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Abstract
The present article investigates the effects of diffusion-thermo, thermal radiation, and
magnetic field of strength B0 on the time dependent MHD flow of Jeffrey nanofluid
past over a porous medium in a rotating frame. The plate is assumed vertically
upward along the x-axis under the effect of cosine oscillation. Silver nanoparticles are
uniformly dispersed into engine oil, which is taken as a base fluid. The equations
which govern the flow are transformed into a time fractional model using
Atangana–Baleanu time fractional derivative. To obtain exact expressions for velocity,
temperature, and concentration profiles, the Laplace transform technique, along with
physical initial and boundary conditions, is used. The behaviors of the fluid flow under
the impact of corresponding dimensionless parameters are shown graphically. The
variations in Nusselt number and Sherwood number of relative parameters are found
numerically and shown in tabular form. It is worth noting that the rate of heat transfer
of engine oil is enhanced by 15.04% when the values of volume fraction of silver
nanoparticles vary from 0.00 to 0.04, as a result the lubricant properties are improved.

Keywords: Jeffrey’s nanofluid; Rotating frame; Diffusion-thermo; Engine oil;
Atangana–Baleanu fractional derivative

1 Introduction
Fluids that have both viscous and elastic behaviors are referred to as viscoelastic fluids, for
example, polymers, castor oil, engine oil, etc. Viscoelastic fluid has very significant applica-
tions in the field of medicine, automobiles, polymers solutions, electrochemistry, and me-
chanics [1]. Due to contrasting simulations compared to Newtonian fluids, Navier–Stokes
equations are no longer reliable to describe the rheology of viscoelastic fluids. Due to vast
implementation in many areas, it got great attention of the scholars so that various models
have been formulated. One of the well-known models among them is Jeffrey fluid model,
which deals with the time derivative instead of the convective derivative. Second grade
fluid model and viscous fluid model can be deduced from it by letting their parameters
tend to zero. Keeping in mind the above mentioned facts, Jeffrey model was considered
by many scholars like Hayat et al. [2] who studied Jeffrey fluid in the presence of ther-
mal radiation. They developed velocity and temperature field via HPM and also showed
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variations in the fluid behavior due to embedded parameters. In another study, Hayat et
al. [3] discussed the phenomenon of heat transfer of Jeffrey fluid over a moving surface,
in which Jeffrey fluid model was considered as a rheological model. The authors studied
Jeffrey fluid in the presence of thermal radiation effect and solved the governing equa-
tions by using HAM. Turkyilmazoglu et al. [4] investigated the heat transfer phenomena
of Jeffrey fluid flow near the stagnation point. Furthermore, Elahi et al. [5] examined the
simultaneous effects of magneto-hydrodynamic and partial slip on peristaltic flow of Jef-
frey fluid in rectangular duct. The closed-form solution for the velocity field was obtained
by a separation of variables procedure. In the above studies, low thermal conductivity was
reported by the researchers for the considered fluids. To circumvent this issue, the idea of
suspension of nanosized particles was adopted by the researchers and scholars. The first
successful attempt was done by Eastman [6] in 1995. Eastman showed 40% enhancement
in the thermal conductivity of ethylene glycol, when copper nanoparticles were dispersed
at 0.3% volume fraction in ethylene glycol. Inspired from the work of Eastman and Choi,
many researchers did their work on the above mentioned idea; see, e.g., Dinvarad et al.
[7], Mohyud din et al. [8], Parekh and Lee [9], and Loganath [10]. They have noticed that
nanoparticles are responsible for the enhancement of thermal conductivity and viscous
forces. They also observed that nanofluids are more stable and do not have the sedimen-
tation problem.

Magneto-hydrodynamic flow in a rotating frame has huge beneficial applications in
various phenomena like cosmic and geographic flow, Earth rotation, formation of galax-
ies, circulation of oceans, electro-magnetic pumping, turbines and power generation, etc.
Motivated by the above tremendous applications in mentioned fields, many researchers
worked on the rotating phenomenon. The influence of silver nanoparticles on Jeffrey fluid
flow was discussed by Atirah et al. [11]. They highlighted that velocity shows accelera-
tion/deceleration at both primary and secondary positions when the rotation parameter
varies. They also observed great variation in heat transfer rate when nanoparticles were
uniformly dispersed in the fluid. Singh et al. [12] discussed the convective flow in the
presence of transverse magnetic field past over an accelerated porous plate in a rotating
channel. They highlighted the impact of several parameters like suction/injection, Prandtl
number, and rotation parameter on flow behavior and also have shown the results graphi-
cally. Seth et al. [13] discussed the Couette flow under the effect of inclined magnetic field
in a rotatory channel. They observed that the angle of inclination of applied magnetic field
is responsible for deceleration of primary and secondary velocity throughout the channel.
Ali et al. [14] studied the magneto-hydrodynamic flow of a Brinkman-type nanofluid in a
rotating disk with Hall effect. They observed a 6.35% increase in the rate of heat transfer
when MoS2 nanoparticles were dispersed uniformly in the considered fluid. Furthermore,
Ali et al. [15] studied the different shapes of MoS2, namely (platelets, cylinders, bricks, and
blades) taking engine and kerosene oil as base fluids in a rotating frame.

