects most studies involve the use of spectral vegetation indices
e.g., Haboudane et al., 2004; Khanna et al., 2007; Mutanga and
kidmore, 2004; Thenkabail et al., 2000; Yu et al., 2013). Other stud-
es focus on the analysis of the red edge inflection point (Cho and
kidmore, 2009; Darvishzadeh et al., 2009; Haboudane et al., 2008;
orler et al., 1983) or the use of spectral transformations such as
and depth analysis (Im and Jensen, 2008; Schlerf et al., 2010). In
ddition, several studies investigate the usefulness of full spectrum
ethods such as partial least square regression (PLSR), principal

omponent regression (PCR), Bayesian model averaging or spectral
n-mixing approaches (Asner and Martin, 2008; Atzberger, 2010;
u et al., 2004; Mirzaie et al., 2014; Zhao et al., 2013). Beside these
arametric models, non-parametric approaches such as k-NN are
lso used (Chirici et al., 2008; Corona et al., 2014; McRoberts et al.,
007; Rivera et al., 2014b).

Statistical models have some advantages fostering their
idespread use. For example, some of the mentioned statistical
odels are easy to apply. Also, suitable software is often readily

vailable (Rivera et al., 2014a). It is well known, however, that
eveloped models sometimes lack transferability to other sites
ith different vegetation, or transferability to other type of image

r acquisition conditions (Baret and Guyot, 1991; Vuolo et al.,
013). Another drawback of statistical models is that they require a
et of in situ data and that their robustness depends on the proper-
ies of this data set (i.e., number, quality and representativeness of
vailable reference samples). A systematic investigation of sample
ize effects would be informative as the collection of ground truth
s usually associated with high costs.

To minimize the reliance on in situ data, the physical approach
nvolves the use of radiative transfer models (RTM). These models
escribe the spectral variation of canopy reflectance as a function
f viewing and illumination geometry, canopy, leaf and soil back-
round characteristics and are founded on physical principles. RTM,
hus, offer an explicit (and physically based) connection between
he vegetation biophysical and biochemical properties and the
anopy reflectance as measured by a sensor (Houborg et al., 2007).
his enables the simultaneous use of all spectral bands acquired
y multi- to hyper-spectral sensors and in particular the most
ensitive ones. However, for reasonable retrieval performance,
TM usually require the specification of some input parameters
e.g., average leaf angle, soil background reflectance). For struc-
urally heterogeneous vegetation with multiple canopy layers and
eaf clumping at different organization levels, canopy reflectance

odels require additional parameterization often not readily avail-
ble (Demarez and Gastellu-Etchegorry, 2000). For structurally less
omplex grass and crop canopies, suitable results were reported
sing the relatively simple PROSAIL canopy reflectance model –

 combination of the models PROSPECT (Jacquemoud and Baret,
990) and SAIL (Verhoef, 1984) – as reviewed by Jacquemoud et al.
2009).

RTM do not directly yield estimates of the sought vegetation
iophysical parameters. Instead, such models need to be inverted
sing an appropriate inversion strategy (Kimes et al., 2000; Weiss
nd Baret, 1999). Available methods include iterative optimization
ethods (Jacquemoud et al., 1995; Le Maire et al., 2011; Richter

t al., 2009), look-up-table (LUT) based inversions (Darvishzadeh
t al., 2008a; Rivera et al., 2013; Weiss et al., 2000), and neural
etworks (Bacour et al., 2006; Schlerf and Atzberger, 2006; Verger
t al., 2011). Many studies rely on look-up-tables which are rela-

ively easy to implement, and which provide a search across the
ntire parameter space in a step width solely limited by the avail-
ble processing power.
 Observation and Geoinformation 43 (2015) 19–31

To increase the predictive power and robustness of RTM inver-
sions, feature selection approaches are recommended (Baret and
Buis, 2008). Published feature selection methods vary in complexity
and range from the use of previously identified absorption wave-
lengths (Darvishzadeh et al., 2008a; Meroni et al., 2004) to more
advanced methods based on statistical selection and elimination
criteria (Atzberger, 2010; Atzberger et al., 2013; Verger et al., 2011).

To combine the advantages of physical and statistical
approaches, Le Maire et al. (2012, 2008),) and Haboudane et al.
(2004) amongst others proposed the development of hyperspec-
tral vegetation indices calibrated on RTM-generated synthetic data
(e.g., so called predictive equations) for model inversion. No studies
evaluating such predictive equations over grasslands are known.
Nor are studies evaluating systematically different statistical and
physically based approaches over grassland canopies for better
understanding their respective advantages and limits.

To address these research gaps, the study presents the results of
a comparative assessment of four retrieval methods against in situ
LAI measurements in Mediterranean grassland:

• Inversion of the PROSAIL radiative transfer model based on LUT.
• Use of predictive equations solely calibrated on PROSAIL gener-

ated data.
• Use of predictive equations partly trimmed using available in situ

(LAI) data.
• Use of narrow-band vegetation indices based solely on available

in situ (LAI) data.

Mediterranean grasslands are characterized by heterogeneous
canopies with a combination of different plant species in varying
proportions (Darvishzadeh et al., 2011). This poses challenges for
remote sensing applications (Fisher, 1997; Röder et al., 2007). As
little is known about heterogeneous (multiple species) grassland
canopies (Darvishzadeh et al., 2008b; Vohland and Jarmer, 2008),
more research is warranted to better understand the capabilities
and limits of different retrieval algorithms. For illustration purpose,
the study also addresses the effect of sampling size on the accuracy
and robustness of statistical models.

Material

The study focuses on the mapping of LAI in Majella National Park,
Italy. To collect the in situ LAI data, a field campaign was  conducted
during the summer of 2005 roughly corresponding to peak vege-
tation density. Parallel to the measurement campaign, the HyMap
sensor was  flown providing the corresponding airborne imaging
spectrometer data (Darvishzadeh et al., 2011, 2008a). The time of
airborne data collection and the field campaign are indicated in
Fig. 1 together with average annual growth profiles (NDVI) of major
land cover classes in the study region.

Study area

The study site is located in Majella National Park, Italy (lati-
tude 41◦50′–42◦14′N, longitude 13◦50′–14◦14′E, Fig. 2). The park
covers an area of 74,095 ha. The landscape is composed of bare
rock outcrops, shrubby bushes, and patches of grass/herb vege-
tation. The present study is focused on grassland. The dominant

grass and herb species include Brachypodium genuense, Briza media,
Bromus erectus, Festuca sp., Helichrysum italicum, Galium verum,
Trifolium pratense, Plantago lanceolata, Sanguisorba officinalis and
Ononis spinosa (Cho, 2007).
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Table  1
Summary statistics of the field measured biophysical variables of 41 grassland sample plots. Four out of the original forty-five plots had to be removed before analysis, as
spectral data were unavailable.

Measured variable Min. Mean Max. SD Range Variation coefficient

LAI (m2 m−2) 0.72 2.87 7.54 1.59 6.8 0.55
Leaf  chlorophyll content (�g cm−2) 18.9 28.7 40.9 4.7 22.0 0.16
Number of dominant speciesa 1 2.34 

a A species was  called “dominant” if it occupied at least 20% of the sampling area.

Fig. 1. MODIS NDVI time series (average of 2002–2006) of different land cover
types in the region of the study site. The grey area indicates the time period of field
w
d
p

I

o
t
c
fi
r
a

F
a
i

ork. The vertical black line indicates the acquisition date of the airborne HyMap
ata cube. Smoothed NDVI data from http://ivfl-info.boku.ac.at/index.php/eo-data-
rocessing.

n situ measurements

The field campaign for collecting the in situ data was carried
ut in July 2005 during peak vegetation density (Fig. 1). Vegeta-
ion characteristics such as LAI, leaf chlorophyll content and species

omposition were collected within grassland areas using strati-
ed random sampling and excluding forests, shrublands and bare
ock outcrops. Care was  taken to ensure sample plots were located
t least 500 m (120 pixels) away from strip borders. Strata were

ig. 2. Location of the study area in Italy (left), map  of the Majella National park with fligh
cquired on 4 July 2005 (bands 634, 542 and 452 nm)  showing part of the study area (fro
n  this part of the study area (right).
4 0.81 3 0.35

derived from a land cover map  provided by the management of
Majella National Park. Coordinates (x, y) were randomly gener-
ated in the grassland stratum to select plots. Forty-five plots of
30 m × 30 m were generated and a GPS was  used to locate them
in the field. Table 1 summarizes the statistics of the measured vari-
ables. For each plot, vegetation parameters were measured in situ
within four to five randomly selected subplots (1 m × 1 m).  From the
4–5 subplots, averages per plot was  calculated and used throughout
this paper.

