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Abstract
Long-context large language models (LLMs)
hold promise for tasks such as question-
answering (QA) over long documents, but they
tend to miss important information in the mid-
dle of context documents (Liu et al., 2023).
Here, we introduce R&R—a combination of
two novel prompt-based methods called re-
prompting and in-context retrieval (ICR)—to
alleviate this effect in document-based QA. In
reprompting, we repeat the prompt instructions
periodically throughout the context document
to remind the LLM of its original task. In ICR,
rather than instructing the LLM to answer the
question directly, we instruct it to retrieve the
top k passage numbers most relevant to the
given question, which are then used as an ab-
breviated context in a second QA prompt. We
test R&R with GPT-4 Turbo and Claude-2.1
on documents up to 80k tokens in length and
observe a 16-point boost in QA accuracy on av-
erage. Our further analysis suggests that R&R
improves performance on long document-based
QA because it reduces the distance between rel-
evant context and the instructions. Finally, we
show that compared to short-context chunkwise
methods, R&R enables the use of larger chunks
that cost fewer LLM calls and output tokens,
while minimizing the drop in accuracy.

1 Introduction

Large language models (LLMs) have taken natu-
ral language processing (NLP) by storm and are
increasingly being incorporated into user-facing
applications. A user interacts with an LLM via
“prompting”, where the user writes a free-form
prompt that instructs the LLM to perform some
task, such as answering a question based on a docu-
ment included in the prompt. The prompt, however,
is usually limited to a context window with a set
maximum number of “tokens” (subwords used as
the vocabulary of the input language), which poses
a challenge for tasks such as question-answering

<INSTRUCTIONS>
Retrieve up to k passage IDs of the document most
relevant to the following question:
{question}
</INSTRUCTIONS>

<DOCUMENT>
{r tokens of text}

<INSTRUCTIONS_REMINDER>
Remember, your task is to {. . . }
</INSTRUCTIONS_REMINDER>

{r tokens of text}

<INSTRUCTIONS_REMINDER>
Remember, your task is to {. . . }
</INSTRUCTIONS_REMINDER>

. . .
</DOCUMENT>

. . .

Figure 1: Prompt schematic for our method R&R (see
App. A for full prompts). In-context retrieval (blue)
abbreviates the document to k passages max (based on
the returned IDs), and reprompting (red) every r tokens
helps to mitigate the “lost in the middle” effect. Entities
in braces are substituted with text, with {. . . } replaced
with the instructions nearly verbatim. QA is done with
the abbreviated context in a second LLM call.

(QA) over very long documents. Thus, there is
great interest in the development of LLMs that
support longer and longer context—a nontrivial en-
deavor due to the quadratic complexity of the self-
attention mechanism on which LLMs are based.

We have recently witnessed the release of very
long-context LLMs such as GPT-4 Turbo (Achiam
et al., 2023; OpenAI, 2023) and Claude-2.1 (An-
thropic, 2023) supporting context windows of 128k
and 200k tokens respectively. While these LLMs
support long contexts, the quality of their responses
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(e.g., QA accuracy) tends to deteriorate as the input
prompt becomes very long. Even at 16k-token con-
text, Liu et al. (2023) found that an LLM’s accuracy
on document-based QA significantly drops when
relevant context is located in the middle of the doc-
ument, as opposed to the beginning and end—a
phenomenon termed the “lost in the middle” effect.
There is thus a demand for techniques that can mit-
igate this loss of performance, thereby improving
the efficacy of long-context LLMs. Moreover, as
LLMs such as GPT-4 Turbo and Claude-2.1 are
proprietary, prompt-based approaches compatible
with black-box models are particularly desirable as
they can be put into practice immediately.

In this paper, we propose a prompt-based method
called R&R to alieviate the lost-in-the-middle ef-
fect in long document-based QA (Fig. 1). R&R, in
turn, is a combination of two novel prompt-based
methods we call reprompting and in-context re-
trieval. In reprompting, the instructions to answer
the question are repeated nearly verbatim periodi-
cally throughout the context document. Our moti-
vation for reprompting is the observation that in the
“lost in the middle” experiments (Liu et al., 2023),
the instructions to answer the question appear both
before and right after the context document, lead-
ing us to wonder: Could QA accuracy, in part, be
related to the proximity of relevant context in the
document to the task instructions? Our hypothesis
is that repeating the task instructions right before
each piece of relevant context in the document will
improve QA accuracy. Since in practice, however,
we do not know the locations of relevant context
apriori, we propose to repeat the instructions or
“reprompt” uniformly.

In-context retrieval (ICR) draws inspiration from
retrieval-augmented generation (RAG) and recent
literature on context abbreviation (Lewis et al.,
2020; Weston and Sukhbaatar, 2023). In ICR,
rather than having a long-context LLM answer a
question directly, we first prompt the LLM to re-
trieve some number of passages from the context
document that are most relevant to the question.
We aggregate the retrieved passages into an abbre-
viated context document, and then do short-context
QA in a second LLM call. Our underlying hypoth-
esis is that passage retrieval is a simpler task than
direct QA, as we are able to prioritize recall over
precision. R&R is then a two-call method where
we reprompt the instructions for retrieval during
the first call in ICR. In our experiments, we find
R&R to indeed be beneficial and find evidence to

support our motivating hypotheses.
We also evaluate R&R in the setting of limited-