The effect of heat and mass transfer phenomena occur due to the differences in temper-
ature and concentration. In modern technology, heat and mass transfer phenomena play
a key role, especially in engineering, and due to this reason most researchers are attracted
to further investigate this topic. Moreover, heat and mass transfer have a wide range of
industrial and practical life applications, like freeze-drying food. Blums [16] as well as In-
cropera and De Witt [17] discussed in details heat and mass transfer with several thermal
and concentration applications. The phenomenon of heat and mass transfer is very impor-
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tant because of many physical uses in science and modern technology, as discussed in the
book of Nield and Bejan [18]. In heat and mass transfer phenomena, the transfer of ther-
mal energy from one system to another is happening not only due to temperature gradient
but also due to concentration gradient. The transfer of thermal energy due to concentra-
tion gradient is referred to as diffusion-thermo (Dufour effect). Already in 1952 Chapman
and Cowling [19] developed the effect of diffusion-thermo on the transport of heat and
mass from kinetic molecular theory of gases. Based on the above effects, different inves-
tigations have been carried out, e.g., Reddy et al. [20] discussed numerically the effect of
diffusion-thermo and thermal diffusion in the presence of Hall current in a rotating frame
for the fluid flowing in a porous medium. They highlighted that Dufour effect is respon-
sible for the rise in the velocity and temperature field. Kafoussias et al. [21] analyzed the
Dufour and Soret effects on a mixed convective flow along with temperature-dependent
viscosity. The impact of Dufour and Soret numbers on a time-independent mixed convec-
tive flow of heat and mass transfer flowing over a semiinfinite plate under the influence
of magnetic field was discussed by Alam et al. [22]. Zafer and William [23] studied the ef-
fect of diffusion-thermo and thermal diffusion on a natural convection flow over a vertical
surface. They assumed helium–air mixture as a fluid and solved the governing equations
analytically.

The concept of a fractional derivative was presented about 300 years ago, and it is known
as the natural generalization of the ordinary calculus because it includes the derivatives
and integrals of noninteger order. The idea of fractional calculus is based on a question
[24] which was asked by L’Hospital in 1695 and addressed to Leibnitz about his notation
that he used for the nth derivative of a function in his research publication, namely, what
would happen if we take n = 1/2? Leibniz responded that it would be an apparent paradox,
but since then fruitful results were drawn. In the beginning, they did not get that much
attention from mathematicians due to an abstract approach. But for the last three decades
fractional calculus has shown remarkable development, and it changes from a pure math-
ematical formulation to different applied fields like bioengineering, physics, rheology, vis-
coelasticity, biophysics, and electrochemistry [25]. Especially, it has been proved that frac-
tional calculus is a useful tool to deal with viscoelastic behavior [26]. The concept of frac-
tional order calculus is used by various researchers in their work, and we refer to [27–31]
for details. We note that there are some differences in the use of the involved operators.
To successfully deal with the problem of a singular kernel, a new operator with expo-
nential function for the fractional derivative was presented by Caputo and Fabrizio [32] in
2015. Using the concept of CF fractional derivative, Sheikh et al. [33] studied a generalized
second grade fluid in a porous medium. Furthermore, Ali et al. [34] used time-fractional
derivative for the influence of magnetic field on the blood flow of Casson fluid. Ali et al.
[34] analyzed the two-phase blood flow of magnetic particles using CF fractional opera-
tors. Saqib et al. [35] studied a free convection flow of generalized Jeffrey fluid using CF
fractional model. Although the existing fractional derivatives have been efficiently used in
real world problems, there are still many things to be improved. For example, in the case
of CF derivative [32], the operator is nonsingular, unlike in [24], but still it has a problem
of nonlocality. Therefore, to fix this non-locality problem, Atangana and Baleanu [29, 36]
in 2016 used the generalized Mittag-Leffler function and proposed a new operator for a
fractional derivative having nonlocal and nonsingular kernel. Now the Atangana–Baleanu
definition will be more significant when discussing real world problems and will also have
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a great advantage while using Laplace transform method to solve physical problems with
initial conditions. By using the idea of AB fractional derivative, Sheikh et al. [37] developed
exact an expression for the velocity distribution of Casson fluid. Variation in the velocity
profile was also displayed graphically for various parameters. Some other interesting work
based on time fractional derivative can be found in [38–44].

