
RoleModel: Towards a Formal Model of Dramatic Roles for
Story Generation

Sherol Chen Adam M. Smith Arnav Jhala Noah Wardrip-Fruin Michael Mateas
Expressive Intelligence Studio

University of California Santa Cruz
Santa Cruz, CA USA

(831) 459-0111

{sherol, amsmith, jhala, nwf, michaelm} @soe.ucsc.edu

ABSTRACT
RoleModel is a novel story generator organized around explicit
formal models of character roles. RoleModel expands the
expressiveness of stories generated from arbitrary partial domain
specification by using a formal model of roles within an abductive
logic programming framework. Authorial goals in the system can
be fully or partially specified as constraints in an abductive logic
program. In particular, the RoleModel system focuses on
representing and satisfying role constraints of the story characters.
This paper discusses the basic architecture for the RoleModel
approach, demonstrates example output from the system through
three use-cases, discusses the authorial expressiveness enabled by
a “stageless” abductive logic approach to story generation, and
proposes the current and future directions.

Categories and Subject Descriptors
K.8.0 [Personal Computing]: Games

General Terms
Algorithms, Design

Keywords
Story Generation, Story Understanding

1. INTRODUCTION
This paper proposes a new approach for incorporating a formal
model of character roles to generate stories and describes an
implemented prototype of the core mechanisms. The major focus
of this system is on reasoning about character roles to produce
distinct and understandably contrasting variations of story.

Character roles and archetypes play an important part in
storytelling by providing motivations for character actions and
introducing clearly recognizable dramatic interactions. Expert
storytellers exploit character roles and role changing situations to
manipulate user’s beliefs and expectations to bring about dramatic
conflicts and resolutions. For example, in Kurosawa’s Rashomon,
several re-tellings of a dramatic situation are presented to the
viewer. In each narration, from a different character’s point-of-

view, roles of participating actors (e.g. Victim, Aggressor) are
manipulated to create coherent variations of the situation. Specific
roles provide affordances for characters to undertake particular
types of actions within the story. For example, in Rashomon, the
woman’s role of being either the aggressor or the victim provides
the author with an option to create interesting variations on the
aggressive episodes within the story. For intelligent storytelling
systems, a rich formal model of roles enables authors to partially
specify the domain and character constraints without sacrificing
consistency of character behaviors with respect to their roles.

RoleModel is a story generator that explicitly models roles to
generate meaningful variations of story situations. Due to the
complexity involved in authoring complete and consistent formal
domains that generate an authorially desired story space, we
investigate the use of abductive logic programming to create
models of possible story variations from a partially specified
domain. Such a system provides authors with the ability to
explore the space of possible variations given varying levels of
story constraints.

In making roles a first class problem, our system takes advantage
of the strong perception of affordances for roles, such as victim or
hero, in story. With a dynamic constraint space designed around
maintaining roles, there are three authorial use-cases that can be
effectively implemented: (1) a tabula rasa generator, which takes
few or no constraints and autonomously generates varied
narratives from the background theory, (2) a partially constrained
generator, with which the author can specify additional story
constraints on top of the background theory, such as constraints
on role fillers, character traits, and even the appearance of specific
events within the story, without locking down a specific linear
sequence of events, and (3) a highly constrained generator, with
which an author can specify a linear story that the system
generates variations and explanations on. In focusing on satisfying
role constraints, the overall space of constraints can be viewed as
properties of characters or properties of actions. Character
properties include roles, traits, dynamic attributes, and sentiments
towards actions, while action properties include a variety of
contextual properties and causal constraints. The relationships
among these constraints provide the background theory for the
solver to use. For our prototype, generation involves asking the
system to satisfy a list of additional story constraints (including no
constraints) on top of the background theory. The system
produces a collection of grounded predicates (an answer set),
where each collection corresponds to a concrete story that satisfies
the constraints given the background theory. In the prototype,
actions are represented using the event calculus, supporting
temporal inferences about actions.

INT3, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 978-1-4503-0022-3/00/0004…$0.00.

2. PREVIOUS WORK
Approaches in story generation take on a few different strategies.
Varieties of automatic story-generation include the character-goal
driven approach, the story grammar approach, the author-goal
based approach, and the audience-model driven approach.
RoleModel is a generator towards the audience-model approach;
however, functions based on models of authorial goals, role
specifications, in particular. In implementation, RoleModel uses
abductive logic reasoning as a preliminary implementation of role
constraint satisfaction for story generation. This is similar to
Mueller’s goal-based approach for story understanding though
model finding and planning which appropriately breaks down
stories into models that can be reasoned upon by the background
knowledge of story [7].