LAI was  measured non-destructively using the LAI-2000 instru-
ment (Welles and Norman, 1991). The uncertainty of LAI-2000
measurements is typically 15–20% (Chen et al., 1997; Welles and
Norman, 1991). Measurements were taken either under overcast
conditions or alternatively within two  hours after sunrise or before
sunset. Direct sunlight on the sensor was prevented using a view
restrictor of 45◦ and shading the sensor. For each subplot, one ref-
erence measurement of above-canopy radiation was taken. Next,
five below-canopy measurements were performed from which the
average subplot LAI was calculated. No corrections for leaf clump-
ing were applied as the necessary information was  not available.
Likewise, no attempts were made to distinguish between photo-
synthetic and non/photosynthetic components. This implies that
the measurement corresponds strictly speaking to the plant area
index (PAI) (Chen et al., 1997). Nevertheless, in the following, these
measurements are abbreviated as LAI.

Besides LAI, leaf chlorophyll content was assessed in each
1 m × 1 m subplot. This variable was  used for restricting the range

of plausible leaf chlorophyll values in the construction of the LUT
(see Section “PROSAIL-based LUT generation”). From the dominant
grass species, 30 leaves were randomly selected and measured by a
SPAD-502 Leaf Chlorophyll Meter (Minolta, 2003). The 30 recorded

t lines of HyMap (blue) (center) and true colour composite of HyMap image (right)
m second image strip). The yellow points indicate the distribution of sample plots

http://ivfl-info.boku.ac.at/index.php/eo-data-processing
http://ivfl-info.boku.ac.at/index.php/eo-data-processing
http://ivfl-info.boku.ac.at/index.php/eo-data-processing
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http://ivfl-info.boku.ac.at/index.php/eo-data-processing
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PAD readings were averaged. The averaged SPAD readings were
onverted into leaf chlorophyll contents (�g cm−2) by means of the
arkwell et al. (1995) equation. As the Markwell calibration func-

ions were developed for corn and soybean this possibly leads to
ome bias when applied to grass leaves (Le Maire et al., 2008; Si
t al., 2012).

mage acquisition and pre-processing

Airborne HyMap data of the study site were acquired during
he field campaign on July 4th, 2005 covering an area of about
0 km × 7 km (four strips with 30% overlap, Fig. 2). The flight was
arried out by DLR, Germany’s Aerospace Research Centre and
pace Agency. The HyMap sensor contains 126 wavelengths, oper-
ting over the spectral range of 436–2485 nm.  The average spectral
esolution is between 13 and 17 nm.  At an average flight height of
983 m above ground, the spatial resolution of the data is 4 m.  The

mage acquisition was close to solar noon and the solar zenith and
zimuth angles for the four image strips ranged between 30.0–33.7◦

nd 111.5–121.0◦, respectively.
The image strips were atmospherically and geometrically cor-

ected by DLR, Germany. The geometric accuracy of the images was
eported by DLR with 2 m (0.5 pixel). The atmospheric correction
as performed using ATCOR4-r (rugged terrain). Effects related to

he sensor’s large field of view were not accounted for, resulting in
ome visible artefacts towards the borders of the strips. This was
eemed acceptable as the sample plots were located mainly in the
entral parts of the images (Fig. 2).

From the corrected strips, sample plot spectra were retrieved.
wing to cloud coverage in some areas, the spectra of four of the

ourty-fiveplots were unreliable and removed. As the pixel size of
he imagery was 4 m,  a 7 × 7 pixel window (i.e., 28 m × 28 m)  cen-
red around the central position of a plot was determined (plot
ize 30 m × 30 m).  By taking only pixels located entirely in the plot,
order effects were minimized. From the 7 × 7 pixel window, the
verage spectrum was calculated. Only these spectra were analysed
n this study without any further smoothing or filtering.

ethods

To obtain a comprehensive comparison of LAI retrieval algo-
ithms, this study evaluates four different LAI retrieval methods in a
omparative way (Table 2): two RTM inversion methods (one based
n look-up-tables, the other based on predictive equations) and two
tatistical modelling methods (one partly, the other entirely based
n in situ data). The four methods were chosen because they are
he most widely used by the remote sensing community. All pro-
edures were implemented in Matlab (The Mathworks®). Detailed
escriptions are given in Sub-sections “Physical based modelling”
nd “Statistical modelling”.

All methods were evaluated against the LAI in situ measure-
ents. For the validation of the two PROSAIL inversions (LUT and

Ephysical), the LAI measurements were used as independent obser-
ations. The accuracy of the retrievals was characterized by the
oot mean square error (RMSE) and the coefficient of determina-
ion (R2) between the in situ data and the estimates. To evaluate
he performance of the two statistical methods (PEre-adjust and VI), a
ackknife sampling procedure was used (see Sub-section “Jackknife
ampling”); part of the available in situ data was used for model cal-

bration, while the remaining samples were used for independent
ssessment of the retrieval accuracy. By varying the size of the cal-
bration samples, the effect of sample size on RMSE and R2 was
uantified. Ta
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hysical based modelling

he PROSAIL radiative transfer model
The widely used PROSAIL radiative transfer model was selected

or the physically based canopy parameter retrieval (Jacquemoud
t al., 2009). PROSAIL is relatively simple and needs only a lim-
ted number of input parameters. This makes model inversion for
etrieval of leaf and canopy parameters feasible.

PROSAIL has been inverted over a large range of vegetation
anopies (Darvishzadeh et al., 2011; Jacquemoud et al., 1995; Le
aire et al., 2011; Meroni et al., 2004; Richter et al., 2009, 2011; Si

t al., 2012) with varying levels of success. The capacity of PROSAIL
o simulate grassland spectra in forward mode was investigated in
arvishzadeh et al. (2008a, 2011),) and in more detail in Atzberger
t al. (2013). The general suitability of PROSAIL for grassland studies
as also shown by Vohland and Jarmer (2008).

ROSAIL-based LUT generation
Look-up-tables (LUT) provide an easy and robust way  for invert-

ng radiative transfer models (Knyazikhin et al., 1999; Weiss et al.,
000). Compared to numerical optimization methods, LUT are
uch faster and permit a global search (avoiding local minima).
To achieve high accuracy for the estimated parameters, the

imension of the table must be large enough (Combal et al., 2002;
eiss et al., 2000). For our study, a LUT size of 100,000 param-

ter combinations was chosen. Working with the same RTM, the
elected LUT size was found by Weiss et al. (2000) and Richter et al.
2009) to be a good compromise between computation time and
he accuracy of the estimates. Following recommendations of Le

aire et al. (2008) the PROSAIL parameter combinations were ran-
omly drawn from uniform distributions and a small white noise
omponent was added to the LUT spectra.

The sensor viewing angle (t0) and the relative azimuth angle
phi) were fixed at 0◦ as most plots were in vicinity of the nadir line
f the image strips. The sun zenith angle was fixed at 31.5◦. With
espect to the fraction of diffuse incoming solar radiation (skyl),  a
xed value of 0.1 across all wavelengths was used. This simplifi-
ation seems justified by the fact that skyl has only a very small
nfluence on canopy reflectance (Clevers and Verhoef, 1991).

The eight remaining input parameters of PROSAIL (i.e., LAI, ALA,
cale, hot, N, Cab Cm and Cw) were sampled within pre-described
anges. This increases the sampling density in the parameter
pace and helps to regularize ill-posedness of the inverse problem
Combal et al., 2003). Restricting the parameter space is a rec-
mmended procedure used in many similar studies (Verger et al.,
011). The ranges (minimum and maximum) for each of the eight
free” model parameters are reported in Table 3. Note that the
anges of Cab and ALA were selected based on information from
eld data collection. This implies that the implemented physical
pproach was  not completely independent from field observations.