Inspired by the above literature review, the objective of the present investigation is to
analyze the electrically conducted mixed convection flow of generalized Jeffrey nanofluid
in a rotating frame past over an infinite oscillating plate saturated in a porous medium
along with thermal radiation and diffusion-thermo. Tiwari and Das nanofluid model [45],
along with Boussinesq approximation [46], is used for the development of the governing
equations of the considered phenomenon. After that the governing equations are reduced
to Atangana–Baleanu fractional model. Exact expressions for the velocity, heat, and mass
distributions are obtained by using the Laplace transform method. To check the influ-
ence of pertinent parameters on the velocity profile, heat and mass distributions, exact
expressions are plotted graphically. Variations in Sherwood and Nusselt numbers are also
expressed in tabular form. It is worth noting that the rate of heat transfer is enhanced by
15.04% when the values of volume fraction of silver nanoparticles vary from 0.00 to 0.04.

2 Preliminaries
Definition 1 ([47]) If f (t) is a piecewise continuous function for t ≥ 0 and of exponential
order m, then the Laplace transform F(p) of f (t) exists for all p > m and is given by

L
[
f (t); p

]
=

∫ ∞

0
f (t)e–pt dt. (1)

Definition 2 ([29]) Let f ∈ H1(a, b).b > a and α ∈ [0, 1], then the Atangana–Baleanu frac-
tional derivative is given as;

AB℘α
t f (t) =

N(α)
1 – α

∫ τ

0
Eα

(
–α(τ – t)

1 – α

)
f ′(t) dt. (2)

The Atangana–Baleanu fractional derivative operator is known to be helpful and is fre-
quently used to discuss the real world phenomena. The AB time fractional derivative has
huge beneficial applications when the Laplace transform technique is used to solve frac-
tional differential equations.

The Laplace transform of Atangana–Baleanu time fractional operator is given as [29]:

£
{AB℘α

t f (t)
}

=
N(α)
1 – α

pα£(f (t))p – pα–1f (0)
pα + α

1–α

. (3)

2.1 Mathematical formulation of the problem
Assume Cartesian coordinate system for the study of the unsteady, incompressible Jeffrey
nanofluid embedded in a porous medium. Fluid occupies space z ≥ 0. The whole system
is assumed in a rigid body rotation. Jeffrey nanofluid is flowing along the x-axis which
is taken vertically upward and rotating about the z-axis with fixed angular velocity Ω as
shown in Fig. 1.

A uniform magnetic field of strength B0 is applied transversely to the fluid motion which
is parallel to the z-axis. Initially, both the fluid and plate are at stationary position. At time
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Figure 1 Geometry of the flow

t = 0+, the plate starts its motion due to cosine oscillations, while the temperature and
concentration of the fluid are raised to Tw and Cw, respectively. Keeping in mind the above
assumptions and under Boussinesq’s approximation, the governing equations are given as
[46]:

ρnf

(
∂F(z, t)

∂t
+ 2ΩiF(z, t)

)

=
μnf

1 + λ1

(
1 + λ2

∂

∂t

)
∂2F(z, t)

∂z2 –
μnf φ1

k∗(1 + λ1)

(
1 + λ2

∂

∂t

)
F(z, t)

– σB2
0F(z, t) + (ρβT )nf g(T – T∞) + (ρβC)nf g(C – C∞), (4)

∂T(z, t)
∂t

=
Knf

(ρcp)nf

∂2T(z, t)
∂z2 –

∂qr

∂z
+

DmKT

cs(cp)nf

∂2C(z, t)
∂z2 , (5)

∂C(z, t)
∂t

= Dnf
∂2C(z, t)

∂z2 , (6)

where all the parameters and quantities are defined in the nomenclature section.
Physical initial and boundary conditions for the velocity, temperature and concentration

profiles are as follows:

F(z, 0) = 0, T(z, 0) = T∞, C(z, 0) = C∞,

F(0, t) = U0H(t) cos wt, T(0, t) = Tw, C(0, t) = Cw,

F(∞, t) = 0, T(∞, t) = T∞, C(∞, t) = C∞.