Recent implementations of story generation include Perez y
Perez’s MEXICA:

MEXICA is a computer model based on the engagement-reflection
cognitive account of creative writing that produces stories about the
Mexicas (the old inhabitants of what today is México city, also
wrongly known as Aztecs). During the engagement-mode the system
produces material driven by content and rhetorical constraints
avoiding the use of explicit goal-states or story-structure
information. During the reflection-mode the system breaks impasses
generated during engagement, satisfies coherence requirements, and
evaluates the novelty and interestingness of the story in progress. If
the results of the evaluation are not satisfactory, MEXICA can
modify the constraints that drive the production of material during
engagement. In this way, the stories produced by the program are the
result of the interaction between engagement and reflection.

RoleModel, similar to MEXICA, is a system designed to model
the author [8]. More recently, the MEXICA-nn plot generator and
automatic narrator creates variations on story based off of initial
composition of story from the plot generator and the generated
discourse from the narrator [6]. Minstrel is another system that
takes an author modeling approach by satisfying constraints from
authorial goals, which is similar to the approach that RoleModel
takes [11].

As introduced, RoleModel’s primarily function is to satisfy role
constraints, which builds off of previous work in character
believability. A final major body of previous work relevant to
RoleModel is found in the area of ideological modeling.

2.1 Logical Representation of Story
Murray Shanahan [10] builds a prolog program to demonstrate the
appropriateness of logical abduction for temporal analysis. He
elaborates, “Temporal reasoning involves both prediction and
explanation. Prediction is projection forwards from causes to
effects whilst explanation is projection backwards from effects to
causes. That is, prediction is reasoning from events to the
properties and events they cause, whilst explanation is reasoning
from properties and events to events that may have caused them.”
He concludes that prediction typically receives more attention
than explanation [10]. Along those lines, RoleModel aims to
thoroughly explore the explanation space, making prediction a
secondary concern through the logical abduction like Shanahan
describes.

More recently, Mueller uses model finding and planning to
produce goal-based stories. As Mueller shows, stories are
conveniently represented, understood, and inferenced through

propositional satisfiability [7]. Through similar representation,
RoleModel finds models from authorial constraints and
background knowledge of roles and story to abduce valid
explanations.

2.2 Character Believability
A side from the event calculus, integrity constraints, and
abductive representation, the majority of RoleModel’s operations
is driven by its background knowledge of story. The contextual
rules regarding character traits and action properties are built
around representing and maintaining character roles. Maintaining
role consistency is a form of character believability. Reidl and
Young [6] describe character believability as, “the perceptions
that story world characters are action according to their own
beliefs, desires, and intentions.” This sort of story explanation can
powerfully evaluate viewer/reader comprehension [6] and
engagement with represented stories, and, therefore, creating
understandable and desirable story variations.

RoleModel, however, is not a character-goal driven story
generator. Cavazza, Charles, and Mead created character-based
storytelling using Hierarchical Task Networks formalized by
AND/OR graphs [4]. Like RoleModel, their system maintains
deterministic behaviors with varying interactions and sentiments
between actors. They take this approach to avoid complex control
problems of explicit plot representation [4]. RoleModel, however,
is not concerned with the application of intelligent virtual agents,
and far less concerned with generating behaviors, as it is with
finding explanations (whether behavioral or contextual) to justify
role assignments. This creates a less domain-specific story
representation and requires a less complex model of character,
while also avoiding major problems with explicit plot
representation.

2.3 Ideological Modeling
In section 2.1, the prior work supports the use of logical
representation of story to perform useful operations such as:
understanding, explanation, and prediction [7][10]. In particular,
the under-explored space of explanation is a direct application of
logical abduction [10]. In section 2.2, the prior work determines
that the audience engagement with story requires some perceptual
believability in characters [6]. By creating a separate space for
believability based story generation, complex control problems of
explicit plot representation can be avoided [7].