To represent soil optical properties bare soil pixels were iden-
ified within the HyMap scenes. From these pixels spectra were
xtracted and used to calculate an average soil spectrum (rsl). A
ultiplicative scale parameter was used to mimic  soil brightness

hanges (Table 4). Concerning the leaf structural parameter N in
ROSPECT, we selected a range of 1.5 to 1.9 since grasses have
elatively thin leaves. This range was used in a previous study by
arvishzadeh et al. (2008a) and is in agreement with the mean
alue (N = 1.6) that Vohland and Jarmer (2008) used for grass-

and species. The ranges of the remaining input parameters (Cw,
m and hot) were similarly selected based on existing literature
Darvishzadeh et al., 2011; Haboudane et al., 2008, 2004; Houborg
nd Boegh, 2008; Le Maire et al., 2008).
 Observation and Geoinformation 43 (2015) 19–31 23

PROSAIL inversion using LUT
To find the solution to the inverse problem, the mean square

error (�)  between measured and modeled (LUT) spectra is calcu-
lated for each HyMap spectrum according to:

� = �n
�=1(Rmeasured�

− Rlut�
)2

n
(1)

where Rmeasured is the measured HyMap reflectance at wavelength
�, Rlut is the modeled reflectance at the same wavelength in the
LUT, and n is the number of wavebands.

Following recommendations of Combal et al. (2003) and Baret
and Buis (2008), the average of the ten parameter sets yielding the
lowest � is taken as the solution to the inverse problem. For the
remainder of this paper, the technique is abbreviated as LUT.

Feature selection using recursive band elimination
A drawback of the physical approach is that corrupted spectral

measurements and poorly modeled wavebands negatively affect
the model inversion. For this reason, an appropriate band selection
is known to improve radiative transfer model inversion (Meroni
et al., 2004; Schlerf and Atzberger, 2006). The drawback arises from
the fact that RTM inversion uses all the provided spectral informa-
tion simultaneously. In the case of a LUT-based model inversion, for
example, the parameter set is selected as final result, which min-
imizes the overall error between the simulated and the observed
spectra. Hence, any corrupted spectral band will have a negative
effect on the selected parameter set as the “solution” is driven into
its direction. Similarly, a band which is not well simulated by a RTM
receives as much weight as a well simulated wavelength; therefore,
deteriorating the inversion results.

Feature selection approaches aim minimizing the negative
impacts of poorly modeled wavebands as well as of corrupted
spectral data. However, neither the selection of an optimal spectral
subset, nor the weighting of spectral bands, are trivial problems
but are still open issues within the remote sensing community
(Lavergne et al., 2007; Meroni et al., 2004; Rivera et al., 2014b).
In Darvishzadeh et al. (2011), the problem of feature selection
was addressed by restricting the LUT search to a small number
of pre-defined bands that are related to leaf chlorophyll, LAI and
leaf dry mass. However, results were not promising. For this
reason, in the current paper preference was given to an alternative
approach called recursive band elimination (Atzberger et al.,
2013; Darvishzadeh et al., 2011). The recursive band elimination
technique discards successively wavelengths poorly modeled by
PROSAIL. The scene-based approach is fully automatic and does
not make use of in situ measurements. The reader is referred to the
mentioned papers for more details.

PROSAIL inversion using predictive equations
Predictive equations (PEphysical) are investigated in this study

as an interesting alternative means to invert the PROSAIL radia-
tive transfer model (Dorigo et al., 2007; Le Maire et al., 2012, 2008;
Rivera et al., 2014a). To ensure a perfect comparability, both PRO-
SAIL inversion methods (LUT and PEphysical) use the same LUT.

Using predictive equations, one may  identify a suitable narrow
band vegetation index and band combination and fit the spectral
data against the corresponding vegetation characteristic (here LAI).
Three types of common vegetation indices were analyzed for this
study: difference index (D), ratio index (R) and normalized dif-
ference index (ND). For each index, all possible 126 × 126 HyMap
wavelength combinations between 436 and 2485 nm were system-
atically calculated:
D = ��1 − ��2 (2a)

R = ��1

��2
(2b)
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Table  3
Parameterization of the PROSAIL radiative transfer model for generating the LUT used for model inversion. Parameter values were drawn randomly (uniform distributions)
within  the specified ranges. For all simulations, the fraction of diffuse incoming radiation (skyl) was fixed at 0.1. The sun zenith angle was fixed at 31.5◦ . Nadir viewing was
assumed. To represent soil optical properties, bare soil pixels were identified within the HyMap scenes. From these pixels spectra were extracted and used to calculate an
average soil spectrum (rsl). A multiplicative scale parameter was  used to mimic  soil brightness changes. Concerning the leaf structural parameter N in PROSPECT we  selected
a  range of 1.5 to 1.9 since grasses have relatively thin leaves. This range was  used in a previous study by Darvishzadeh et al. (2008a) and is in agreement with the mean
value  (N = 1.6) that Vohland and Jarmer (2008) used for grassland species. The ranges of the remaining input parameters (Cw, Cm and hot) were similarly selected based on
existing literature (Darvishzadeh et al., 2011; Haboudane et al., 2008, 2004; Houborg and Boegh, 2008; Le Maire et al., 2008).

Parameter Abbreviation in model Unit Minimum value Maximum value

Leaf area indexa LAI m2 m−2 0 8
Mean leaf inclination anglea ALA deg 40 70
Leaf  chlorophyll contenta Cab �g cm−2 15 45
Leaf  structural parameter N No dimension 1.5 1.9
Dry  matter content Cm g cm−2 0.005 0.010
Equivalent water thickness Cw cm 0.01 0.02
Hot  spot size hot m m−1 0.05 0.10
Soil  brightness scale No dimension 0.5 1.5
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a Field measurements were consulted to select appropriate minimum and maxim

DVI = ��1 − ��2

��1 + ��2
(2c)

here ��1 is the reflectance at wavelength �1, and ��2 is the
eflectance at wavelength �2 with �1 /= �2.

For each wavelength combination, a second order polynomial
as fit between the index values and the corresponding LAI in the

ynthetic data base (n = 100,000). With the fitted polynomial, the
AI was estimated from the HyMap spectra and the RMSE calcu-
ated between the estimated and the field measured LAI (n = 41) for
ll possible band combinations. For a given index type, the low-
st RMSE in the 2-D plot corresponds to the “best” combination of
avelengths. Because the in situ data was not used for model cali-

ration, the field measurements can be considered as independent
bservations, very similar to the LUT approach. Note that the same
et of wavelengths is used in the statistical version of the predictive
quation (Section “Statistical modelling”) called PEre-adjust (Table 2).

tatistical modelling

Two statistical modelling methods were tested for comparison
ith the two physically based methods. Both methods relate 2-

and vegetation indices to LAI using 2nd order polynomial fits.
he first statistical approach (PEre-adjust) uses the “best” wavelength
ombination and index-type found in the PEphysical approach (Sec-
ion “PROSAIL inversion using predictive equations”). In contrast,
he second statistical technique (VI) finds the best wavelength com-
ination (and index-type) using the in situ data. The main difference
ompared to PEphysical is that the polynomials are fitted against the
n situ data and not against synthetic data. This implies that the
n situ data is used for calibration and validation issues (Table 2). To
nsure comparability with the physical based methods which are
o making use of in situ data for model calibration, the accuracy of
he statistical methods had to be assessed from independent sam-
les. This was achieved using a classical leave-one-out jackknife
pproach.

ackknife sampling
To assess the robustness of the two statistical models to cal-

bration sample and sample size, jackknife procedures (without
eplacement) were used (Table 4). Stratified sampling was  used
o make sure that the calibration data covers the entire range of
AI values (0 < LAI < 7). For this purpose the full data set was split

n five equal parts, each with 8–9 observations. Calibration sam-
les (VI: 20; PEre-adjust: 5–35) were drawn making sure that at least
ne observation was found in all five LAI-classes. Polynomials were
nly fitted to these balanced samples.
alues.

