Supplement to:

Examining the impact of heterogeneous nitryl chloride production on air quality across the **United States**

G. Sarwar¹, H. Simon², P. Bhave¹, G. Yarwood³

¹ National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA

² Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
³ ENVIRON International Corporation, Novato, California, USA

Figure S1. September 2006 8-hr max O_3 mean bias (for days when obs > 65 ppbv) in the simulation without heterogeneous ClNO₂ formation (top) and change in absolute value of 8-hr max O_3 mean bias with the implementation of ClNO₂ chemistry (bottom). Negative values in bottom plot denote improvements in performance and positive values denote degredations in model performance due to ClNO₂ chemistry.

Figure S2. TNO₃ mean observed concentration (top), TNO₃ mean bias in the simulation without heterogeneous $ClNO_2$ formation (middle) and change in absolute value of TNO_3 mean bias with the implementation of $ClNO_2$ chemistry (bottom). Negative values in bottom plot denote improvements in performance and positive values denote degredations in model performance due to $ClNO_2$ chemistry. All plots show comparisons of weekly average values at CASTNet monitoring sites during the month of February 2006.

Figure S3. TNO₃ mean observed concentration (top), TNO₃ mean bias in the simulation without heterogeneous $ClNO_2$ formation (middle) and change in absolute value of TNO_3 mean bias with the implementation of $ClNO_2$ chemistry (bottom). Negative values in bottom plot denote improvements in performance and positive values denote degredations in model performance due to $ClNO_2$ chemistry. All plots show comparisons of weekly average values at CASTNet monitoring sites during the month of September 2006.

Figure S4. Particulate NO₃ mean observed concentration (top), Particulate NO₃ mean bias in the simulation without heterogeneous ClNO₂ formation (middle) and change in absolute value of Particulate NO₃ mean bias with the implementation of ClNO₂ chemistry (bottom). Negative values in bottom plot denote improvements in performance and positive values denote degredations in model performance due to ClNO₂ chemistry. All plots show comparisons at CASTNet, CSN, IMPROVE, and SEARCH monitoring sites during the month of February 2006. Note: CASTNet comparisons are made for weekly average concentrations while IMPROVE, CSN, and SEARC comparisons are made for 24-hr average concentration.

Figure S5. Particulate NO_3 mean observed concentration (top), Particulate NO_3 mean bias in the simulation without heterogeneous $CINO_2$ formation (middle) and change in absolute value of Particulate NO_3 mean bias with the implementation of $CINO_2$ chemistry (bottom). Negative values in bottom plot denote improvements in performance and positive values denote degredations in model performance due to $CINO_2$ chemistry. All plots show comparisons at CASTNet, CSN, IMPROVE, and SEARCH monitoring sites during the month of September 2006. Note: CASTNet comparisons are made for weekly average concentrations while IMPROVE, CSN, and SEARC comparisons are made for 24-hr average concentration.

Figure S6: Impact of γ_{N205} parameterization on TNO₃ in February (10-days) (a) mean TNO₃ with γ_A (b) mean TNO₃ with γ_B (c) changes in mean TNO₃ with γ_A due to heterogeneous production of ClNO₂ (d) changes in mean TNO₃ with γ_B due to heterogeneous production of ClNO₂. $\gamma_A = \gamma_{N205}$ of Davis et al. (2008) on fine particles and γ_{N205} of Bertram and Thornton (2009) on coarse particles and $\gamma_B = \gamma_{N205}$ of Bertram and Thornton (2009) on fine as well as coarse particles.

Figure S7: Impact of γ_{N205} parameterization on TNO₃ in September (10-days) (a) mean TNO₃ with γ_A (b) mean TNO₃ with γ_B (c) changes in mean TNO₃ with γ_A due to heterogeneous production of ClNO₂ (d) changes in mean TNO₃ with γ_B due to heterogeneous production of ClNO₂. $\gamma_A = \gamma_{N205}$ of Davis et al. (2008) on fine particles and γ_{N205} of Bertram and Thornton (2009) on coarse particles and $\gamma_B = \gamma_{N205}$ of Bertram and Thornton (2009) on fine as well as coarse particles.