Believability in RolModel is maintained, not by models of
characters or intelligent virtual agents, but rather by models of
ideological manipulation and representation. A well known early
implementation of ideological modeling is Abelson’s Goldwater
Machine [1]. By using ideological models, RoleModel is able to
maintain the integrity of authorial constraints despite how strict or
contradictory they may be. Abelson demonstrates this through his
Goldwater Machine by using rationalization mechanisms to deal
with upsetting statements, “each of which represents a different
way of denying the psychological responsibility of the actor for
the action:” (1) re-assigning responsibility to another character,
(2) by assuming that original action was accidental and
unintended, (3) that original action sets into motion a more
appropriate outcome [12]. Similar rationalization mechanisms are
represented as contextual rules/constraints in RoleModel.
Rationalization mechanisms, in RoleModel, are used to maintain
role assignments of characters which, in addition to modeling

ideologies, requires formal representation of character roles. Such
mechanisms, in RoleModel, are used, for instance, to undo what
would be, by default, perceived as a character becoming an
aggressor, if the character must only be an innocent victim.
Examples of this can be found in the Goldwater Machine’s
attempts to justify that “the United States can do no evil.” Similar
work has been done, such as Selmer Brinsjord’s formal model of
evil [2]. Subsequent systems that leverage ideology are the
POLITICS [2] and Terminal Time [5].

3. ROLEMODEL APPROACH
Figure 1 depicts the architecture of the RoleModel system. The
system takes as input: constraints on the timeline, a set of
character names, character traits associated with each name,
required or forbidden role assignments for each character, and
character actions. From this input, the system generates a pool of
stories through further trait assignment, event selection, and role
derivation that are consistent with the input constraints and the
background theory.

RoleModel’s ontology consists of:

• Character Traits and State Attributes

• Character Roles

• Observable Character Actions

• Contextual Details (properties of actions)

• Contextual Sentiments (desires and reactions)

Requiring or forbidding a role implies constraints on character
actions, sentiments towards action, and other contextual details.
As shown in Figure 1, RoleModel performs three major
operations: trait assignment, event (or action/context) selection,
and role derivation. Role constraints (or preconditions) are built
on pre-established contextual rule systems, made up by
background knowledge of stories. In order to satisfy authorial
goals (represented by the input), the system justifies role
assignments through assignment of actions and attribution of
explanations for actions that are consistent with character roles
and influenced by character traits. The three major operations are
not performed sequentially as the diagram may suggest, but
carried out simultaneously in a unified solving process based on
logical abduction.

Figure 1. RoleModel System Architecture.

Based on given characters, role constraints, and goals, the
RoleModel system aims to elaborate upon the given initial story
assertions (or problem constraints) to establish or amplify
character roles through addition of preconditions on actions that
fulfill character role constraints. In changing the role assignments,
the system manipulates background knowledge and elaborates
upon the story without breaking the initial story conditions as
specified by the author. While many story generators emphasize
the means by which they maintain causal consistency between
actions, we are interested in how dynamic role assignment, and
the implications that follow from roles, can be used to reframe
similar action sequences to have very different meanings.

3.1 Roles
Roles are abstract and universally identifiable labels that can be
applied to characters and are built off of traits, sentiments, and
actions. Example roles include: hero, fool, victim, aggressor,
bystander, etc. RoleModel strategically focuses on role properties
to show distinctive variations among generated stories and takes
away focus from the causal construction of actions. A character’s
actions may implicitly designate role assignments; however, the
background story knowledge must have methods to explain an
undesired role regardless of circumstances within the story. The
negation of a pre-existing role assignment can be made through
certain character sentiments, character reactions to the
incriminating act, motivational context, other contextual details,
and additional actions. RoleModel intends to be able to refute
alleged roles (when appropriate) so that we can satisfy author
goals in all circumstances and illustrate the variational power of
our approach. For instance, if a role-constraint forbids a character
from being an aggressor, but the character commits a violent act,
then there must be an operation that can explain away the
prescribed role. By maintaining character action constraints, the
generator makes compelling and yet understandably contrasting
variations.

3.2 Characters
Characters may be associated with traits, roles, dynamic state-
attributes, and contextual sentiments.

• Traits are characteristics of each character that can be
used to contextually explain the motivation for character
actions in a story and also determine new appropriate
sentiments and actions among the other specified
actions in the story. Examples of traits include: insane,
strong, male, female, etc.

• A role can be required or forbidden for a character. If
no role constraint is specified, the system may implicitly
assign a role from the inputted and generated actions
during story generation. If a required role is specified by
the author, the system ensures that character actions are
constrained by the given role, otherwise, contextually
justified. Similarly, if a role is forbidden by the author,
then the system will either prevent the defining actions
of the role or contextual justify how a role is
inappropriate for the character.

• Character state-attributes are necessary to maintain
story coherence. For example, a person who has been
“tied_up” (which implies being “restrained”) has
restricted freedom and is unable to do most other

physical actions until the restriction is undone. Dynamic
state-attributes are further discussed for observable
actions.