In the case of the VI modelling, the “best” wavelength set is not
known beforehand. Each time new random samples is selected for
model calibration, all wavelength combinations are scanned within
the training data set. The “best” performing set of wavelength
(combination of “optimum” wavelengths) is then applied to the
left-out samples and the RMSE is determined. Hence, “best” wave-
lengths may  change from iteration to iteration in the case of VI
modelling. The whole process was repeated 20,000 times ensuring
stability of the results. For practical reasons, only one sample size of
twenty samples was  assessed. Model accuracy (RMSE, 5% and 95%
percentiles) was  always calculated from the (twenty-one) left-out
samples. For each repetition, the best wavelength combination
was stored to assess the robustness of its determination.

A slightly different approach was adopted for PEre-adjust, where
the best set of wavelengths is found through analysis of the syn-
thetic data obtained from RTM simulations (Section “PROSAIL
inversion using predictive equations”). Hence, this wavelength set
will not change during the jackknife sampling. The focus for this
method was, therefore, on the sample size. The jackknife sam-
pling was  repeated 500,000 times for each sample size between 5
and 35 samples. The corresponding RMSE was  calculated between
the observed and the estimated (left-out) LAI samples. From the
500,000 repetitions, the median RMSE and the 5% and 95% per-
centiles were derived for all sample sizes between 5 and 35
samples. The selected number of repetitions ensures stability of
the results.

Results

LAI from LUT inversion of PROSAIL

The PROSAIL radiative transfer model was inverted (LUT) for the
entire study area covered by the HyMap imagery. From the field
plot locations, the forty-one modeled grassland LAI values were
extracted and compared to the in situ measurements. A scatter-
plot between the measured and estimated LAI is shown in Fig. 3
(left). The R2 and the (normalized) RMSE between the measured
and estimated LAI are listed in Table 5 (first line).

The comparison between observed and modeled LAI shows that
– after feature selection and using the multiple LUT solutions – LAI
was estimated with an accuracy of 0.53 m2 m−2, representing 18%
of the average field measured LAI (nRMSE), respectively, 8% of the
range of field measured LAI (0.7 ≤ LAI ≤ 7.5). In total, 91% of the

observed variance in LAI was  explained using this approach.

The LAI map  obtained from the LUT-based RTM inversion is
presented in Fig. 4. Pixels not corresponding to grassland strata
were left blank. The mean LAI obtained for all grassland pixels was
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Table  4
Set-up of the jackknife experiments to evaluate the robustness of the two  statistical methods (PEre-adjust and VI) to calibration sample. The focus of PEre-adjust is on sample
size.  The focus of VI is on the robustness of the selected “best” wavelengths.

PEre-adjust VI

Type of vegetation index (nVI) Only one found « optimum » from RTM-generated data base Three types of vegetation index (Eq. 3a–3c)
Wavelength combinations (nW) Only one found « optimum » from RTM-generated data base All 126 × 126 possible wavelength combinations
Calibration sample size (nSS) Sample sizes between 3 and 25 samples (all balanced) Fixed samples size of 20 (all balanced)
Repetitions per case (nR) 500,000 Random repetitions per case 20,000 Random repetitions per case
Total  number of simulations (nVI x nW x nSS x nR) 1 × 1× 23 × 500,000 3 x (126 × 126) x 20 × 20,000
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ig. 3. Estimated versus measured LAI in Majella National Park using the PROSAIL ca
he  standard LUT approach (107 wavelengths and multiple solutions). (right) RTM in

.9 m2 m−2, which approximates an average of 2.8 m2 m−2 that was
btained for the field measurements (Table 2). Most modeled (and
bserved) LAI were found between 1 and 4 m2 m−2 (Fig. 5). In both
ata sets, we observe only a few cases with very high LAI (>4–5).

omparison of LUT approach with other methods

The results from the three other methods (see Table 2) are pre-
ented in the following Sub-sections. A statistical overview of all
our methods is provided in Table 5 together with some information
egarding the spectral setting and the employed validation.

TM inversion using predictive equations (PEphysical)
From the synthetic (PROSAIL simulated) data set, we  found that

he D-index with wavelengths at 846 and 1698 nm was the best

erforming index for LAI retrieval. The results were obtained by
esting all possible band combinations and the three index types
Eqs. (3a)–(3c)). Using reflectances at the two  mentioned wave-
engths, the D-index gave for the synthetic data set a RMSE of 1.08

able 5
tatistics (R2, RMSE and normalized RMSE) obtained between field measured and estimate
yMap spectra. For the two physically based methods (LUT and PEphysical) the validation is d

PEre-adjust and VI) two validation results are provided: cross-validated results and (in par
ampling with twenty samples (CAL-size: 20).

Method Spectral setting Validation 

LUT Simultaneous use of 107 bands for LUT
search (multiple LUT solutions)

Validation against indepe

PEphysical Best 2-band VI within 126 × 126 cases
from synthetic data basea

Validation against indepe

PEre-adjust Best 2-band combination from PEphysical

re-adjusted to experimental dataa
Cross-validation
(CAL-size: 20)

VI  Best 2-band VI within 126 × 126 cases
from experimental data baseb

Cross-validation
(CAL-size: 20)c

a From the synthetic data the best index form was found to be the D-index with �1: 84
b From the experimental data base, it was found that the R-index performed best with 

c For the jackknife simulation, always the same spectral bands were used previously id
 reflectance model with airborne HyMap spectra (n = 41). (left) RTM inversion using
n using predictive equations (PEphysical) and the D-index (�1: 846 nm,  �2: 1698 nm).

LAI. Normalized difference and ratio-type indices gave lower per-
formances with RMSE (synthetic data) of ∼1.16 LAI (both using
wavelengths 756 and 1698 nm).

Subsequent application of the predictive equation developed
for the D-type index to the experimental (HyMap) data gave the
results shown in Fig. 3 (right). Compared to the LUT-based RTM
inversion (Fig. 3, left), the LAI retrievals are less accurate (Table 5,
second row). The RMSE doubled from 0.53 (LUTRTM) to 1.10 m2 m−2

(PEphysical). The increased RMSE was the result of a strong offset and
an (slightly) increased scatter.

Re-adjusting predictive equations against experimental data
(PEre-adjust)

In the statistical PEre-adjust approach, the polynomial describ-
ing the relation between vegetation index and LAI is re-adjusted

using the experimental data, while keeping the same index and
wavelengths as in PEphysical. Results obtained with this approach are
summarized in Table 5 (third row). A scatterplot between measured
and modeled LAI is shown in Fig. 6 (left).

d LAI (n = 41) from PROSAIL inversion (LUT) and three other methods using airborne
one directly against the independent in situ data. For the two experimental methods
entheses) the range (5% and 95% percentiles) from the repetitions of the jackknife

LAI (m2 m−2)

R2 RMSE nRMSE

ndent data 0.91 0.53 0.18

ndent data 0.79 1.10 0.38

0.75(0.70–0.86) 0.46(0.53–0.79) 0.16(0.21–0.39)

0.86(0.75–0.92) 0.59(0.50–0.76) 0.21(0.17–0.26)

6 nm and �2: 1698 nm (minimum RMSE on simulated dataset: 1.08).
�1: 543 nm and �2: 1953 nm.
entified from the entire data set: 543 and 1953 nm.
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Fig. 4. Map  of PROSAIL derived grassland LAI (m2 m−2) for a subset area of Majella
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Fig. 5. Observed (dots) and modelled (bars) frequency distribution of LAI. The bars
indicate the frequency distribution of PROSAIL derived LAI (m2 m−2) for a subset area

F
p
e

ational Park, Italy, using cleaned HyMap data and a LUT-based model inversion
olutions. Areas outside the grassland stratum are left transparent. The black lines
ndicate the extent of the HyMap strip.

Re-adjusting the polynomials against in situ data improved the
esults compared to the PROSAIL inversion based on predictive
quations (PEphysical) (Fig. 3; right). Using the D-index with wave-
engths optimized on the synthetic data and coefficients fitted to
bserved data, we obtained a cross-validated RMSE of 0.46 (R2

cv:
.75). Hence, using the in situ data for calibration issues, the accu-
acy of the standard LUT inversion could be reached. Compared

o LUT, the RMSE of PEre-adjust was (slightly) lower while the R2

ndicated a reduced precision (0.75 against 0.91). In particular, LAI
alues >4 seem to be estimated with a higher explained variance
sing LUT (Fig. 3; left) compared to PEre-adjust (Fig. 6; left).

ig. 6. Measured versus estimated (cross-validated) LAI in Majella National Park using s
olynomials against in situ data (PEre-adjust): D-index with (�1: 846 nm,  �2: 1698 nm.  (
xperimental data (VI): R-index (�1: 543 nm,  �2: 1953 nm).
of  Majella National Park, Italy, using cleaned HyMap data and a LUT-based model
inversion solutions. The dots indicate the distribution of field measurements.