context LLMs that must process long documents
in chunks. In scenarios where relevant context
is concentrated in the document and QA resem-
bles information extraction, a chunkwise approach
is likely to provide a strong baseline, thus rais-
ing the question: Are long-context LLMs with re-
prompting really better than limited-context LLMs
with chunk-based workarounds? As a strong base-
line, we propose “chunked ICR”, where we first
partition the context document into chunks and
then perform ICR within each chunk in indepen-
dent short-context LLM calls. We aggregate the
retrieved passages across all chunks into an abbre-
viated document to do the final QA. We expect on
extraction-like QA tasks, smaller chunks may facil-
itate finer retrieval at the cost of more LLM calls,
thus introducing an accuracy vs. cost trade-off. We
find, however, that our method R&R softens the
trade-off by boosting accuracy on larger chunks,
often reducing the number of LLM calls and output
token usage with little to no drop in accuracy.

Our key contributions are the following: (1) We
use GPT-4 Turbo and Claude-2.1 to show that re-
prompting and ICR each independently improve
performance on four long-context QA tasks, and
our combined R&R approach improves perfor-
mance further1; (2) we analyze why reprompting
works and show that the proximity between instruc-
tions and relevant context plays an important role in
performance; and (3) we compare long-context QA
with chunk-based approaches with shorter context
windows and show that R&R can minimize accu-
racy loss at higher chunk sizes, thereby reducing
LLM usage cost in real-world use cases.

2 Related Work

Long context There are a number of avenues in
the literature that aim to achieve LLMs that perform
well at long context. To the extent that long-context
LLMs suffer from limited long samples during
training, an avenue is to fine-tune LLMs on long-
context data so long as one can circumvent com-
plexity challenges (Chen et al., 2023c; Tworkowski
et al., 2023). Alternatively, many avenues propose
modifications to the LLM architecture itself, in-
cluding landmark attention (Mohtashami and Jaggi,
2023), positional interpolation (Chen et al., 2023b)

1Code for all experiments is available at: https://
github.com/casetext/r-and-r.
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with RoPE embeddings (Su et al., 2021), and par-
allel context windows (Ratner et al., 2023). These
methods, however, cannot be applied to boost the
performance of existing black-box long-context
LLMs such as GPT-4 Turbo. There is little litera-
ture on prompt-based methods intended for such
black-box models, but one example is “Found in
the middle” (Tang et al., 2023), where permutation-
equivariance of LLMs for document reranking is
promoted with self-consistency, thereby reducing
position bias in the context. However, this method
likely suffers from complexity issues at very long
contexts. In contrast to all these methods, we in-
vestigate what can be achieved with a set of simple
prompt-templates with minimal complexity.

Reprompting There is literature to support the
idea of reprompting in addition to the motivation
given in Sec. 1. For example, attention tends to
focus on repeated tokens due in part to how it
is trained (Holtzman et al., 2020; Welleck et al.,
2020), and it has been suggested that sycophancy
(where the LLM “seeks approval” in unwanted
ways) is related to this problem of repetition (Roller
et al., 2021; Weston and Sukhbaatar, 2023). In re-
prompting, we seek to exploit this weakness by
repeating the task instructions to ensure the LLM
does not “forget” its goal deep in the middle of
the document. Indeed, repeating the question has
been previously shown to be beneficial (Xu et al.,
2024b), but in this previous work , the question is
only repeated once and almost immediately follow-
ing its initial statement. In contrast, we propose to
repeat the question periodically throughout the con-
text document and hypothesize that its mechanism
is reducing distance between question and relevant
context, as opposed to just repetition.

Retrieval Our inspiration for in-context retrieval
(ICR) was the work of Weston and Sukhbaatar
(2023), who propose a prompt-based method to re-
duce sycophancy in QA where an LLM is asked to
extract the unbiased parts of the context document.
In contrast, however, our motivation is to mitigate
the “lost in the middle effect” and not reduce syco-
phancy per se. Moreover, rather than instructing to
do extraction in general, our prompt is more akin to
traditional retrieval of chunks. Retrieval in general
has a long history in NLP (see e.g., the work of
Lin et al. (2022) for a review from a text ranking
perspective), but more recently retrieval and LLMs
have come together in retrieval-augmented genera-
tion (RAG), where e.g., a long context document

can first be chunked, and a retriever is used to effec-
tively abbreviate the document for a downstream
LLM (Lewis et al., 2020). With long-context LLMs
emerging, Xu et al. (2024a) address the important
question: How do long-context LLMs compare to
RAG? They find that a 4k-context-window LLM
enhanced with RAG is able to achieve performance
comparable to that of a 16k-context-window LLM,
thus demonstrating the power of chunk-based ap-
proaches. Here, we ask a similar question but re-
place RAG with ICR as we are interested in a com-
parison to what short-context LLMs can achieve
natively. Moreover, we consider contexts reaching
80k tokens, where the question of long context vs.
chunking is unclear.

Finally, the extraction of or focus on only key
parts of a document is the basis for agent-based
prompting methods such as MemWalker (Chen
et al., 2023a), Gist Memory Lee et al. (2024), and
PEARL (Sun et al., 2024), where an LLM navi-
gates, reads, and/or records chunks of long doc-
uments through a series of selected actions. In
contrast, our proposed method R&R is very simple
as it only chains together two prompts. We use ICR
because it is clear how we can apply reprompting
to the ICR prompt, and indeed one objective of
this study is to test the simple idea of reprompt-
ing; how reprompting can be applied to the above
agent-based methods is less clear and this is left for
future work.