• Finally, Sentiments are most significant in supporting a
desired context and further described in section 2.4.1.
Sentiments are “feelings” towards committed or
anticipated actions.

3.3 Actions
For RoleModel, stories are driven by a sequence of actions. Each
action is attributed to a character or some unbound character
parameter. Actions performed by characters attribute state
properties to the acting characters for two reasons: to maintain
causal coherency (for instance, a man cannot do anything after he
dies) and to satisfy role-preconditions (for instance, an aggressor
must cause harm). From one state to its successor, actions modify
temporal attributes of characters and determine conditions for role
satisfaction. These attributes can be amplified, negated, or
changed by contextual explanations, such as: sentiments,
motivations, and reactions. For example, a man murders his best
friend; however, the man was actually manipulated by a third
sinister character. If his reaction to the act is the mourning of his
best friend, he may have now been contextually unassigned the
aggressor role, but regardless of context, a man still murders his
best friend. In this case, kill or murder is the action committed.

3.4 Context
Context is critical to understanding the relationship between
character traits, state-attributes, actions, and roles. Context
requires its own category as it contains properties that are highly
interrelated to the other conceptual components of RoleModel
(roles, characters, and actions). Two types of contextual
information are sentiments and properties of a committed action;
however, traits and state-attributes are also aspects of contextual
rules. Additionally, roles can be re-interpreted by contextual rules
that are built from the properties described in the subsections
below, in addition to traits and character state-attributes.

3.4.1 Sentiments
Sentiments represent motivational, observational, or reactionary
beliefs of characters in RoleModel. These three types of
sentiments distinguish responses prior, during, and after a given
action and can be used to build a variety of models for desires and
motivation for characters in particular circumstances. For
instance, a reaction can turn into motivation for the subsequent
act. An aggressive action for a victim could be explained as a
reaction to an aggressor’s action against the character. A regret
sentiment can be attached to a victimized character after
undertaking an aggressive action. Assertions made about a
character’s sentiment can negate, amplify, reduce, or change the
implications of an act.

3.4.2 Properties of a Committed Act
Properties of a committed act determine changes made in the
state-attributes of all characters affected, and are used to
determine whether role constraints are satisfied. An integral
property for roles such as victim and aggressor is the occurrence
of harm. Properties such as causes harm require formal
representation in order to accurately portray aggressor and
victimhood. However, since roles are meant to control the flavors

of variation, action properties must have negateable operations.
Since harm determines aggressor and victimhood, harm must then
be negatable (or undone), as specified in section 2.2. For example,
consider a story in which a character that is harmed is forbidden
to take the role of a victim by the author. In this case, the system
explicitly elaborates the story by adding in actions that explain the
uncharacteristic character behavior. Three examples of this could
be: the character was tied up for protection from a greater harm,
the character was an aggressor being restrained from causing a
greater harm, or the ropes were weak and the action was instantly
nullified. These would be examples of contextual properties of
committed acts.

Character traits, character state-attributes, properties of actions,
and sentiments are deeply related; therefore, a richer model of
sentiments is necessary to support the construction or elaboration
of stories with deep character roles.

4. PROTOTYPE IMPLEMENTATION
The scope of this prototype is to give a high-level understanding
of how roles can influence the variation of a story or set of story
constraints. For this system, roles, such as victim and aggressor,
are simple functions of harm, and harm is simply a property of
certain actions. The goal of building this system is to be able to
discuss implications and future directions of modeling distinct
background theory components (such as: role, motivation,
happiness, and desire) to elaborate upon authorial preferences.
Appropriately, the authoring of a story can be translated into
logical statements. This implementation turns stories into
satisfiability problems through LParse, taking a similar approach
to Mueller’s story understanding system [7] (though our
background theory and motivation are very different).

4.1 Logical Abduction
Logical abduction is the diagnosis of “what must have been the
case” to yield certain outcomes. The problems in story variation,
elaboration, and explanation fit elegantly into this approach of
model finding. RoleModel, most significantly, attempts to
maintain role constraints. The evidence of a role-assignment is
determined by its background knowledge of what it means to fill
that role. Authorial goals are, then, easily represented as a partial
model that yields satisfiable answer-sets, filling in the constraints
with contextual and elaborative detail. The answer-sets represent
generated stories that satisfy role constraints for our system. We
allow the system to make assumptions about which traits a
character has, which actions they take, and how they feel about
them. Given these assumptions, the effects of the actions and the
roles the characters take follows via deduction. Both abduction
and deduction are computed simultaneously by our solving
process. Constraints, determined by multiple types of authorial
goals in the single framework, block certain kinds of assumptions
from being made, shaping the space of stories that might result.