(7)
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Table 1 The thermo-physical properties of the base fluid and nanosized particles

Properties ρ Cp K β Pr

Engine oil 863 2048 0.1404 0.00007 600
Ag (silver) 10,500 235 429 0.0000189 –

Nanofluid expressions involved in the governing equations are given as [48]:

(ρβT )nf = (1 – ϕ)(ρβT )f + ϕ(ρβT )s, (ρcp)nf = (1 – ϕ)(ρcp)f + ϕ(ρcp)s,

μnf = μf (1 – ϕ)–2.5, ρnf = (1 – ϕ)ρf + ϕρs, Dnf = (1 – ϕ)Df ,

knf = kf

(
ks + 2kf – 2ϕ(kf – ks)
ks + 2kf + 2ϕ(kf – ks)

)
.

(8)

The mentioned nanofluid expressions are applicable for spherical shaped nanosized par-
ticles. The thrmophysical properties of nanoparticles and base fluids are given in Table 1.
The term for radiative heat flux by using Rosseland approximation [49] is given as:

qr =
–4σ ∗∂T4

3k∗
1∂z

. (9)

In order to linearize T4, we use Taylor expansion about T∞ up to two terms, and then T4

takes the form:

T4 = 4TT3
∞ – 3T4

∞. (10)

Incorporating Eq. (9) into Eq. (8) and differentiating with respect to z, we get

∂qr

∂z
=

16σ ∗T3∞
3k∗

1

∂2T
∂z2 . (11)

For dimensional analysis, the dimensionless variables are:

F∗ =
F

U0
, z∗ =

zU0

ν
, t∗ =

tU2
0

ν
, θ =

T – T∞
Tw – T∞

, φ =
C – C∞

Cw – C∞
. (12)

Using expressions defined in Eq. (10) and dimensionless variables defined in (11), the gov-
erning equations take the following form:

∂F(z, t)
∂t

+ 2irF =
a1

1 + λ1

(
1 + λ

∂

∂t

)
∂2F(z, t)

∂z2 –
a1

k(1 + λ1)

(
1 + λ

∂

∂t

)
F(z, t)

–
(

Ha
a3

)
F(z, t) + d1θ (z, t) + d2φ(z, t), (13)

∂θ (z, t)
∂t

= a4
∂2θ (z, t)

∂z2 + d3
∂2φ(z, t)

∂z2 , (14)

∂φ(z, t)
∂t

= a5
∂2φ(z, t)

∂z2 . (15)
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And dimensionless initial and boundary conditions are:

F(z, 0) = 0, T(z, 0) = 0, C(z, 0) = 0,

F(0, t) = cos wt, T(0, t) = 1, C(0, t) = 1,

F(∞, t) = 0, T(∞, t) = 0, C(∞, t) = 0.

(16)

In the dimensionalization process the constants and parameters are:

r =
Ων

U2
0

, λ =
λ2U2

0
ν

,
1
K

=
φ1ν

K∗
1 U2

0
, Ha =

σ ∗β2
0ν

ρU2
0

,

Gr =
gβTν(Tw – T∞)

U3
0

, Gm =
gβCν(Cw – C∞)

U3
0

, d1 = a2Gr, d2 = a6Gm,

Pr =
νf

αf
, Rd =

16σ ∗T3

kf k∗
1

, Sc =
ν

Df
, m1 = (1 – ϕ) + ϕ

(ρcp)s

(ρcp)f
,

m2 =
ks + 2kf – 2ϕ(kf – ks)
ks + 2kf + ϕ(kf – ks)

, a1 =
(

(1 – ϕ)2.5
{

(1 – ϕ) + ϕ
ρs

ρf

})–1

,

a2 =
1

ρnf

(
(1 – ϕ)ρf +

(βT )s

(βT )f

)
, a3 = (1 – ϕ) + ϕ

ρs

ρf
, a4 =

m2 + Rd

m1 Pr
,

a5 =
Sc

1 – ϕ
, a6 =

1
ρnf

(
(1 – ϕ)ρf +

(βC)s

(βC)f

)
,

Df =
DmKT

cscpν

(
Cw – C∞
Tw – T∞

)
, d3 =

Df
m1

.