3 Our Method

3.1 Document-Based QA

In this paper, we focus on the task of document-
based QA, where we ask the LLM to answer a
question based on the context of an enclosed doc-
ument. For this task, we use a prompt template
separated into three top-level blocks: First, we en-
close the question and the instruction to answer
it between <INSTRUCTIONS> . . . </INSTRUCTIONS>
tags; below that, we enclose the document between
<DOCUMENT> . . . </DOCUMENT> tags; finally, we end
the prompt by repeating the INSTRUCTIONS block
almost verbatim to ensure it is the last thing the
LLM sees before generating its response. This fi-
nal repetition has been previously done as well (Liu
et al., 2023), and we regard it as the inspiration for
our reprompting method.

Because our full method (R&R) involves re-
trieval, we assume the document is separated into
“pages”, where each page is enclosed between
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<PAGE {p}> . . . </PAGE {p}> tags with {p} re-
placed with the appropriate page number. Here,
“pages” need not refer to actual pages in the docu-
ment; instead, they could refer to paragraphs, sen-
tences, or any other natural sectional structure of
the document. In all cases, however, we use the
term “page” for standardization in this paper.

3.2 Reprompting
The lost-in-the-middle effect reveals that LLMs
tend to be biased towards the beginning or end
of the input prompt or to positions closer to the
main instructions enclosed in the prompt. To the
extent it is the latter, we expect we could mit-
igate the lost-in-the-middle effect by simply re-
peating the INSTRUCTIONS regularly throughout
the document, thereby reducing the positional dis-
tance between the instructions and relevant infor-
mation in the document. We thus propose reprompt-
ing, where we first construct a block of the form
<INSTRUCTIONS_REMINDER> Remember, your task
is to . . .</INSTRUCTIONS_REMINDER> containing
the original instructions almost verbatim. For some
positive integer r, we inject this reminder block
approximately every r tokens in the document, out-
side the PAGE blocks. QA then proceeds as usual.

3.3 In-Context Retrieval
ICR is based on the hypothesis that retrieving in-
formation from a document that is relevant to a
question is generally a simpler task than answering
the question directly, since in the former we pri-
oritize recall over precision. We therefore tackle
document-based QA with two distinct phases of
prompting. In phase 1, for some positive integer
k, we instruct the LLM to retrieve up to k page
numbers in the document that are most relevant
to the question. Then in phase 2, we instruct the
LLM to answer the question exactly as described
in Sec. 3.1, except the document is replaced with
the abbreviated version comprising only the pages
retrieved in phase 1. The number k as well as the
pagination level of the document should be jointly
chosen such that the abbreviated document com-
prises a short context that the LLM is able to handle
without special prompting techniques.

Reprompting and ICR can be combined by
injecting reminders of the retrieval instructions
throughout the document. We expect this will help
the LLM retrieve relevant pages that may be buried
closer to the middle of the document. More pre-
cisely, in R&R, we first run phase 1 of ICR with

INSTRUCTIONS_REMINDER blocks injected every r
tokens; then, we run phase 2 as usual with no re-
prompting, as we no longer have long context.

3.4 Chunking

We propose chunkwise ICR as a strong baseline for
extraction-like QA tasks. We first split the context
document into non-overlapping consecutive chunks
of approximately c tokens each, while ensuring
that all splits are done outside the PAGE blocks. In
m independent LLM calls, we then perform ICR
within each chunk, retrieving up to mk pages in all.
The retrieved pages constitute the abbreviated doc-
ument for phase 2 of ICR as described in Sec. 3.3.

If the chunks are large enough, then we can also
reprompt with the ICR instructions every r tokens
within each chunk—i.e., chunkwise R&R. We hy-
pothesize reprompting within chunks will help to
reduce the number of LLM calls required (m+ 1)
while minimizing the cost in accuracy.

4 Experimental Setup

4.1 Datasets

NQ The NaturalQuestions-Open (NQ) dataset
contains historical queries issued to the Google
search engine together with human-annotated an-
swers (Kwiatkowski et al., 2019). We use the same
processed version of NQ that was used and made
available by Liu et al. (2023); each example in NQ
consists of a question, answer, and a list of passages
from Wikipedia ranked by relevance to the ques-
tion. Exactly one passage in the list is annotated
as the gold passage containing the answer, while
the remaining passages act as “distracters”. For
our document-based Q&A experiments, we take 50
examples from NQ, and we build the document D
for each question as a double-linebreak-separated
list of the provided passages, such that given posi-
tive integers x ≤ d: (1) Each passage is enclosed
in <PAGE {p}> . . . </PAGE {p}> tags with {p} re-
placed with the appropriate number; (2) The gold
passage appears approximately x GPT4-tokens into
the document; and (3) The document is approxi-
mately d GPT4-tokens long. The distracter pas-
sages in the constructed document are still sorted
by relevance. We call x and d the “answer posi-
tion” and “document length” respectively, and we
vary their values in our experiments. Specifically,
we take d to be various multiples of 10k, and we
vary x from 0 to d in increments of 10k. With 50
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questions, our NQ dataset has a sample size of

N = 50

(
1 +

d

10000

)
= 50 +

d

200
.