This answer set programming approach supports declarative
modeling of background knowledge without having to commit to
an imperative procedure. Story elements are easily translated and
represented by symbols used to satisfy constraints. The solver is
designed specifically to satisfy constraints, which translates well
into interpreting and elaborating upon the story constraints input
at generation time.

4.2 Background Theory
Our prototype models the background theory as highly
interdependent components (roles, actions, traits, sentiments,
etc.). Conceptually, these interdependencies are most easily
divided into aspects of: roles, characters, actions, and context.
These components are represented by predefined: traits,
sentiments, dynamic attributes, roles, and action properties.
Additionally, the background theory contains the axioms of the
event calculus and a specification for what the system is allowed
to abduce (the abducibles). The problem specification consists of:
named characters and required/forbidden constraints on roles,
traits, and actions (though, in the current prototype, action
constraints don't let you specify time points of occurrence for
simplicity).

The background theory in our prototype is motivated by the film
Rashomon by director Akira Kurosawa. In Rashomon, the story of
a murder and rape are retold from four different perspectives, with
each perspective taking the same basic events (character actions)
and using them to construct completely different interpretations,
including different roles (who is the victim, who is the aggressor)
motivations, etc. This subjective dependence of the meaning of
events on observer perspective has been dubbed the “Rashomon
Effect”. As modeling the Rashomon Effect for the purpose of
creating a novel story generation framework is the initial
motivation for RoleModel, we found it appropriate to base the
initial background theory on the roles and characters found in the
film Rashomon.

4.2.1 Roles
Roles are conceptualized as a top-level subdomain of our
background theory, since it is the organizing concept for the
generator. In our prototype, the roles consist of: aggressor, victim,
and bystander.

By default roles constraints are satisfied if they meet the
prescribed definition (or preconditions). These definitions are
designed to be both straightforward, yet abstract enough to
demonstrate significant variation. The role definitions are:
aggressors must cause harm, victims must be harmed, and
bystanders must perform no actions.

Actions, by definition, hold properties, and in this case, we define
our roles as functions of harm; however, these default properties
can be altered by context (described in 3.2.4). This allows the
author to make intentional changes to the authorial constraints and
produce meaningfully contrasting variations. For instance, if one
character causes harm, but is not permitted to be an aggressor,
then context is used to satisfy the role constraint.

4.2.2 Characters
Each character consists of a name and a set of traits and actions.
For the prototype, characters can be assigned the traits: strong,
trickster, or insane. These traits are used to help assign
appropriate actions or derive appropriate explanations for actions
(further discussed in 3.2.3 and 3.2.4 sections).

In addition to traits and actions, there are also state-attributes. The
current possible attributes are: alive, manipulated, and restrained.
Similar to traits, attributes determine valid actions afforded to a
character and/or valid explanations to fulfill desired role
constraints.

Character actions (or the properties of these actions), by default,
determine role assignments. Roles, in and of themselves, are not
parts of character, but are determined by actions of a character, in
addition to contextual sentiments and details.

4.2.3 Actions
The actions available include: ties_up, tricks, kills, speaks_to,
mourns, realizes, comforts. Inference rules constrain the subjects
and objects of actions based on the character traits and state
attributes.

• to tie someone up you must have relative strength over
them (based on the strong/weak traits)

• only rational (non-insane) people can trick one another,
and you have to be a trickster to do it

• you can’t kill dead people

• only insane people can speak to themselves

• you can only mourn the dead if they are not an
aggressor

• realizing is a reflexive action only available to the
currently manipulated

• comforting only makes sense with victims (or victims
to be, as foreshadowing!)

The current traits are: strength, sanity, manipulation. Current
state-attributes are: dead (or alive), restrained (or free),
manipulated (or not). Traits are used to constrain the space of
afforded actions, as are state-attributes of characters; although,
state-attributes are a result of previous actions and can be changed
by future actions, while traits do not change. In addition to
altering the states of characters, actions also determine role
constraint satisfaction. These properties of actions are, by default,
implicitly applied and changed by contextual interpretations.
Given that our current background theory is inspired by
Rashomon, we focus on the roles of aggressor and victim, which
are defined by actions that cause harm. Harm is a default property
of the actions kills, ties_up, and tricks.