Table 5 (third row in parentheses) gives the expected accu-
racy range of PEre-adjust if the calibration size were only twenty
samples. As expected, a higher RMSE is observed (RMSE between
0.53 and 0.79 for PEre-adjust compared to 0.53 for LUT). This high-
lights the impact of sample size when dealing with statistical
approaches even if the samples were well balanced from low to
high values as in this study. A more detailed assessment of this
issue is presented in Section “Impact of sample and sample size on
PEre-adjust and VI”.

Optimization of vegetation indices against experimental data (VI)
In the second statistical approach (VI method), narrow band D-,

ND- and R-like indices were calculated from the HyMap reflectance
spectra. The in situ LAI data were sequentially regressed (polyno-
mials) against all possible (126 × 126) two-band combinations of
each index type. This allowed us to determine and fix the optimum
wavelength combination for each index.

With the optimum wavelength combination, LAI was estimated
in cross-validation mode. The optimum indices of the three index
types gave similar results for estimating LAI (RMSEcv between 0.59
and 0.62; R2

cv between 0.85 and 0.86). The R-index using wave-
lengths at 543 and 1953 nm had a higher R2 compared to D- and

ND-like indices. The statistics of this index are summarized in
Table 5 (last row) together with the three other methods. A scatter-
plot of measured and cross-validated LAI is shown in Fig. 6 (right).

tatistical approaches with airborne HyMap spectra (n = 41). (left) Re-adjusting the
right) Identification of optimum index form, wavelengths and polynomials from



C. Atzberger et al. / International Journal of Applied Earth Observation and Geoinformation 43 (2015) 19–31 27

Fig. 7. Accuracy (RMSE) of grassland LAI retrieval using different modelling-
methods. Results of the two  physically based methodsare shown in blue (LUT),
respectively, in yellow (PEphysical). As no calibration step was involved for invert-
ing the RTMs, the reported RMSE do not depend on the calibration sample size. For
the statistical model PEre-adjust (black dotted line), results obtained with the D-index
(with �1: 846 nm and �2: 1698 nm)  are shown. For each calibration sample size
(between 5 and 35 samples) 500,000 replicates were randomly selected and used
to  predict the left-out samples. The shaded dark gray area indicates the 5– 95% per-
centiles of the statistical model when stratified sampling was  used. In light gray
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Fig. 8. Results of the jackknife sampling (VI method) with twenty randomly selected
calibration samples and the R-index. The 2-dimensional plot shows the probability
of  a 2-band combination being selected. To ease interpretations, the results were
recoded in four log 10-spaced classes. For the calculations 20,000 random iterations
re shown the results when sampling was completely random. (For interpretation
f  the references to colour in this figure legend, the reader is referred to the web
ersion of this article.)

he VI method yielded comparative results with RMSE as low as for
UT and PEre-adjust.

Again, a strong impact of sample size has to be mentioned.
ompared to the cross-validated results – which gave a RMSE of
.59 m2 m−2 – the jackknife sampling with twenty calibration sam-
les resulted in a RMSE between 0.50 and 0.76 m2 m−2. However,
his estimate is overoptimistic. Indeed, in practice, one does not
now beforehand the “optimum” wavelength combination. In the
resent case, the jackknife sampling was run keeping the wave-
and combination from the leave-one-out approach. This issue will
e further developed in the next Sub-section.

mpact of sample and sample size on PEre-adjust and VI

The impact of sampling was further quantified for the two statis-
ical methods (PEre-adjust and VI). The developed jackknife sampling
see Table 4 for details) tries to mimic  in a realistic way what would
appen (in terms of accuracy and model robustness) if few(er) sam-
les would be available for model calibration (e.g., only twenty
amples).

ampling effects on PEre-adjust
The variability of the LAI retrieval error (RMSE) as a function of

he size of the calibration sample is illustrated in Fig. 7 (in gray) for
he D-index (D846/1698). Whereas in Table 5 (third row in parenthe-
es), only the range of RMSE for a sample size of twenty samples was
ndicated (e.g., 0.53–0.79), here all values for sample sizes between

 and 35 samples are graphically shown. As expected, with decreas-
ng sample size the average (median) error shows a steady increase
dashed black line). At the same time, the variability in the RMSE
trongly increases, both for the stratified sampling to cover the
bserved LAI range (in dark gray) and (even more pronounced) for
he un-stratified sampling (in light gray). Note that these variabili-
ies are observed despite the fact that the two wavelengths entering
he D-index were fixed.
ampling effects on VIEXP

Using the purely statistical approach (VI), the “optimum” wave-
ength set is not known beforehand but is found from the calibration
ata. While doing the (stratified) jackknife sampling, the “opti-
were run each testing all 126 × 126 band combinations. The inlet shows the fre-
quency distribution of the RMSE for the 20,000 validation samples (each calculated
over twenty-one left-out LAI observations and for the best band combination).

mum”  wavelengths may, therefore, change from iteration to
iteration adding uncertainty to the retrievals.

To remedy this issue, the jackknife approach was  run using the
R-index with twenty calibration samples (20,000 replicates). At
each iteration, the optimum wavelength combination was stored
as well as the corresponding RMSE (LAI) obtained over the remain-
ing twenty-one left-out samples of the experimental data base. The
number of times a given wavelength combination was selected dur-
ing 20,000 replicates is shown in Fig. 8. The inlet in Fig. 8 shows the
resulting frequency distribution of the RMSE.

The figure demonstrates that using twenty calibration samples
(even if balanced), the “optimum” waveband combination may be
located in quite different parts of the 2-dimensional feature space.
Amongst the possible (15,750) two-band combinations, 1068 were
at least selected once. The top 20 (top 200) two-band combinations
account for 48.5% (87.2%) of the cases. Hence, not only the polyno-
mials are subject to variation but also the “optimum” wavelengths.
The fact that the wavelength positions are to be determined from
the calibration sample in a purely statistical (VI) approach was not
considered in Table 5 (last row). In Table 5, only the RMSE range
(5–95% percentiles) for a fixed (optimum) wavelength combination
was reported. Our examples demonstrate that in reality one should
expect larger errors than those reported in Table 5, in particular for
smaller sample size (e.g., the RMSE distribution shown in the inlet
of Fig. 8 for a sample size of twenty).

Despite this wide scatter in optimum wavelength combinations,
two broad regions appear in Fig. 8 with a higher density of selected
cases. The areas depict a broad region between 900 and 1400 nm
and another one combining visible wavelengths (550 nm)  with
SWIR bands (1950 nm). These are spectral regions generally well
suited for statistical modelling (Le Maire et al., 2008; Rivera et al.,
2014a).

Discussion

Inversion of the PROSAIL radiative transfer model yielded RMSE
values between in situ and modeled LAI of 0.53 m2 m−2 (Table 5 and
Fig. 5). This finding supports previous studies, which demonstrated

that inversion of a radiative transfer model may  yield accuracies
comparable to those of statistical approaches (Atzberger et al.,
2010; Gemmell et al., 2002; Le Maire et al., 2012, 2011). The mod-
elling results have been obtained despite the fact that the field
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Table  6
Summary of advantages and drawbacks of four LAI retrieval methods.