SQuAD The Stanford Question-Answering
Dataset version 2 (SQuAD) is a dataset of question-
answer pairs based on individual paragraphs of
Wikipedia articles (Rajpurkar et al., 2018). we take
50 examples from SQuAD. For each question Q,
we take the accompanying context paragraph P
to be the “gold passage”; if A is the Wikipedia
article containing P , then we take the distracter
paragraphs for Q to be paragraphs in SQuAD
not contained in A. Given an answer position x
and document length d, we then build the context
document D for question Q just as for NQ.

HotPotQA This is a multihop Q&A dataset
with questions that require context over multiple
Wikipedia articles to answer (Yang et al., 2018).
It thus allows us to test if our proposed method
R&R is effective when relevant context is scattered
throughout a document. Each example consists of
a question, answer, and a set of paragraphs across
Wikipedia articles that together constitute sufficient
context to answer the question. We take the given
paragraphs as the gold passages, and we take para-
graphs associated to other questions and unrelated
Wikipedia articles to be the distracters. Then given
a document length d, we construct the context doc-
ument D for a question by taking the distracter
passages, inserting the gold passages at regularly
spaced intervals, and paginating the passages is in
NQ and SQuAD. Note the answer position parame-
ter x is inapplicable here, as the relevant contexts
are uniformly scatterd throughout the document.
Since we will not vary x for HotPotQA in our ex-
periments, we take N = 250 examples to ensure
we have a sufficiently large sample size.

PubMed Our final dataset is a synthetic QA
dataset based on biomedical paper abstracts
scraped via the PubMed search engine. We scraped
all abstracts that were published and added to the
PubMed index in 2024, and we kept only the ones
that were 150-200 GPT4-tokens in length, as this
is roughly the range containing the average token
length of passages in the NQ, SQuAD, and Hot-
PotQA datasets constructed above. Note these ab-
stracts could not have been present in the train-
ing data of GPT-4 Turbo and Claude-2.1. Given
each of the 50 latest abstracts, we instructed GPT-

4 Turbo to write a question that can only be an-
swered based on the given abstract and on no ex-
traneous information, where the answer is either
a single-word or short phrase. We also stated that
the question-answer pair must make sense even if
the given abstract were to appear as one paragraph
in a much longer document; thus, metaquestions
such as “What is the first word in the abstract?” are
excluded. For each of the 50 resulting triplets con-
sisting of question, answer, and context abstract,
we took all other abstracts as the distracter passages.
Given answer position x and document length d,
we are then able to build the context document D
for each question exactly as described for NQ.

In all datasets, we separate every document into
PAGE blocks that correspond to the natural units out
of which the document is built. For NQ, SQuAD,
and HotPotQA, these correspond to the extracted
passages included in the datasets, and for PubMed,
the natural units are the abstracts themselves.

4.2 Methods
The main methods we test in our experiments are
“Reprompt” (corresponding to Sec. 3.2) and R&R.
Our two key baselines are the following.

Baseline This is a long-context baseline where
we just use the standard document-based QA
prompt described in Sec. 3.1.

Chunking This is a short-context baseline imple-
menting chunkwise ICR as described in Sec. 3.4.
We do not specify the chunk size c used here, as
we vary it in our experiments.

In all experiments involving ICR, we retrieve the
top k = 5 most relevant pages, as we know k = 5
is a sufficiently large number for the four datasets
under consideration. In all experiments involving
reprompting, unless stated otherwise, we reprompt
every r = 10k tokens. We provide justification for
this choice in Sec. 5.2.

4.3 Evaluation
We test both GPT-4 Turbo (gpt-4-1106-preview)
and Claude-2.1 as our LLM. Given a question and
document, we compare the LLM-predicted answer
A′ to the ground truth answer A with a symmetric
“fuzzy match” score, which returns 1 if all unique
words in A also appear in A′ or vice versa (after
removing non-alphanumeric non-space characters
and capitalization), and 0 otherwise. The fuzzy-
match score reported for an entire dataset is the av-
erage over all N samples (including both questions
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and answer positions) in the dataset. We find the
fuzzy-match score appropriate for our experiments
as all answers in our datasets are short sequences
of keywords, as opposed to longer open-ended re-
sponses; it is unlikely for an answer to be correct
unless it contains the correct keywords exactly.

5 Results

5.1 Main

In our main set of experiments, we evaluate the
benefit of R&R for document-based QA. Table 1
lists the fuzzy-match scores obtained for each
dataset and each long-context method (i.e., exclud-
ing chunking) described in Secs. 4.1–4.2 and for
four different document lengths d. Reprompt out-
performs Baseline almost across the board, and
R&R often provides an additional boost especially
with GPT-4 Turbo at d = 80k.2 The additional
cost to run Reprompt is minimal, incurring about
1.15% more input tokens than Baseline at d = 80k
and no additional output tokens. R&R similarly
costs about 1.15% more input tokens compared to
Baseline at d = 80k, but it costs an additional LLM
call for the ICR step and incurs about 83 output
tokens per sample vs. only 43 output tokens (aver-
aged across all four datasets) with Baseline and Re-
prompt. Nevertheless, our results suggest that our
method R&R can indeed be helpful to extend the
context length at which LLMs operate effectively
for document-based QA; in particular, R&R helps
to mitigate the lost-in-the-middle effect, which be-
comes evident when Table 1 is broken down by
answer position (see App. B for detailed results).