4.2.4 Context
Context is composed of story elements that are neither characters,
roles, nor actions. They are assertions in regards to characters or
actions which redefine role assignments. Without context, all
roles are assigned based on the default action preconditions. For
each action, our system has two sentiments: desire and regret. In
the implementation, only the action of ties_up has an assertable
contextual property or detail, weak_ropes– this contextual
property can undo the harm that being tied up has.

Context can be used to re-enforce role satisfaction, but for the
current prototype, is only used to explain undesired role
assignments. We call this nullifying of roles. Victim and aggressor
can be nullified by two means each:

Victim: harm can be nullified for the victim if there is a
contextual detail (such as weak ropes) attached to a harming event
[property of action], or harm can be nullified if the action was
done to oneself and the action was desired (intentional suicide)
[sentiment].

Aggressor: aggression can be nullified by feeling regret for an
action as it happens [sentiment] or by being temporarily
manipulated [dynamic state-attribute].

4.2.5 Logical Foundations
The event calculus provides causal structure for the story
generator. For the event calculus, there are timepoints zero
through t_max, where t_max can be overridden on the command
line. Required actions must happen at some point in time, and
forbidden actions must never happen. The values of dynamic
attributes are linked to event happenings via the event calculus
axioms. Finally, how events initiate and terminate attribute states
is delegated to the definition of actions. The event calculus
axioms are independent of the background theory for the story
domain. Currently our event calculus axioms allow only one
action to occur at a given time point (actions can’t occur
simultaneously) though we plan to lift this limitation in the future.

Other logical foundations of RoleModel are abducibles and
integrity constraints, which are primitives of abductive logical
programming. Abducibles define the set of symbols over which
the solver can make assumptions, while integrity constraints
prevent conflicting assumptions.

Our set of abducibles is:

• for each trait, a character can have or not have that trait

• exactly one event happens at each time point (but only
possible ones happen)

• exactly one sentiment may arise for each event that
happens, the sentiment is that of the subject

• any number of contextual details may be specified about
events that occur

Our major integrity constraints for roles are:

• if it is true that a role is required for a character, then
that role cannot also not be true for that character

• if it is true that a role is forbidden for a character, then
that role must also be not true for that character

In our system, there are also integrity constraints for traits, roles,
and actions.

5. EXAMPLE
In this section, we provide two examples of how RoleModel
generates stories given the background theory plus generation-
time constraints. RoleModel uses context and the ability to vilify,
unvilify, victimize, and unvictimize characters with additional
actions, in order to satisfy role constraints.

5.1 Inputs and Outputs
In Figure 2, the author names 3 characters, chooses a span of 4
time points, and designates role and action constraints. Since the
input gives an unordered list of actions, the system will build the
required actions into the timeline. Incidentally, in finding a model
that satisfies the authorial constraints, the randomly chosen model
also determined that both Bob and alice are victims (which was
not specified nor precluded by the author). Despite what happens
to a character or what a character does, roles need to be both
applicable and reversible (or undone). For the prototype
implementation of RoleModel, negating aggression is
accomplished by either showing regret or showing that the alleged
aggressor was actually tricked into causing harm. In the example
from Figure 2, despite desiring the act of murder, Bob was clearly

tricked by Eve, satisfying the precondition of forbidden-aggressor
by deferring blame to the “trickster,” Eve.

Figure 2. Sample Input/Output.

Figure 3. Input/Output with altered Narrative Constraint.

% INPUT
person(Alice).
person(Bob).
person(Eve).

t(0..3).

forbidden_role(aggressor,Alice).
forbidden_role(aggressor,Bob).
required_role(aggressor,Eve).

required_action(Alice,comforts,Bob).
forbidden_action(eve,kills,Eve).
required_action(Bob,kills,Alice).

% OUTPUT
happens(Eve,tricks,Bob,0).
happens(Bob,ties_up,Alice,1).
happens(Alice,comforts,Bob,2).
happens(Bob,kills,Alice,3).

sentiment(Eve,tricks,Bob,0,desire).
sentiment(Bob,ties_up,Alice,1,desire).
sentiment(Alice,comforts,Bob,2,regret).
sentiment(Bob,kills,Alice,3,desire).

has_trait(trickster,Eve).
has_trait(trickster,Alice).

has_role(victim,Bob).
has_role(victim,Alice).
has_role(aggressor,Eve).