Method Advantages Drawbacks

LUT • No model calibration is required
•  Takes into account the full set of spectral bands and is therefore relatively
insensitive to random noise
• Good accuracy and precision, for the full range of LAI
•  Generic: applicable for different images, dates, acquisition geometries, etc.;
in  principle even data from different sensors can be combined

• Requires a RTM well suited for the studied vegetation type; suitable
RTMs are not equally available for all types of vegetation (e.g., forests)
•  Needs computing skills, and some computational resources to apply
it  (in particular if large areas are to be processed)
•  Requires information for model parameterization (i.e. the
appropriate range of important model parameters)

PEPhysical • After calibration, model inversion is extremely fast and simple
•  Makes (partially) use of physical knowledge incorporated in the RTM

• Same drawbacks as for LUT
•  May  select unreliable wavelength combinations due to problems
with simulated and/or measured data
•  Precision on LAI retrieval may suffer from offset and noise in the
spectral data
•  Information available in additional wavebands is neglected

PEre-adjust • Simple to apply
• Semi-empirical technique combining some advantages of physical and
statistical approaches
• Relatively insensitive to additive or multiplicative spectral errors (depending
on VI type)

• Requires a well-chosen data set for model calibration (i.e., must be
representative for all potential conditions, not only LAI)
•  Information available in additional wavebands is neglected

VI  • Often yields locally very accurate results with minimum modelling efforts
•  Simple modelling/calibration technique which can be quickly applied to
larger images

ily be

• Requires a well-chosen data set for model calibration (i.e., must be
representative for all potential conditions, not only LAI)
•  Lacks sometimes generalization and reproducibility and therefore
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• Can be used to map  all kind of vegetation parameters not necessar
part of existing radiative transfer models

easured (in situ) data from the LAI-2000 instrument correspond
trictly speaking to plant area index (PAI) and not LAI. It also con-
rms the general validity of PROSAIL for grassland studies as shown

n Vohland and Jarmer (2008) and Atzberger et al. (2013).
In our study, a combination of scene-based feature selection (i.e.,

ecursive band elimination) and the use of multiple LUT solutions
as used for RTM inversion (Table 2), and it was demonstrated

hat this inversion approach yields good results. Other inversion
chemes were not tested.

One of the benefits of using physical rather than statistical meth-
ds is that comprehensive field measurements are not required for
odel calibration. Using physical methods, field measured LAI are

nly needed for proper validation. In addition, developed RTMs can
n principle be directly applied to other images, with different band
ettings and/or measurement geometries, etc. (Darvishzadeh et al.,
011). Although statistical models have been developed and suc-
essfully applied across time and space, this is not always possible.

Drawbacks of physical approaches relate to the fact that results
re sometimes not consistent especially where one deals with
ultiple species in semi-natural environments. The inversion of

hysically based models is also hampered by the ill-posed inverse
roblem (Combal et al., 2002; Meroni et al., 2004). In the current
ork, this problem was alleviated by using multiple solutions in

 LUT approach. This reduces the problems obtained when focus-
ng only on the best fitting spectra as final solution. In addition,
arameter ranges in the LUT were restricted according to avail-
ble field measurements (Table 2). Several alternative approaches
xist for further regularizing the inverse problem but were not con-
idered in this study (Baret and Buis, 2008): (i) approaches using
tatistical models for deriving a priori information for RTM inver-
ion (Houborg et al., 2007), (ii) approaches using spatial (color
exture) features in the RTM inversion in addition to classical
pectral-directional signatures (Atzberger and Richter, 2012), (iii)
pproaches based on the inversion of multi-temporal patch ensem-
les (Koetz et al., 2005; Lauvernet et al., 2008), and (iv) boot-strap
ethods for making use of the reflectance uncertainty matrix in

he cost function (Lavergne et al., 2007).

The imposed upper/lower boundaries in the LUT had a logical

onsequence that parameters reached the bounds (not shown). This
ontradicts somewhat the physical approach as the prior informa-
ion may  have a stronger effect on the retrieved canopy parameters
ing impeding transfer to other images or conditions
•  Information available in additional wavebands is neglected

compared to the observed signature (Baret and Buis, 2008). On
the other hand, this is what one expects in the case of an ill-
posed inverse problem, which may  lead to solutions far away from
the “true” parameter combination. Alternative ways of imposing
expected parameter values in the search function exist but were not
further exploited (e.g., Combal et al., 2002; Haboudane et al., 2008;
Houborg and Boegh, 2008; Jacquemoud et al., 2009). For example,
it is possible to specify in the cost function the expected value of
each parameter together with its associated uncertainty. This yields
a smooth(er) influence of the a priori information on the retrieved
parameters. As the aim of the present study was  to use a minimum
of available in situ information, we restricted ourselves to specifying
only lower and upper boundaries of the PROSAIL parameters.

In addition to the aforementioned problems, one should note
that relatively simple RTM such as the PROSAIL model are not
equally applicable to all vegetation types. Canopies such as forests
with strong leaf clumping at several scales and with (depth) gradi-
ents are more challenging compared to (structurally) still relatively
simple grass canopies (Gemmell et al., 2002; Lee et al., 2004;
Yang et al., 2011). For the Mediterranean grasslands in the Majella
National Park, it was  verified in another paper (Atzberger et al.,
2013) that the PROSAIL model yields spectral signatures close to
the HyMap measurements when model parameters were specified
according to field observations. This fully justifies its use within the
current study.

The results of our study do not favor the use of predictive equa-
tions (PEphysical) entirely calibrated on synthetic (RTM-generated)
data bases (Table 5). In our study, this approach yielded models
with significantly lower accuracies as compared to the LUT-based
inversion (RMSE of 1.10 as compared to 0.53 m2 m−2) probably
because the selected wavebands (846 and 1698 nm)  were not well
simulated by the model. For example, in another study, PROSAIL
simulated reflectances at these two wavelengths, did not match
well observed HyMap reflectances (Atzberger et al., 2013). The
reasons for the observed disagreement are not fully clear but
are probably related to the absorption coefficients used in the
PROSPECT model. Hence, although PEphysical selected two  wave-

bands which were generally well suited for LAI modelling, the
(polynomial) regression coefficients calibrated using the synthetic
data yielded a significant bias in the modeled LAI. Additional prob-
lems may  arise from the fact that for generating the synthetic data
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ase, possible cross-correlations between model parameters were
ot considered. Instead, the parameter distributions were drawn

ndependently from each other. The problem can be circumvented
y using experimental data for re-adjusting the polynomials while
eeping the previously identified wavelengths (Le Maire et al.,
008). Using this PEre-adjust approach, the study demonstrated accu-
ate retrievals. The cross-validated RMSE (0.46 m2 m−2) was as low
s the one using the LUT approach, with however a somewhat
educed R2 (0.75 instead of 0.91) (Table 5).

The (semi-empirical) PEre-adjust approach has the advantage that
t keeps the robustness of the index choice because of its iden-
ification within a (large) synthetic dataset. This should result in

ore generic results, whereas the model fine-tuning is done on the
xperimental data yielding (locally) highly accurate results.

Regarding the VI approach, LAI was retrieved with high accu-
acy. The selected wavelength at 1953 nm is sensitive to LAI and leaf
ater content. This spectral region was found useful in a number of

tudies even when other vegetation types or sensors were studied
Darvishzadeh et al., 2008a,b, 2009, 2011; Le Maire et al., 2008). In
articular, there is good evidence from physical as well as empirical
tudies that this so-called ‘water feature’ is sensitive to LAI as the
otal leaf area is highly correlated with the canopy water content
as plants aim maintaining a relatively constant leaf water content).
imilar findings were obtained in forests (Schlerf et al., 2005) where
he “best” hyperspectral VI (in relation to LAI) were typically based
n wavebands related to prominent water absorption features.

An important drawback of methods such as PEre-adjust and VI
elates to the reproducibility and stability of the fitted models. A
trong impact of sampling and sample size was demonstrated in
ig. 7 for the PEre-adjust method. Indeed, a relatively small calibra-
ion sample (e.g., twenty samples) may  yield excellent results in one
ase, but may  yield up to 50% higher RMSE in another case; and this
espite the fact that sampling was made in a stratified (balanced)
anner. For VI this problem is further amplified as the optimum
aveband combination is also determined from the experimen-

al data. We  have shown (Fig. 8) that for a sample size of twenty
alibration samples, the selected “best” band combination lacks
obustness.

ummary and conclusions

In our communication, we have demonstrated advantages and
rawbacks of four widely used statistical and physical modelling
pproaches. The key differences between the different modelling
ethods are summarized in Table 6. The table aims informing prac-

itioners and researchers to identify the most suitable approach for
heir study. The table also highlights key research questions. As
ny study that makes reference to a particular data set, our find-
ngs are necessarily restricted. Nevertheless, we  believe that our
ey findings are of general validity.

