@inproceedings{pujari-goldwasser-2019-using,
title = "Using Natural Language Relations between Answer Choices for Machine Comprehension",
author = "Pujari, Rajkumar and
Goldwasser, Dan",
editor = "Burstein, Jill and
Doran, Christy and
Solorio, Thamar",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-1403",
doi = "10.18653/v1/N19-1403",
pages = "4010--4015",
abstract = "While evaluating an answer choice for Reading Comprehension task, other answer choices available for the question and the answers of related questions about the same paragraph often provide valuable information. In this paper, we propose a method to leverage the natural language relations between the answer choices, such as entailment and contradiction, to improve the performance of machine comprehension. We use a stand-alone question answering (QA) system to perform QA task and a Natural Language Inference (NLI) system to identify the relations between the choice pairs. Then we perform inference using an Integer Linear Programming (ILP)-based relational framework to re-evaluate the decisions made by the standalone QA system in light of the relations identified by the NLI system. We also propose a multitask learning model that learns both the tasks jointly.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pujari-goldwasser-2019-using">
<titleInfo>
<title>Using Natural Language Relations between Answer Choices for Machine Comprehension</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rajkumar</namePart>
<namePart type="family">Pujari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Goldwasser</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jill</namePart>
<namePart type="family">Burstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christy</namePart>
<namePart type="family">Doran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thamar</namePart>
<namePart type="family">Solorio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>While evaluating an answer choice for Reading Comprehension task, other answer choices available for the question and the answers of related questions about the same paragraph often provide valuable information. In this paper, we propose a method to leverage the natural language relations between the answer choices, such as entailment and contradiction, to improve the performance of machine comprehension. We use a stand-alone question answering (QA) system to perform QA task and a Natural Language Inference (NLI) system to identify the relations between the choice pairs. Then we perform inference using an Integer Linear Programming (ILP)-based relational framework to re-evaluate the decisions made by the standalone QA system in light of the relations identified by the NLI system. We also propose a multitask learning model that learns both the tasks jointly.</abstract>
<identifier type="citekey">pujari-goldwasser-2019-using</identifier>
<identifier type="doi">10.18653/v1/N19-1403</identifier>
<location>
<url>https://aclanthology.org/N19-1403</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>4010</start>
<end>4015</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Using Natural Language Relations between Answer Choices for Machine Comprehension
%A Pujari, Rajkumar
%A Goldwasser, Dan
%Y Burstein, Jill
%Y Doran, Christy
%Y Solorio, Thamar
%S Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F pujari-goldwasser-2019-using
%X While evaluating an answer choice for Reading Comprehension task, other answer choices available for the question and the answers of related questions about the same paragraph often provide valuable information. In this paper, we propose a method to leverage the natural language relations between the answer choices, such as entailment and contradiction, to improve the performance of machine comprehension. We use a stand-alone question answering (QA) system to perform QA task and a Natural Language Inference (NLI) system to identify the relations between the choice pairs. Then we perform inference using an Integer Linear Programming (ILP)-based relational framework to re-evaluate the decisions made by the standalone QA system in light of the relations identified by the NLI system. We also propose a multitask learning model that learns both the tasks jointly.
%R 10.18653/v1/N19-1403
%U https://aclanthology.org/N19-1403
%U https://doi.org/10.18653/v1/N19-1403
%P 4010-4015
Markdown (Informal)
[Using Natural Language Relations between Answer Choices for Machine Comprehension](https://aclanthology.org/N19-1403) (Pujari & Goldwasser, NAACL 2019)
ACL