2.2 Atangana–Baleanu fractional model
To transform the classical model defined in Eqs. (12), (13) and (14) into AB fractional
model, we used AB℘α

t instead of ∂
∂t (·) and got

AB℘α
t F(z, t) + 2irF(z, t)

=
a1

1 + λ1

(
1 + λAB℘α

t
)∂2F(z, t)

∂z2 +
a1

1 + λ1

(
1 + λAB℘α

t
)
F(z, t)

–
(

Ha
a3

)
F(z, t) + d1θ (z, t) + d2φ(z, t), (17)

AB℘α
t θ (z, t) = a4

∂2θ (z, t)
∂z2 + d3

∂2φ(z, t)
∂z2 , (18)

AB℘α
t φ(z, t) = a4

∂2θ (z, t)
∂z2 , (19)

where the operator of AB fractional derivative [29] is

AB℘α
t f (t) =

N(α)
1 – α

∫ τ

0
Eα

(
–α(τ – t)

1 – α

)
f ′(t) dt, (20)

where N(0) = N(1) = 1, 0 < α < 1 and Eα is Mittag-Leffler function.
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2.3 Exact solutions
Applying Laplace transform on Eqs. (16), (17) and (18), and using initial conditions defined
in Eq. (15), we get

d2φ(z, p)
dz2 –

(
δ3pα

pα + δ1

)
φ(z, p) = 0, (21)

d2θ (z, p)
dz2 –

(
δ2pα

pα + δ1

)
θ (z, p) =

d3

p

(
δ3pα

pα + δ1

)
exp

(
–z

√
δ3pα

pα + δ1

)
, (22)

d2F(z, p)
dz2 –

(
δ6pα + δ7

δ4pα + δ5

)
F(z, p) =

–d1(pα + δ1)
δ4pα + δ5

θ (z, p) –
–d2(pα + δ1)

δ4pα + δ5
φ(z, p), (23)

and the transformed boundary conditions are

F(0, p) =
p

p2 + ω2 , θ (0, p) =
1
p

, φ(0, p) =
1
p

,

F(∞, p) = 0, θ (∞, p) = 0, φ(∞, p) = 0,
(24)

where

δ0 =
1

1 – α
, δ1 = αδ0, δ2 =

δ0

a4
, δ3 = a5δ0, b1 = 1 +

a1λ

k(1 + λ1)
,

b2 =
a1

1 + λ1
, b3 =

a1λδ0

1 + λ1
, b4 =

Ha
a3

+
a1

k(1 + λ1)
+ 2ir, δ4 = b2 + b3,

δ5 = b2δ1, δ6 = b1δ0 + b4, δ7 = δ1b4,

where, employing transformed boundary conditions defined in Eq. (23), the solution of
Eqs. (20), (21) and (22) will be

φ(z, p) =
1

p1–α
φ∗

3 (z, p, 0, δ3, 0, δ1), (25)

θ (z, p) =
1

p1–α

[
δ∗

2φ
∗
3 (z, p, 0, δ2, 0, δ1) + δ∗

1φ
∗
3 (z, p, 0, δ3, 0, δ1)

]
, (26)

F(z, p)

=
p

p2 + ω2 φ∗
1 (z, p, δ6, δ7, δ21,

√
δ4)

+
1

p1–α

⎡

⎢
⎣

�1φ
∗
2 (z, p, 0, δ6, δ7, δ21,

√
δ4) + �2φ

∗
2 (z, p, δ12, δ6, δ7, δ21,

√
δ4)

+ �3φ
∗
2 (z, p, δ13, δ6, δ7, δ21,

√
δ4) + �4φ

∗
2 (z, p, 0, δ6, δ7, δ21,

√
δ4)

+ �5φ
∗
2 (z, p,Γ1, δ6, δ7, δ21,

√
δ4) + �6φ

∗
2 (z, p, δ12,Γ2, δ7, δ21,

√
δ4)

⎤

⎥
⎦

–
1

p1–α

[
�1φ

∗
3 (z, p, 0, δ2, 0, δ1) + �2φ

∗
3 (z, p, δ12, δ2, 0, δ1)

+ �3φ
∗
3 (z, p, δ13, δ2, 0, δ1)

]

–
1

p1–α

⎡

⎢
⎣

�4φ
∗
3 (z, p, 0, δ3, 0, δ1) + �5φ

∗
3 (z, p,Γ1, δ3, 0, δ1)

+ �6φ
∗
3 (z, p,Γ2, δ3, 0, δ1) + �7φ

∗
3 (z, p, 0, δ3, 0, δ1)

+ �8φ
∗
3 (z, p,Γ1, δ3, 0, δ1) + �9φ

∗
3 (z, p,Γ2, δ3, 0, δ1)

⎤

⎥
⎦ , (27)
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where

φ
∗
1(z, p, m1, m2, m3, m4) = exp

(
–

z
m4

√
m1pα + m2

pα + m3

)
, (28)

φ
∗
2(z, p, m1, m2, m3, m4, m5) =

1
pα + m1

exp

(
–

z
m5

√
m2pα + m3

pα + m4

)
, (29)