The study has demonstrated that radiative transfer models
nd hyperspectral airborne imaging can be successfully linked for
apping and assessing leaf area index in Mediterranean grass-

ands (nRMSE = 0.18; R2 = 0.91). The employed inversion procedure
nd recursive band elimination scheme are of interest for the
emote sensing community working in different spectral regions
nd vegetation types. With the launch of spaceborne hyperspec-
ral sensors such as EnMap the availability of suitable data sets
ill increase. Hence, the application of the developed methods

o other vegetation types can be evaluated for assessing their
obustness for mapping important vegetation biophysical proper-
ies.
The study also demonstrated that grassland LAI can be esti-
ated through the inversion of the PROSAIL radiative transfer
odel with accuracies comparable to statistical approaches based

n vegetation indices. Although still necessary, ground-measured
 Observation and Geoinformation 43 (2015) 19–31 29

biophysical data may  be almost entirely used for validating the
retrieved model parameters. Field measurements are not required
for model calibration. In our study, in situ data were only used
for restricting the range of parameters in the look-up-tables (LUT).
Additionally, soil optical properties had to be specified according
to local conditions. This information is, however, readily obtained
from the imagery itself.

The use of radiative transfer models for vegetation biophysical
parameter retrieval is sometimes described as something overly
complicated. We  do not believe that this is really the case. For exam-
ple, in our study, model inversion was  done using LUT. These can be
built easily for all kinds of RTM. Also it is quite easy to find within a
LUT the simulated spectrum closest to the spectrum being inverted
– and thus the solution to the inverse problem. Nonetheless, such
approaches are of course still more complicated compared to the
calibration and application of LAI-VI models.

In our view, the main drawback of RTM relates to the availability
of suitable radiative transfer models for the studied ecosystem and
the need to atmospherically correct the remotely sensed imagery.
Suitable RTM are not equally available for all types of vegetation
(e.g., forests with multiple canopy layers, row crops). Also, the cho-
sen RTM may  not incorporate the particular biophysical parameter
a researcher might be interested in. For example, adding absorption
coefficients of polyphenols (tannin) into PROSPECT for studying tea
quality (Bian, 2013) was  only partly successful.

One key research question coming out of this study relates to
the use (or not) of the full spectral resolution provided by imaging
spectrometers. Indeed, one important difference between radia-
tive transfer models and the other methods relates to the number
of spectral bands used for LAI retrieval. Whereas the physical mod-
elling approach considers the entire spectral shape in each pixel,
the other three methods rely only on two  spectral bands (albeit
selected from the entire band set). This has implications in terms
of computer resources but also noise sensitivity, robustness, gen-
eralization and reproducibility. Although generally it might be
preferable to make use of the full spectral resolution, our study
demonstrated that even with two  spectral bands one may  (locally)
obtain very good results. Hence, it still has to be proven that
the detailed spectral shape of a pixel contains information going
beyond that of narrow band vegetation indices. On the other hand,
if only two spectral bands are to be used, our study showed a clear
advantage of using the PERe-adjust method which combines some
advantages of physical and statistical approaches.

Acknowledgements

We  would like to acknowledge the assistance of the park man-
agement of Majella National Park, Italy, and in particular of Teodoro
Andrisano. Special thanks go to Fabio Corsi, Moses Cho and Istiak
Sobhan for their assistance during the field campaign.

References

Asner, G.P., Martin, R.E., 2008. Spectral and chemical analysis of tropical forests:
scaling from leaf to canopy levels. Remote Sens. Environ. 112, 3958–3970,
http://dx.doi.org/10.1016/j.rse.2008.07.003

Atzberger, C., 2010. Inverting the PROSAIL canopy reflectance model using neural
nets  trained on streamlined databases. J. Spectral Imaging 1, 1–13, http://dx.
doi.org/10.1255/jsi.2010 a2

Atzberger, C., Darvishzadeh, R., Schlerf, M.,  Le Maire, G., 2013. Suitability and
adaptation of PROSAIL radiative transfer model for hyperspectral grassland
studies. Remote Sens. Lett. 4, 55–64, http://dx.doi.org/10.1080/2150704X2012.
689115

Atzberger, C., Guérif, M.,  Baret, F., Werner, W.,  2010. Comparative analysis of three
chemometric techniques for the spectroradiometric assessment of canopy

chlorophyll content in winter wheat. Comput. Electron. Agric. 73, 165–173,
http://dx.doi.org/10.1016/j.compag.2010.05.006

Atzberger, C., Richter, K., 2012. Spatially constrained inversion of radiative transfer
models for improved LAI mapping from future sentinel-2 imagery. Remote
Sens. Environ. 120, 208–218, http://dx.doi.org/10.1016/j.rse.2011.10.035

dx.doi.org/10.1016/j.rse.2008.07.003
dx.doi.org/10.1016/j.rse.2008.07.003
dx.doi.org/10.1016/j.rse.2008.07.003
dx.doi.org/10.1016/j.rse.2008.07.003
dx.doi.org/10.1016/j.rse.2008.07.003
dx.doi.org/10.1016/j.rse.2008.07.003
dx.doi.org/10.1016/j.rse.2008.07.003
dx.doi.org/10.1016/j.rse.2008.07.003
dx.doi.org/10.1016/j.rse.2008.07.003
dx.doi.org/10.1016/j.rse.2008.07.003
dx.doi.org/10.1016/j.rse.2008.07.003
dx.doi.org/10.1255/jsi.2010 a2
dx.doi.org/10.1255/jsi.2010 a2
dx.doi.org/10.1255/jsi.2010 a2
dx.doi.org/10.1255/jsi.2010 a2
dx.doi.org/10.1255/jsi.2010 a2
dx.doi.org/10.1255/jsi.2010 a2
dx.doi.org/10.1255/jsi.2010 a2
dx.doi.org/10.1255/jsi.2010 a2
dx.doi.org/10.1080/2150704X2012.689115
dx.doi.org/10.1080/2150704X2012.689115
dx.doi.org/10.1080/2150704X2012.689115
dx.doi.org/10.1080/2150704X2012.689115
dx.doi.org/10.1080/2150704X2012.689115
dx.doi.org/10.1080/2150704X2012.689115
dx.doi.org/10.1080/2150704X2012.689115
dx.doi.org/10.1080/2150704X2012.689115
dx.doi.org/10.1016/j.compag.2010.05.006
dx.doi.org/10.1016/j.compag.2010.05.006
dx.doi.org/10.1016/j.compag.2010.05.006
dx.doi.org/10.1016/j.compag.2010.05.006
dx.doi.org/10.1016/j.compag.2010.05.006
dx.doi.org/10.1016/j.compag.2010.05.006
dx.doi.org/10.1016/j.compag.2010.05.006
dx.doi.org/10.1016/j.compag.2010.05.006
dx.doi.org/10.1016/j.compag.2010.05.006
dx.doi.org/10.1016/j.compag.2010.05.006
dx.doi.org/10.1016/j.compag.2010.05.006
dx.doi.org/10.1016/j.rse.2011.10.035
dx.doi.org/10.1016/j.rse.2011.10.035
dx.doi.org/10.1016/j.rse.2011.10.035
dx.doi.org/10.1016/j.rse.2011.10.035
dx.doi.org/10.1016/j.rse.2011.10.035
dx.doi.org/10.1016/j.rse.2011.10.035
dx.doi.org/10.1016/j.rse.2011.10.035
dx.doi.org/10.1016/j.rse.2011.10.035
dx.doi.org/10.1016/j.rse.2011.10.035
dx.doi.org/10.1016/j.rse.2011.10.035
dx.doi.org/10.1016/j.rse.2011.10.035


3  Earth

B

B

B

B

C

C

C

C

C

C

C

C

D

D

D

D

D

D

F

G

H

H

H

0 C. Atzberger et al. / International Journal of Applied

acour, C., Baret, F., Béal, D., Weiss, M.,  Pavageau, K., 2006. Neural network
estimation of LAI, fAPAR, fCover and LAI × Cab from top of canopy MERIS
reflectance data: principles and validation. Remote Sens. Environ. 105,
313–325, http://dx.doi.org/10.1016/j.rse.2006.07.014

aret, F., Buis, S., 2008. Estimating canopy characteristics from remote sensing
observations: review of methods and associated problems. In: Liang, S. (Ed.),
Advances in Land Remote Sensing. Springer, Netherlands, pp. 173–201.