% INPUT (Narrative Constraints Only)

forbidden_role(aggressor,Bob).
required_role(aggressor,Alice).
required_role(aggressor,Eve).

required_action(Alice,comforts,Bob).
forbidden_action(Eve,kills,Eve).
required_action(Bob,kills,Alice).

% OUTPUT
happens(Alice,tricks,Bob,0).
happens(Eve,ties_up,Alice,1).
happens(Alice,comforts,Bob,2).
happens(Bob,kills,Alice,3).

sentiment(Alice,comforts,Bob,2,desire).
sentiment(Bob,kills,Alice,3,regret).

has_trait(insane,Eve).
has_trait(trickster,Eve).
has_trait(trickster,Bob).
has_trait(trickster,Alice).

has_role(victim,Bob).
has_role(victim,Alice).
has_role(aggressor,Alice).
has_role(aggressor,Eve).

Figure 3 shows the same set of constraints (the person and
timeline assertions have been elided), except Alice must also be
an aggressor now. In both stories, Alice comforts Bob and Bob
kills Alice. For the second variation, Alice must appear to be an
aggressor, while Bob is still not allowed to have the aggressor role
assigned. Having been tricked and the sentiment of “regretting”
are used in this instance to negate Bob’s aggressive action of
killing, while in Figure 2, Bob was un-vilified because he was
“tricked” or manipulated by another character. Regardless, both
required actions still take place in both generated variations.

5.2 Exploring the Background Theory
Another example in using RoleModel is to give the minimal
authorial constraints and produce stories that explore the
background theory. This allows the story generator to create
variations from a blank slate (no generation-time constraints). An
example of this is shown in Figure 4 where larry tricks then ties
up moe, then ties up curly, moe then realizes that he’s been
tricked, and tricks larry back.

Figure 4. Sample Story with no Narrative Constraints.

6. DISCUSSION
Role Model’s ability to generate stories under arbitrary
generation-time constraints allows a single system to support
multiple generation use cases, ranging from tabula rasa generation
from the underlying logical model (classical story generation)
through to generating variations of a highly specified skeleton
story with specific role, event and sequencing constraints. The
different use cases correspond to authorial preferences on degree
of story variability, story quality, authorial effort, and authorial
control.

We consider three use cases: tabula rasa generation, constrained
generation, and generation of variations based on a partial story.
Regarding the last use case, one of the goals of RoleModel is to
support linear story authors who are not familiar with story
generation technologies in creating and exploring variations on
authored linear stories. To accomplish this, a story generator must

be able to determine the most significant story aspects which can
be varied without crossing outside the implicit generative space
established by a partial linear story specification. This is one of
the reasons for focusing on a theory of roles as a central
representation within the generator; role variation is a highly
salient narrative feature, but can respect a highly constrained
linear story specification.

The following use-cases progress from maximum system control
to maximum author control.

Tabula rasa generation. Tabula rasa generation utilizes a
background theory as a generative model, generating stories with
few authorial specifications. The RoleModel approach performs
tabula rasa generation by finding assignments of abducibles that
satisfy the background theory with no additional narrative
constraints, or minimal narrative constraints, such as the number
of characters and a timespan for the narrative. In terms of the
examples in the previous section, this would correspond to having
no inputs (narrative constraints) as in Figure 4.

Constrained generation. In constrained generation, the author
can specify many constraints on role fillers, character traits, and
even the appearance of specific events within the story, without
locking down a specific linear sequence of events. Figure 2 and 3
in section 4 demonstrate this use-case through telling a story
about a particular characters with various unknowns.

Generation based on a partial story. As the number of
constraints grows, the author is able to specify a linear story that
the system generates variations on. This supports authors who
prefer to think in terms of fully specified linear stories. They can
start with such a story, and then begin removing constraints, such
as by replacing constants with variables. They can then iteratively
explore the generative spaces defined as they incrementally add
and remove constraints to their linear story. This involves
elaborating on a critical event sequence among partially
developed characters.

Further, by employing abductive logic programming, we have
shown how to concisely resolve complex constraint structures in a
story generator without having to commit to a particular
procedure with distinct stages of generation.

7. FUTURE WORK
The current RoleModel implementation provides a proof of
concept that a generator organized around formal models of roles
embedded in an abductive logic framework can successfully
generate stories subject to a variety of generation-time constraints.
Future work will focus on: expanding the selection of possible
roles, developing models of motivation and stronger models for
context, and creating a larger dictionary of reusable actions, traits,
and sentiments.