φ
∗
3(z, p, m1, m2, m3, m4) =

1
pα + m1

exp

(
–z

√
m2pα + m3

pα + m4

)
, (30)

and

δ8 =
δ2δ5 – δ1δ6 – δ7

δ2δ4 – δ6
, δ9 =

δ1δ7

δ2δ4 – δ6
, δ10 =

δ8

2
, δ11 =

√
(δ10)2 + δ9,

δ12 = δ10 + δ11, δ13 = δ10 – δ11, δ14 =
δ2

1
δ12δ13

, δ15 =
(δ1 – δ13)2

δ12 – δ13
,

δ16 =
(δ1 – δ13)2

δ13(δ13 – δ12)
, δ17 =

δ3δ5 – δ1δ6 – δ7

δ3δ4 – δ6
, δ18 =

δ1δ7

δ3δ4 – δ6
, δ19 =

δ17

2
,

δ20 =
√

(δ19)2 + δ18, Γ1 = δ19 + δ20, Γ2 = δ19 – δ20, Γ3 =
δ2

1
Γ1Γ2

,

Γ4 =
(δ1 – Γ1)2

Γ1(Γ1 – Γ2)
, Γ5 =

(δ1 – Γ2)2

Γ2(Γ1 – Γ2)
, δ∗ = δ3 – δ2, δ∗

1 =
d3δ3

a4δ∗ ,

δ∗
2 = 1 – δ∗

1 , d∗
2 = d1δ

∗
1 , �1 = d1δ14, �2 = d1δ15, �3 = d1δ16,

�4 = d1Γ3, �5 = d1Γ4, �6 = d1Γ5, �7 = d2Γ3,

�8 = d2Γ4, �9 = d2Γ5.

By taking the inverse Laplace transform, Eqs. (24), (25) and (26) will take the form:

φ(z, t) = h(t) ∗ φ∗
3 (z, t, 0, δ3, 0, δ1), (31)

θ (z, t) = h(t) ∗ [
δ∗

2φ
∗
3 (z, t, 0, δ2, 0, δ1) + δ∗

1φ
∗
3 (z, t, 0, δ3, 0, δ1)

]
, (32)

F(z, t)

= cos wt ∗ φ∗
1 (z, t, δ6, δ7, δ21,

√
δ4)

+ h(t) ∗
⎡

⎢
⎣

�1φ
∗
2 (z, t, 0, δ6, δ7, δ21,

√
δ4) + �2φ

∗
2 (z, t, δ12, δ6, δ7, δ21,

√
δ4)

+ �3φ
∗
2 (z, t, δ13, δ6, δ7, δ21,

√
δ4) + �4φ

∗
2 (z, t, 0, δ6, δ7, δ21,

√
δ4)

+ �5φ
∗
2 (z, t,Γ1, δ6, δ7, δ21,

√
δ4) + �6φ

∗
2 (z, t, δ12,Γ2, δ7, δ21,

√
δ4)

⎤

⎥
⎦

– h(t) ∗
[
�1φ

∗
3 (z, t, 0, δ2, 0, δ1) + �2φ

∗
3 (z, t, δ12, δ2, 0, δ1)

+ �3φ
∗
3 (z, t, δ13, δ2, 0, δ1)

]

– h(t) ∗
⎡

⎢
⎣

�4φ
∗
3 (z, t, 0, δ3, 0, δ1) + �5φ

∗
3 (z, t,Γ1, δ3, 0, δ1)

+ �6φ
∗
3 (z, t,Γ2, δ3, 0, δ1) + �7φ

∗
3 (z, t, 0, δ3, 0, δ1)

+ �8φ
∗
3 (z, t,Γ1, δ3, 0, δ1) + �9φ

∗
3 (z, t,Γ2, δ3, 0, δ1)

⎤

⎥
⎦ . (33)
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Here * shows convolution-product and

h(t) = L–1
[

1
p1–α

]
=

1
tαΓ (1 – α)

.

Here

φ∗
1 (z, t, m1, m2, m3, m4)

=
1
π

∫ ∞

0

∫ ∞

0
Ψ1(z, u, c1, c2, c3, c4) exp

(
tr1 – r2rα

1 cosαπ
)

sin
(
r2rα

1 sinαπ
)

dr1 dr2,

φ∗
2 (z, t, m1, m2, m3, m4, m5)

=
1
π

∫ ∞

0

∫ ∞

0
Ψ2(z, u, c1, c2, c3, c4, c5) exp

(
tr1 – r2rα

1 cosαπ
)

× sin
(
r2rα

1 sinαπ
)

dr1 dr2,

φ∗
3 (z, t, m1, m2, m3, m4)