aret, F., Guyot, G., 1991. Potentials and limits of vegetation indices for LAI and
APAR assessment. Remote Sens. Environ. 35, 161–173, http://dx.doi.org/10.
1016/0034-4257(91)90009-U

ian, M.,  2013. Assessing the quality of tea by hyperspectral techniques (Ph.D.
Thesis). University of Twente Faculty of Geo-Information and Earth
Observation (ITC), Twente (NL).

hen, J.M., Rich, P.M., Gower, S.T., Norman, J.M., Plummer, S., 1997. Leaf area index
of  boreal forests: theory, techniques, and measurements. J. Geophys. Res.
Atmos. 102 (29), 429–29443, http://dx.doi.org/10.1029/97JD01107

hirici, G., Barbati, A., Corona, P., Marchetti, M.,  Travaglini, D., Maselli, F., Bertini, R.,
2008. Non-parametric and parametric methods using satellite images for
estimating growing stock volume in alpine and Mediterranean forest
ecosystems. Remote Sens. Environ. 112, 2686–2700, http://dx.doi.org/10.1016/
j.rse.2008.01.002

ho, M.A., 2007. Hyperspectral Remote Sensing of Biochemical and Biophysical
Parameters: The Derivative Red-edge Double-peak Feature: A Nuisance or an
Opportunity? (Ph.D. Thesis). Wageningen University (NL), Wageningen.

ho, M.A., Skidmore, A.K., 2009. Hyperspectral predictors for monitoring biomass
production in Mediterranean mountain grasslands: Majella National Park,
Italy. Int. J. Remote Sens. 30, 499–515, http://dx.doi.org/10.1080/
01431160802392596

levers, J., Verhoef, W.,  1991. Modelling and synergetic use of optical and
microwave remote sensing. Report 2: LAI estimation from canopy reflectance
and  WDVI: A sensitivity analysis with the SAIL model (No. 90–39), BCRS Report.

ombal, B., Baret, F., Weiss, M.,  2002. Improving canopy variables estimation from
remote sensing data by exploiting ancillary information. Case study on sugar
beet canopies. Agronomie 22, 205–215, http://dx.doi.org/10.1051/
agro:2002008

ombal, B., Baret, F., Weiss, M.,  Trubuil, A., Macé, D., Pragnèr, A., Myneni, R.,
Knyazikhin, Y., Wang, L., 2003. Retrieval of canopy biophysical variables from
bidirectional reflectance: using prior information to solve the ill-posed inverse
problem. Remote Sens. Environ. 84, 1–15, http://dx.doi.org/10.1016/S0034-
4257(02)35-4

orona, P., Fattorini, L., Franceschi, S., Chirici, G., Maselli, F., Secondi, L., 2014.
Mapping by spatial predictors exploiting remotely sensed and ground data: a
comparative design-based perspective. Remote Sens. Environ. 152, 29–37,
http://dx.doi.org/10.1016/j.rse.2014.05.011

arvishzadeh, R., Atzberger, C., Skidmore, A.K., Abkar, A.A., 2009. Leaf area index
derivation from hyperspectral vegetation indicesand the red edge position. Int.
J.  Remote Sens. 30, 6199–6218, http://dx.doi.org/10.1080/
01431160902842342

arvishzadeh, R., Atzberger, C., Skidmore, A., Schlerf, M.,  2011. Mapping grassland
leaf area index with airborne hyperspectral imagery: a comparison study of
statistical approaches and inversion of radiative transfer models. ISPRS J.
Photogramm Remote Sens. 66, 894–906, http://dx.doi.org/10.1016/j.isprsjprs.
2011.09.013

arvishzadeh, R., Skidmore, A., Schlerf, M.,  Atzberger, C., 2008a. Inversion of a
radiative transfer model for estimating vegetation LAI and chlorophyll in a
heterogeneous grassland. Remote Sens. Environ. 112, 2592–2604, http://dx.
doi.org/10.1016/j.rse.2007.12.003

arvishzadeh, R., Skidmore, A., Schlerf, M.,  Atzberger, C., Corsi, F., Cho, M., 2008b.
LAI  and chlorophyll estimation for a heterogeneous grassland using
hyperspectral measurements. ISPRS J. Photogramm Remote Sens. 63, 409–426,
http://dx.doi.org/10.1016/j.isprsjprs.2008.01.001

emarez, V., Gastellu-Etchegorry, J.P., 2000. A modeling approach for studying
forest chlorophyll content. Remote Sens. Environ. 71, 226–238, http://dx.doi.
org/10.1016/S0034-4257(99)89-9

origo, W.A., Zurita-Milla, R., de Wit, A.J.W., Brazile, J., Singh, R., Schaepman, M.E.,
2007. A review on reflective remote sensing and data assimilation techniques
for  enhanced agroecosystem modeling. Int. J. Appl. Earth Obs. 9, 165–193,
http://dx.doi.org/10.1016/j.jag.2006.05.003

isher, P., 1997. The pixel: a snare and a delusion. Int. J. Remote Sens. 18, 679–685,
http://dx.doi.org/10.1080/014311697219015

emmell, F., Varjo, J., Strandstrom, M.,  Kuusk, A., 2002. Comparison of measured
boreal forest characteristics with estimates from TM data and limited ancillary
information using reflectance model inversion. Remote Sens. Environ. 81,
365–377, http://dx.doi.org/10.1016/S0034-4257(02)12-3

aboudane, D., Miller, J.R., Pattey, E., Zarco-Tejada, P.J., Strachan, I.B., 2004.
Hyperspectral vegetation indices and novel algorithms for predicting green LAI
of  crop canopies: modeling and validation in the context of precision
agriculture. Remote Sens. Environ. 90, 337–352, http://dx.doi.org/10.1016/j.
rse.2003.12.013

aboudane, D., Tremblay, N., Miller, J.R., Vigneault, P., 2008. Remote estimation of
crop chlorophyll content using spectral indices derived from hyperspectral

data. IEEE Trans. Geosci. Remote Sens. 46, 423–437, http://dx.doi.org/10.1109/
TGRS2007.904836

orler, D.N.H., Dockray, M.,  Barber, J., 1983. The red edge of plant leaf reflectance.
Int.  J. Remote Sens. 4, 273–288, http://dx.doi.org/10.1080/
01431168308948546
 Observation and Geoinformation 43 (2015) 19–31

Houborg, R., Boegh, E., 2008. Mapping leaf chlorophyll and leaf area index using
inverse and forward canopy reflectance modeling and SPOT reflectance data.
Remote Sens. Environ. 112, 186–202, http://dx.doi.org/10.1016/j.rse.2007.04.
012

Houborg, R., Soegaard, H., Boegh, E., 2007. Combining vegetation index and model
inversion methods for the extraction of key vegetation biophysical parameters
using Terra and Aqua MODIS reflectance data. Remote Sens. Environ. 106,
39–58, http://dx.doi.org/10.1016/j.rse.2006.07.016

Hu, B., Miller, J.R., Chen, J.M., Hollinger, A., 2004. Retrieval of the canopy leaf area
index in the BOREAS flux tower sites using linear spectral mixture analysis.
Remote Sens. Environ. BOREAS Remote Sens. Sci. 89, 176–188, http://dx.doi.
org/10.1016/j.rse.2002.06.003

Im,  J., Jensen, J.R., 2008. Hyperspectral remote sensing of vegetation. Geogr.
Compass 2, 1943–1961, http://dx.doi.org/10.1111/j1749-8198.2008.00182.x

Jacquemoud, S., Baret, F., 1990. PROSPECT: a model of leaf optical properties
spectra. Remote Sens. Environ. 34, 75–91, http://dx.doi.org/10.1016/0034-
4257(90)90,100-Z

Jacquemoud, S., Baret, F., Andrieu, B., Danson, F.M., Jaggard, K., 1995. Extraction of
vegetation biophysical parameters by inversion of the PROSPECT + SAIL models
on  sugar beet canopy reflectance data. Application to TM and AVIRIS sensors.
Remote Sens. Environ. 52, 163–172, http://dx.doi.org/10.1016/0034-
4257(95)00018-V

Jacquemoud, S., Verhoef, W.,  Baret, F., Bacour, C., Zarco-Tejada, P.J., Asner, G.P.,
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