Currently, RoleModel only has roles of victim, aggressor, and
bystander available. In order to demonstrate more expansive
variation, other roles will be introduced and formally represented.
Victim and aggressor fundamentally depend on harm. In creating
new roles for the system, additional properties of actions will need
to be identified and represented. In addition to creating more
roles, this will also further abstract upon actions and action
properties, as well as deepen the contextual rule set.

% INPUT (No Narrative Constraints)

% OUTPUT

context(larry,ties_up,curly,2,weak_ropes).

happens(larry,tricks,moe,0).
happens(larry,ties_up,moe,1).
happens(larry,ties_up,curly,2).
happens(moe,realizes,moe,3).
happens(moe,tricks,larry,4).

has_role(aggressor,larry).
has_role(bystander,curly).
has_role(victim,larry).
has_role(victim,moe).

has_trait(strong,larry).
has_trait(trickster,larry).
has_trait(trickster,moe).

sentiment(larry,ties_up,moe,1,desire).
sentiment(moe,realizes,moe,3,desire).
sentiment(moe,tricks,larry,4,regret).

Contextual rules operate on traits, properties of actions,
sentiments, and state-attributes to satisfy role constraints.
Conceptually, these models can be organized in a variety of ways
to suit the system. For RoleModel, the conceptual components are
not individually defined in the code, which is also a result of
using declarative answer-set logical programming vs. more
imperative approaches. As these aspects of the formal model are
further defined, the organization of the rules will be more easily
universally applied to a variety of story spaces. Additional models
for motivation are also necessary to develop a more sophisticated
contextual rule system that can derive appropriate sentiments for
characters.

In order to be able to show more universality of the RoleModel
approach, more actions or a sufficient ontology of actions must be
developed. The actions defined for RoleModel were taken from
the Rashomon, and gave some sense of variation for victim and
aggressor; however, to be able to satisfy future role definitions,
new actions and properties of actions must be identified. With a
better library of actions, there can be more varieties of story and a
better understanding of the relationship between actions, causal
implications of actions, and properties associated with actions.

By bringing roles to the foreground of RoleModel we hope to
focus attention on how role-specific perspectives help create
interesting narrative variations within a given domain and
determine narrative meaning, in contrast to the more traditional
emphasis on action causality.

8. REFERENCES

[1] Abelson, R. P. and Carroll, J. D. Computer Simulation of
Individual Belief Systems. American Behavioral Scientist, p.
24. May 1965.

[2] Bringsjord, S., Khemalani, S., Arkoudas, K., McEvoy, C.,
Destefano, M., and Daigle, M. Advanced Synthetic
Characters, Evil, and E*. Game-On, Vol 6. p. 31-39, 2005.

[3] Carbonell, J.G. POLITICS: Automated ideological
reasoning. Cognitive Science: A Multidisciplinary Journal,
Vol 2. Psychology Press. 1978.

[4] Cavazza, M. and Charles, F. and Mead, S. Agents’
Interaction in Virtual Storytelling. Intelligent Virtual Agents,
p. 156-170. 2001.

[5] Mateas, M. and Domike, S. and Vanouse, P. Terminal time:
An ideologically-biased history machine. AISB Quarterly,
Special Issue on Creativity in the Arts and Sciences, Vol
102. 1999.

[6] Montfort, N. and Perez y Perez, R.P. Integrating a Plot
Generator and an Automatic Narrator to Create and Tell
Stories. On Computational Creativity. 2008.

[7] Mueller, E. T. Understanding goal-based stories through
model finding and planning. Intelligent Narrative
Technologies: from the AAAI Fall Symposium, p. 95–101.
Menlo Park, CA: AAAI Press. 2007.

[8] Perez y Perez, R. and Sharples, M. Three computer-based
models of storytelling: BRUTUS, MINSTREL and
MEXICA. Knowledge-Based Systems, Volume 11. 2004.

[9] Reidl, M. O. and Young, R. M. An Objective Character
Believability Evaluation Procedure for Multi-agent Story
Generation Systems. Intelligent Virtual Agents, p. 287-291.
2003.

[10] Shanahan, M. Prediction is deduction but explanation is
abduction. Proceedings IJCAI, Vol 87. 1989

[11] Turner, S.R. MINSTREL: A Computer Model of Creativity
and Storytelling. University of California at Los Angeles Los
Angeles, CA, USA. 1993.

[12] Wardrip-Fruin, N. Expressive Processing: Digital Fictions,
Computer Games, and Software Studies. MIT Press. 2009