=
1
π

∫ ∞

0

∫ ∞

0
Ψ3(z, u, c1, c2, c3, c4) exp

(
tr1 – r2rα

1 cosαπ
)

sin
(
r2rα

1 sinαπ
)

dr1 dr2,

in which

Ψ1(z, t, c1, c2, c3, c4)

= e
–z
c4

√c1 –
z√c2 – c1c3

2c4
√

π t

∫ ∞

0

1
r2

exp

(
–z2

4c2
4r2

– c1r2

)
· I1

(
2
√

(c2 – c1c3)r2t
)

dr2,

Ψ2(z, t, c1, c2, c3, c4, c5)

= e–c1t– –z
c5

√c1 –
z√c3 – c2c4

2c5
√

π

×
∫ ∞

0

∫ t

0

e–c1t
√

t
exp

(
c1t – c4t –

–z2

4c5r2
– c2r2

)
· I1

(
2
√

(c3 – c2c4)r2t
)

dt dr2,

Ψ3(z, t, c1, c2, c3, c4)

= e–c1t–z√c2 –
z√c3 – c2c4

2c5
√

π

×
∫ ∞

0

∫ t

0

e–c1t
√

t
exp

(
c1t – c4t –

–z2

4r2
– c2r2

)
· I1

(
2
√

(c3 – c2c4)r2t
)

dt dr2.

2.4 Nusselt number
Nusselt number in dimensionless form is represented as

Nu = –
knf

kf

∂θ

∂z

∣∣∣
∣
z=0

. (34)

2.5 Sherwood number
The dimensionless form of Sherwood number is

Sh = –Dnf

(
∂φ

∂z

)

z=0
. (35)
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3 Results and discussion
This section deals with the interpretation of the obtained results. After transforming the
classical model to Atangana–Baleanu time fractional model, exact expressions were ob-
tained via the Laplace transform technique. In order to highlight the effects the relative
parameters, namely, Dufour effect Df , Schmidt number Sc, thermal Grashof number Gr,
mass Grashof number Gm, rotation parameter r, Hartman number Ha, permeability pa-
rameter K , material parameters of Jeffrey fluid λ and λ1 on the velocity, temperature, and
concentration profile, plots were drawn using MATHCAD.

Variation in the velocity profile due to volume fraction ϕ can be observed from Fig. 2.
By increasing the volume fraction ϕ, the engine oil retards. This is due to the fact that,
when value of ϕ increases, the fluid becomes more viscous and the friction force between
the fluid particles increases, as a result the fluid decelerates. The range for the volume
fraction of nanoparticles is chosen between 0.01 and 0.04; if this selected limit is crossed
then sedimentation and clogging will be caused.

Figure 3 depicts the influence of magnetic parameter Ha on the velocity profile. It can
be observed that, as the values of Ha increase, the fluid slows down. The physics behind
this phenomenon is that, when magnetic field is applied to the fluid flow, it creates Lorentz
forces which act as an opposing agent to the fluid motion and produce resistive forces to
the fluid particles, as a result the fluid retards.

Figure 2 Impact of ϕ on the velocity distribution of Jeffrey nanofluid
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Figure 3 Impact of Ha on the velocity distribution of Jeffrey nanofluid

Figure 4 shows that increasing the values of Gr from 5 to 20 makes the velocity of the
fluid increase. This is true because, for higher values of Gr, the buoyancy forces increase, as
a result the thickness of the momentum boundary layer decreases, which leads to velocity
increase.

The effect of material parameter λ on the velocity profile can be seen from Fig. 5. It is
interesting to note that, as the values of λ increase, a fall in the velocity is noticed. This is
due to an increase in the viscosity and elasticity of the fluid.

In Fig. 6, an enhancement in the velocity profile can be observed for higher values of Jef-
frey fluid parameter λ1. It is true because λ1 is the ratio between relaxation and retardation
time parameters. So that, as we increase the value of λ1, immediate response is received
to shear stress and so the fluid accelerates.

Under the influence of K , the velocity profile is displayed in Fig. 7. As the value of K
increases, the motion of the fluid increases. Physically, it is true because, for higher values
of K , the resistance from porous medium reduces, and as a result the fluid accelerates.