To evaluate the benefits of long context and re-
prompting over short context and a chunk-based
approach, we run chunkwise ICR and chunkwise
R&R (the latter is just the former plus reprompt-
ing). Table 2 lists the fuzzy-match scores obtained
for each dataset and method. We use the max doc-
ument length d = 80k but vary the chunk size
c within which ICR and R&R are run. The gen-
eral trend, more or less, on most of the datasets is
that accuracy decreases at larger chunk sizes, as re-
trieval becomes less accurate with additional filler
context.3 However, reprompting reduces the rate at

2We suspect the results for Claude-2.1 on NQ and Hot-
PotQA may be related to the number of pages retrieved, as the
documents in these datasets contain multiple pages with non-
negligible relevance, and the results for Claude-2.1 in Table 2
are more reasonable as more pages are retrieved chunkwise.

3Exceptions to this trend—e.g., ICR on NQ at c = 10k—
are likely due to the effect of chunk size on total number of

which accuracy decreases with chunk size and thus
may enable larger chunks to be used in practice.
We understand the significance of this in terms of
an accuracy vs. cost trade-off, as smaller chunks
cost more LLM calls m (one per chunk, plus QA
after aggregation), input tokens, and output tokens
(Table 3). Output tokens, in particular, are costly
as their price ($) is three times that of input tokens
for GPT-4 Turbo and LLM run time depends lin-
early on output tokens. Thus, our results suggest
that reprompting may help to soften this trade-off
by enabling larger chunks that cost fewer LLM
calls and output tokens while minimizing loss of
accuracy. Moreover, reprompting itself costs an
insignificant addition of input tokens, and in any
case this cost is covered by the reduction in input
tokens with larger chunks.

5.2 Analysis

Page retrieval Our motivation for ICR is the hy-
pothesis that retrieving the most relevant page(s)
from the document is simpler than answering the
question directly, as we prioritize recall over preci-
sion in the former. We test this hypothesis by com-
paring the task of direct document-based QA with
the task of retrieving “the page most relevant to
answering the question”. We exclude NQ from this
experiment because the “distracter” pages appear-
ing closer to the start of each document tend to have
non-negligible relevance to the question at hand,
and thus there is no clear-cut “most relevant page”.
We also exclude HotPotQA because relevant con-
text appears on multiple pages scattered throughout
each document. On SQuAD and PubMed, however,
we see that page retrieval is significantly more accu-
rate than direct question-answering, at the example
document length of d = 40k (Table 4)—thus cor-
roborating our hypothesis.

Observe that the scores for answering in Table 4
are significantly lower than the scores of Baseline
at d = 40k in Table 1. The only difference between
the two prompts is that in Baseline (as well as in
Reprompt and R&R) we ask the LLM to return the
page containing the answer along with the answer
itself. This simple addition clearly has a significant
positive impact on QA accuracy and illustrates the
benefits of page retrieval.

Reprompt rate Here we justify our choice to re-
prompt every r = 10k tokens. We test reprompting
every 5k, 10k, and 20k tokens at document length

pages retrieved. For more, see Sec. 6
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GPT-4 Turbo Claude-2.1

d Base Rep ICR R&R Base Rep ICR R&R

NQ

10k 64.0 64.0 63.0 63.0 50.0 50.0 48.9 48.9
20k 62.0 65.3 62.7 63.3 45.3 48.7 46.4 54.7
40k 57.6 63.2 65.6 60.0 43.2 52.8 36.5 43.6
80k 48.9 58.0 57.6 63.8 44.4 49.8 42.4 44.9

SQuAD
(SQ)

10k 96.0 96.0 94.0 94.0 91.0 91.0 94.6 94.6
20k 94.0 94.7 94.0 94.0 73.3 84.7 73.8 92.7
40k 70.0 88.0 89.6 93.6 55.6 84.0 77.6 92.8
80k 72.0 70.4 88.7 90.9 60.4 70.4 71.8 84.4

HotPotQA
(HP)

10k 79.2 79.2 81.6 81.6 65.6 65.6 59.6 59.6
20k 72.4 74.4 80.4 79.6 59.2 63.6 61.6 62.4
40k 63.6 68.0 70.4 74.0 51.2 59.6 52.4 52.8
80k 50.4 54.8 56.4 61.6 41.2 56.0 52.8 53.2

PubMed
(PM)

10k 100.0 100.0 99.0 99.0 96.0 96.0 95.7 95.7
20k 98.0 99.3 98.7 98.7 92.7 96.0 96.5 98.0
40k 82.0 94.8 94.0 97.2 84.4 90.4 94.8 96.4
80k 66.0 77.1 89.8 95.1 75.1 88.0 94.7 95.1

Table 1: Fuzzy-match scores (%) of four prompting methods across four document-based QA datasets and four
document lengths d.

GPT-4 Turbo Claude-2.1

c ICR R&R ICR R&R

NQ

10k 54.7 54.7 45.6 45.6
20k 60.7 61.3 46.7 48.7
40k 60.4 60.9 43.6 47.6
80k 57.6 63.8 42.2 44.9

SQ

10k 94.0 94.0 95.6 95.6
20k 94.0 94.0 79.3 91.1
40k 91.1 93.8 84.4 93.1
80k 88.7 90.9 71.8 84.4

HP

10k 78.0 78.0 65.6 65.6
20k 78.8 77.6 62.0 63.2
40k 70.4 76.8 58.0 57.2
80k 56.4 61.6 52.8 53.2

PM

10k 98.0 98.0 96.0 96.0
20k 97.8 98.2 95.1 93.8
40k 93.1 96.7 95.8 96.2
80k 89.8 95.1 94.7 95.1

Table 2: Fuzzy-match scores (%) of Chunkwise ICR and
chunkwise R&R (see Sec. 4.2) across four document-
based QA datasets at document length d = 80k for
various chunk sizes c.

