Supplementary Information

Aerosol Composition, Sources and Processes during Wintertime in Beijing, China

Y. L. Sun¹, Z. F. Wang¹, P. Q. Fu¹, T. Yang¹, Q. Jiang^{1,2}, H. B. Dong¹, J. Li¹, J. J. Jia¹

¹State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

²Nanjing University of Information Science & Technology, Nanjing 210044, China

Correspondence to Y. L. Sun (sunyele@mail.iap.ac.cn)

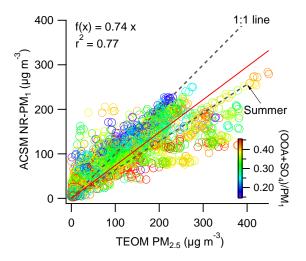


Figure S1. Correlation between NR-PM₁ (= $Org+SO_4+NO_3+NH_4+Cl$) measured by the ACSM and PM_{2.5} by the TEOM. The plot is color coded with the mass fraction of OOA + SO_4 in NR-PM₁. In addition, the regression slope of 0.64 in summer is also shown.

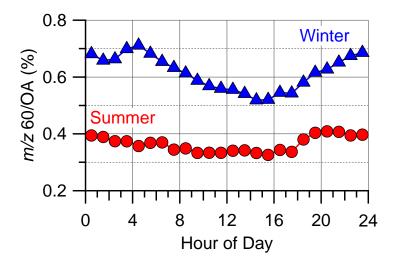


Figure S2. Diurnal profile of fraction of m/z 60, i.e., m/z 60/OA, in summer and winter, respectively.

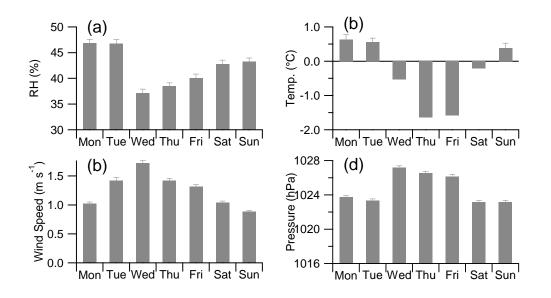


Figure S3. Day-of-week variations of meteorology including relative humidity (RH), temperature (Temp.), wind speed, and pressure for the entire study.

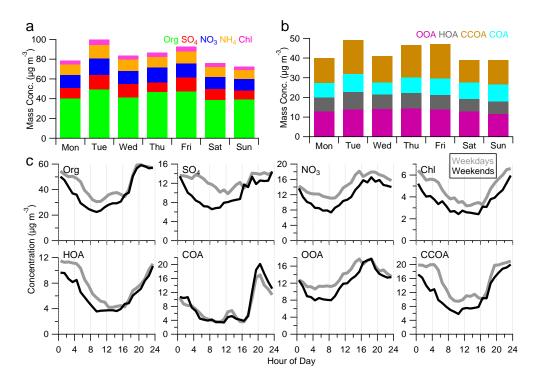


Figure S4. Day-of-week variations of (a) NR-PM₁ composition and (b) OA composition after excluding the clean periods marked in Fig. 1. (c) shows a comparison of the diurnal variations of NR-PM₁ species and OA components between weekdays and weekends