The velocity profile under the influence of mass Grashof number Gm can be noticed
form Fig. 8, which shows a rise in the velocity profile when the value of mass Grashof
number is increased. This happened due to the concentration gradient which raised the
buoyancy forces in the fluid, and consequently the velocity increased.
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Figure 4 Impact of Gr on the velocity distribution of Jeffrey nanofluid

Figure 5 Impact of λ on the velocity distribution of Jeffrey nanofluid
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Figure 6 Impact of λ1 on the velocity distribution of Jeffrey nanofluid

Figure 7 Impact of K on the velocity distribution of Jeffrey nanofluid
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Figure 8 Impact of Gm on the velocity distribution of Jeffrey nanofluid

Figure 9 shows the behavior of the fluid under the influence of Schmidt number Sc. It
can be seen that the velocity of the fluid decreases for higher values of Sc. This is true
because for higher values of Sc the viscosity of the fluid increases, the mass diffusion rate
decreases, and as a result the velocity diminishes.

Figure 10 illustrates the effect of the rotation parameter r on the fluid motion. The ve-
locity of the fluid decreases as the values of r increases. This is due to the fact that the
rotation parameter is directly proportional to the kinematic viscosity, so when increasing
the value of r, the fluid motion decreases.

The effect of Dufour number Df can be seen from Fig. 11. Enhancement in the veloc-
ity profile is noticed for higher values of Df . Physically, it is true because, when Df in-
creases, the rate of mass diffusion increases, kinematic viscosity of fluid decreases, and
consequently, velocity increases.

Figure 12 displays a rise in the temperature profile of the fluid for higher values of Df .
This is due to the effect of the increase of thermal conductivity and decrease of specific
heat capacity of the fluid, while enhancement in the heat transfer rate due to volume frac-
tion ϕ can be noticed from Fig. 13. As the volume fraction of the nanoparticle increases,
viscous forces in the fluid increase, which leads to a rise in the boiling and freezing points
of EO, and consequently, the Nusselt number enhances which means, that the lubrication
properties of EO become more effective and efficient. Variation reported in Fig. 12 for
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Figure 9 Impact of Sc on the velocity distribution of Jeffrey nanofluid

Figure 10 Impact of r on the velocity distribution of Jeffrey nanofluid
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Figure 11 Impact of Df on the velocity distribution of Jeffrey nanofluid

Figure 12 Impact of Df on the temperature profile

Nusselt number is identical to the variation in Table 2. The influence of Schmidt number
on concentration profile is shown in Fig. 14. A fall in the concentration profile is reported
when increasing Sc. As Sc has an inverse relation with mass diffusivity, an increase in Sc
will decrease the rate of mass diffusion, and as a result the concentration of fluid will de-
crease. Moreover, the rate of mass distribution under the effect of volume fraction ϕ of
nanoparticles is presented numerically in Table 3. One can observe that when increasing
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Table 2 Variation in Nusselt number

α ϕ Rd Df t Nu %

0.2 0.00 0.5 1.5 2 0.698 –
0.2 0.01 0.5 1.5 2 0.731 4.72
0.2 0.02 0.5 1.5 2 0.766 9.74
0.2 0.03 0.5 1.5 2 0.791 13.32
0.2 0.04 0.5 1.5 2 0.803 15.04

Figure 13 Variation in Nusselt number for the
volume fraction

Figure 14 Influence of Sc on the concentration
profile

Table 3 Variations in Sherwood number

α Sc T ϕ Sherwood number %

0.2 5 2 0.00 0.154 –
0.2 5 2 0.02 0.142 7.79
0.2 5 2 0.03 0.137 11.03
0.2 5 2 0.04 0.120 22.07

the volume fraction ϕ, viscous forces increase, which leads to a slowdown of the fluid flow,
and consequently, the rate of mass distribution decreases.

4 Concluding remarks
In the presence of Dufour effect, thermal radiation, heat and mass transfer, the rotating
Jeffrey nanofluid embedded in a porous medium is examined. Nanofluid is formed by dis-
persing silver (AgNps) nanosize particles in engine oil. Exact expressions are obtained
through the Laplace transform technique for the velocity, temperature and concentration
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profiles. The influence of various parameters is plotted graphically. Variation in Nusselt
and Sherwood numbers is calculated numerically. The main points from the study are
listed below.

• Increasing the fractional parameter α decreases the velocity.
• Velocity profile increases with the increasing values of Df , Gr and Gm.
• For higher values of λ, r, Sc and ϕ, the viscosity of the engine oil increases, which

cause a rise in the boiling point of the engine oil. This will intensely increase the heat
carrying capacity and lubrication properties of the oil.

• For MHD and permeability parameters, the viscosity of the engine oil decreases, as a
result the motion of the fluid retards.

• Temperature profile is enhanced when increasing the value of Df , which is due an
increase in the thermal conductivity and decrease in the specific heat capacity of the
engine oil.

• The rate of heat transfer increases by 15.04% when the volume friction is 0.04.
• By increasing of volume friction of nanoparticles, the rate of mass distribution

increases by 22.07%.
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