Input tokens Output

c m ICR R&R tokens

10k 9 82939 82939 322
20k 5 81503 81923 187
40k 3 80763 81334 119
80k 2 80369 81041 84

Table 3: Number of LLM calls m and average numbers
of input tokens and output tokens per question for ICR
and R&R at various chunk sizes c (corresponding to
the runs in Table 2). ICR and R&R differ only in the
number of input tokens used.

Answer Page

SQ 53.6 87.6
PM 68.4 94.8

Table 4: Fuzzy-match scores (%) for direct document-
based QA and exact-match scores (%) for retrieval of
the most relevant page (the page containing the answer)
with GPT-4 Turbo at document length d = 40k.
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5k 10k 20k

NQ 62.4 63.2 61.6
SQ 80.8 88.0 84.4
HP 67.2 68.0 66.4
PM 94.0 94.8 92.8

Table 5: Fuzzy-match scores (%) with reprompting ev-
ery 5k, 10k, and 20k tokens with GPT-4 Turbo at docu-
ment length d = 40k.

d = 40k, and remarkably we find 10k to give the
highest QA accuracy across all four datasets (Ta-
ble 5). We discuss the likely mechanism underlying
this observation next.

Reprompt position We test the hypothesis de-
scribed in Sec. 1 that reprompting only before rel-
evant context is sufficient to boost accuracy sig-
nificantly. On NQ, SQuAD, and PubMed, we in-
ject just one INSTRUCTIONS_REMINDER block be-
fore the PAGE block marked as containing the “gold
passage”. On HotPotQA, we do this for each of
the multiple PAGE blocks marked as containing rel-
evant context. Remarkably, this method results in
QA accuracies significantly higher than reprompt-
ing uniformly every r = 10k tokens on three of
the four datasets at the example document length
d = 40k (Table 6). This finding supports the hy-
pothesis that reprompting works because it reduces
the distance between relevant context and at least
one copy of the task instructions. Furthermore, it
elucidates the finding that r = 10k is the optimal
reprompt rate; Recall in our experimental setup,
we vary the answer position x in each document
in increments of 10k (see Sec. 4.1 for details); in
particular, in every sample, every page marked as
relevant is an integer multiple of 10k tokens into
the document. Thus, reprompting every 10k tokens
is guaranteed to inject a reminder near the ground
truth answer position, while 20k is only guaranteed
to do so in half the samples. On the other hand,
while reprompting every 5k offers the same guar-
antee as 10k, it is an unnecessarily high reprompt
rate and may be introducing contextual noise.

As further corroboration, we test reprompt-
ing where we just allude to the original
instructions: <INSTRUCTIONS_REMINDER>
Remember, your task is to follow the in-
structions under the “<INSTRUCTIONS>” tag
</INSTRUCTIONS_REMINDER> and find that it
performs significantly worse than original re-

Rep
Tags
only

At
beginning

only

Before
answer

only

NQ 63.2 57.6 60.0 70.4
SQ 88.0 81.2 70.4 81.6
HP 68.0 66.4 65.2 72.0
PM 94.8 86.4 79.6 99.2

Table 6: Fuzzy-match scores (%) with original and three
variations of reprompting at document length d = 40k.
“Reprompt” is taken from Table 1; in “Tags only”, the
reminder block only refers to the original “INSTRUC-
TIONS” tag; in “At beginning only”, all reminders are
placed at the beginning of the document; and in “Before
answer only” only one reminder is placed right before
each relevant context page.

prompting (Table 6). We suspect this test fails
because it does not reduce the distance between
relevant context and the given question that only
appears in the original instructions. Finally, we
test reprompting where all copies of the reminder
block are placed at the beginning of the document
and find it performs much worse than original
reprompting; thus, the efficacy of reprompting
cannot be attributed to repetition alone.

6 Conclusion

We introduced the prompt-based method R&R to
investigate how far we could push the performance
of long-context LLMs on document-based QA. We
found our nethod to be effective at mitigating the
“lost in the middle effect” (see App. B for detailed
results), and our analysis suggests that the mech-
anism underlying reprompting could be the mini-
mization of distance between relevant context and
the task instructions. For extraction-like QA tasks,
chunkwise approaches provide a strong baseline,
and indeed R&R can be performed within chunks.
Nevertheless, even in this setting, we found re-
prompting to be beneficial as it often allows larger
chunks to be used (thus requiring fewer LLM calls
and less token usage) while reducing the drop in ac-
curacy. R&R thus softens the accuracy vs. cost
trade-off of chunkwise approaches and enables
cost-savings in practical applications where accu-
racy is paramount.

Future directions of this work are numerous.
We could combine R&R with other prompt-based
methods to boost performance further; e.g., we
could ask the LLM to provide a brief justifica-
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tion of each page it retrieves, thus encouraging
the LLM to retrieve more wisely. Perhaps more
interestingly, we could consider “in-context chunk-
ing”, where we ask the LLM to retrieve 5 pages
from every 50-page range, for example; this could
help to temper the accuracy vs. cost trade-off fur-
ther. As a different direction, we could investi-
gate the utility of reprompting on tasks requiring
a more wholistic understanding of the document
such as summarization, where position bias has
also been observed (Ravaut et al., 2023). Finally,
while these are only prompt-based methods, under-
standing their benefits and limitations could help
to elucidate the complex behavior of long-context
LLMs and could inspire architectural modifications
to improve long-context LLMs.

Limitations

While it is clear that R&R is beneficial compared
to the “Baseline” QA prompt, the results presented
in Tables 1–2 exhibit some noise. We mention po-
tential explanations in footnotes 2–3. To elaborate
on footnote 3: If we ask to retrieve up to k pages
from each of d

c chunks at document length d, then a
max of dk

c pages can be retrieved. Thus, in our ex-
perimental setup, up to 40 pages may be retrieved
at chunk size c = 10k. In this way, at smaller
chunk sizes, the benefits of ICR diminish, leading
to a potential decrease in accuracy and in general
a more complex accuracy vs. cost trade-off. On
NQ in particular, pages earlier in the document are
semirelevant to the given question, possibly lead-
ing to a larger number of pages being retrieved and
reducing the benefits of ICR.

We selected GPT-4 Turbo and Claude-2.1 as our
LLMs because of their very long contexts, but the
catch is their black-box nature. This limits our un-
derstanding of at least one possible source of noise
mentioned above, and it limits our investigation
into the mechanism of reprompting; indeed, with
access to a very long-context open-source LLM,
we could measure the attention weights to better
understand how the LLM responds to reprompting.

Finally, we only consider the task of document-
based QA, but we plan to investigate reprompting
for other tasks such as summarization in the future.

Ethics Statement

We strictly adhere to the terms of use set by OpenAI
and Anthropic for the GPT-4 Turbo and Claude-
2.1 models respectively. We also comply with the

Apache 2.0 license of the NQ dataset, the CC By-
SA 4.0 license of the SQuAD (v2) and HotPotQA
datasets, and the terms and conditions set by the
National Library of Medicine for our collection of
PubMed abstracts.

Acknowledgements

We would like to thank Javed Qadrud-Din, John
Scoville, and Pablo Arredondo at Thomson Reuters
for their valuable feedback and support.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Anthropic. 2023. Introducing claude 2.1. https://
www.anthropic.com/news/claude-2-1.

Howard Chen, Ramakanth Pasunuru, Jason Weston, and
Asli Celikyilmaz. 2023a. Walking down the mem-
ory maze: Beyond context limit through interactive
reading. arXiv preprint arXiv:2310.05029.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and
Yuandong Tian. 2023b. Extending context window
of large language models via positional interpolation.
arXiv preprint arXiv:2306.15595.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai,
Zhijian Liu, Song Han, and Jiaya Jia. 2023c. Lon-
glora: Efficient fine-tuning of long-context large lan-
guage models. arXiv preprint arXiv:2309.12307.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text de-
generation. In International Conference on Learning
Representations.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: A benchmark for question answering
research. Transactions of the Association for Compu-
tational Linguistics, 7:452–466.

Kuang-Huei Lee, Xinyun Chen, Hiroki Furuta, John
Canny, and Ian Fischer. 2024. A human-inspired
reading agent with gist memory of very long contexts.
In ICLR 2024 Workshop on Large Language Model
(LLM) Agents.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. NeurIPS.

12700

https://www.anthropic.com/news/claude-2-1
https://www.anthropic.com/news/claude-2-1
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://openreview.net/forum?id=vRHrqXVTiQ
https://openreview.net/forum?id=vRHrqXVTiQ


Jimmy Lin, Rodrigo Nogueira, and Andrew Yates. 2022.
Pretrained transformers for text ranking: Bert and
beyond. Springer Nature.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2023. Lost in the middle: How lan-
guage models use long contexts. arXiv preprint
arXiv:2307.03172.

Amirkeivan Mohtashami and Martin Jaggi. 2023.
Landmark attention: Random-access infinite con-
text length for transformers. arXiv preprint
arXiv:2305.16300.

OpenAI. 2023. Models. https://platform.openai.
com/docs/models/overview.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for SQuAD. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 784–789,
Melbourne, Australia. Association for Computational
Linguistics.

Nir Ratner, Yoav Levine, Yonatan Belinkov, Ori Ram,
Inbal Magar, Omri Abend, Ehud Karpas, Amnon
Shashua, Kevin Leyton-Brown, and Yoav Shoham.
2023. Parallel context windows for large language
models. In ACL.

Mathieu Ravaut, Shafiq Joty, Aixin Sun, and Nancy F
Chen. 2023. On position bias in summariza-
tion with large language models. arXiv preprint
arXiv:2310.10570.

Stephen Roller, Emily Dinan, Naman Goyal, Da Ju,
Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott,
Eric Michael Smith, Y-Lan Boureau, and Jason We-
ston. 2021. Recipes for building an open-domain
chatbot. In Proceedings of the 16th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: Main Volume, pages 300–325,
Online. Association for Computational Linguistics.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha,
Bo Wen, and Yunfeng Liu. 2021. Roformer: En-
hanced transformer with rotary position embedding.
arXiv preprint arXiv:2104.09864.

Simeng Sun, Yang Liu, Shuohang Wang, Dan Iter, Chen-
guang Zhu, and Mohit Iyyer. 2024. PEARL: Prompt-
ing large language models to plan and execute ac-
tions over long documents. In Proceedings of the
18th Conference of the European Chapter of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 469–486, St. Julian’s, Malta.
Association for Computational Linguistics.

Raphael Tang, Xinyu Zhang, Xueguang Ma, Jimmy
Lin, and Ferhan Ture. 2023. Found in the mid-
dle: Permutation self-consistency improves listwise
ranking in large language models. arXiv preprint
arXiv:2310.07712.

Szymon Tworkowski, Konrad Staniszewski, Mikołaj
Pacek, Yuhuai Wu, Henryk Michalewski, and Pi-
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A Prompts

Here we list the prompt templates to run our meth-
ods. In all prompts, {question} and {document}
are replaced with the given question and document
text respectively, and {format_instructions} is
replaced with the response format instructions. The
“Baseline” method (as called in Sec. 5) runs the fol-
lowing prompt:
<INSTRUCTIONS>
Answer the following question based on the

document provided and no additional
extraneous information:

{question}

{format_instructions}
</INSTRUCTIONS>

<DOCUMENT>
{document}
</DOCUMENT>

<INSTRUCTIONS>
Now, answer the following question based on the

above document and no additional extraneous
information:
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{question}

{format_instructions}
</INSTRUCTIONS>

In the “Reprompt” method, before running the
above prompt, we first inject the following re-
minder block every r tokens in the context doc-
ument:
<INSTRUCTIONS_REMINDER>
Remember, your task is to answer the following

question based on this document and no
additional extraneous information:

{question}

{format_instructions}</INSTRUCTIONS_REMINDER>

In ICR, before running the baseline prompt, we
first run the following:
<INSTRUCTIONS>
Below is a document that is separated into page

numbers. Identify up to 5 page numbers in
the document that are most relevant to the
following question:

{question}

{format_instructions}
</INSTRUCTIONS>

<DOCUMENT>
{document}
</DOCUMENT>

<INSTRUCTIONS>
Now, identify up to 5 page numbers in the

document that are most relevant to the
following question.

{question}

{format_instructions}
</INSTRUCTIONS>'''

Finally, in “R&R”, we inject the following re-
minder block every r tokens into the context docu-
ment before running the above ICR prompt:
<INSTRUCTIONS_REMINDER>
Remember, your task is to identify up to 5 page

numbers in the document that are most
relevant to the following question:

{question}

{format_instructions}
</INSTRUCTIONS_REMINDER>

B Effect of Answer Position

Here we present the results in Table 1 in greater de-
tail, broken down by answer position (Recall from
Sec. 4.1 that for each question in a dataset, we vary
the position x of the answer in the context docu-
ment in increments of 10k). We omit HotPotQA as
we do not vary the positions of the multiple pieces
of relevant context in this dataset. Tables 7-9 list

the results for NQ, SQuAD, and PubMed respec-
tively. On all three datasets, we observe the “lost
in the middle” effect in Baseline, particularly at
document length d = 80k. On the other hand, we
observe consistently that R&R mitigates this effect
significantly.
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d 0k 10k 20k 30k 40k 50k 60k 70k 80k

Base

10k 60.0 68.0
20k 60.0 56.0 70.0
40k 60.0 50.0 50.0 56.0 72.0
80k 56.0 36.0 38.0 42.0 46.0 48.0 48.0 52.0 74.0

Rep

10k
20k 60.0 64.0 72.0
40k 60.0 56.0 64.0 64.0 72.0
80k 54.0 38.0 52.0 58.0 60.0 62.0 60.0 64.0 74.0

R&R

10k
20k 64.0 64.0 62.0
40k 62.0 58.0 58.0 60.0 62.0
80k 62.0 62.0 60.0 58.0 66.0 68.0 64.0 68.0 66.0

Table 7: Fuzzy-match scores on NQ from Table 1 broken down by answer position. We vary the answre position in
increments of 10k tokens within the document length d.

d 0k 10k 20k 30k 40k 50k 60k 70k 80k

Base

10k 96.0 96.0
20k 96.0 90.0 96.0
40k 46.0 34.0 88.0 88.0 94.0
80k 68.0 26.0 60.0 74.0 70.0 88.0 84.0 88.0 90.0

Rep

10k
20k 96.0 94.0 94.0
40k 84.0 76.0 94.0 92.0 94.0
80k 54.0 24.0 46.0 78.0 78.0 90.0 82.0 88.0 94.0

R&R

10k
20k 94.0 94.0 94.0
40k 94.0 94.0 94.0 92.0 94.0
80k 92.0 78.0 86.0 92.0 94.0 94.0 94.0 94.0 94.0

Table 8: Fuzzy-match scores on SQuAD from Table 1 broken down by answer position. We vary the answre position
in increments of 10k tokens within the document length d.

12703



d 0k 10k 20k 30k 40k 50k 60k 70k 80k

Base

10k 100.0 100.0
20k 100.0 96.0 98.0
40k 100.0 84.0 66.0 64.0 96.0
80k 100.0 76.0 46.0 52.0 52.0 56.0 60.0 58.0 94.0

Rep

10k
20k 100.0 100.0 98.0
40k 100.0 94.0 96.0 88.0 96.0
80k 96.0 70.0 84.0 66.0 66.0 76.0 70.0 74.0 92.0

R&R

10k
20k 100.0 98.0 98.0
40k 100.0 96.0 98.0 96.0 96.0
80k 100.0 94.0 96.0 94.0 94.0 94.0 94.0 96.0 94.0

Table 9: Fuzzy-match scores on PubMed from Table 1 broken down by answer position. We vary the answre
position in increments of 10k tokens within the document length d.
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