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Abstract
Sentiment analysis (SA) aims to identify the
sentiment expressed in a text, such as a prod-
uct review. Given a review and the sentiment
associated with it, this work formulates SA as
a combination of two tasks: (1) a causal dis-
covery task that distinguishes whether a review
“primes” the sentiment (Causal Hypothesis C1),
or the sentiment “primes” the review (Causal
Hypothesis C2); and (2) the traditional pre-
diction task to model the sentiment using the
review as input. Using the peak-end rule in
psychology, we classify a sample as C1 if its
overall sentiment score approximates an aver-
age of all the sentence-level sentiments in the
review, and C2 if the overall sentiment score
approximates an average of the peak and end
sentiments. For the prediction task, we use the
discovered causal mechanisms behind the sam-
ples to improve LLM performance by propos-
ing causal prompts that give the models an in-
ductive bias of the underlying causal graph,
leading to substantial improvements by up to
32.13 F1 points on zero-shot five-class SA.1

1 Introduction

Sentiment analysis (SA) is the task of identify-
ing the sentiment y given a piece of text x. The
field has a rich history originating from subjectiv-
ity analysis (Wiebe, 1994; Hatzivassiloglou and
Wiebe, 2000), and developed rapidly with the avail-
ability of large opinionated online data such as
reviews with ratings (Turney, 2002; Nasukawa and
Yi, 2003; Zhang et al., 2015; Keung et al., 2020,
inter alia).

Despite recent advances in large language models
(LLMs), it is still challenging to address the fine-
grained five-class SA (which corresponds to the
five star ratings in most datasets) for document-
level classification (Choi et al., 2020; Fei et al.,

*Equal contributions.
1Our code is at https://github.com/cogito233/causal-sa.

2023; Truică et al., 2021), due to the subtle nature
of the task including aspects such as inter-aspect
relations, commonsense reasoning, among others
(Poria et al., 2023; Venkit et al., 2023).

In this paper, we propose a causally-informed solu-
tion for the SA task. Different from the approach
of naïvely applying up-to-date LLMs, we leverage
insights from causal inference to propose a refor-
mulation for SA into two tasks, as in Figure 1: (1)
a causal discovery task to identify the cause-effect
relation between the review X and the sentiment
Y , and (2) the traditional prediction task f : x 7→ y
to model the sentiment using the review as input.

We first look into the causal discovery task. In the
study of affect science (Salovey and Mayer, 2004;
Barrett, 2006; Feinstein, 2013), language can be
the cause of emotion (Satpute et al., 2013; Kassam
and Mendes, 2013) – namely a review priming the
following sentiment, i.e., the Causal Hypothesis
C1 of X → Y ); or emotion can affect the use
of language (Barrett, 2006) – namely sentiment
priming the review as an ad-hoc justification for
the emotion, i.e., the Causal Hypothesis C2 of Y →
X . These two processes might arise from the data
annotation process (Jin et al., 2021), but is hard to
discover post-hoc in existing datasets.

Given the possibility of both causal directions
X → Y or Y → X in the SA data, we identify
the actual underlying mechanism based on insights
from psychology (Kahneman, 2011; Epstein, 1994).
Specifically, we identify the correspondence of the
above two causal mechanisms with the Fast and
Slow Thinking systems (Kahneman, 2011): (1) a
review-driven sentiment (as in C1) largely resem-
bles the Slow Thinking process applying reasoning
based on evidence, and (2) the process of first com-
ing up with the sentiment and then justifying it by a
review (as in C2) conforms to Fast Thinking. Given
this correspondence, we apply the peak-end rule
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Peak-End Rule (from Thinking Fast and Slow): 
- For slow thinking, overall sentiment ≈ average feeling
- For fast thinking, overall sentiment ≈ average of the
peak (most intensive) and end feelings

This was a great spot to take a break from it all and just people watch.
We sat at the bar facing the casino and we were entertained the whole time.
The mini grilled cheese (appetizer) was fantastic.
It came with a tomato based dipping sauce that was the perfect compliment
to the bite sized wedges.
Tip - ask for two dipping sauces because one just won't do.

Sentence Index|
1

Label: 50% (which is closer to Mean than to Peak-End)
Mean: 46% (by slow thinking)

| | | |
2 3 4 5

Emotion Arc

Peak-End: 13% (by fast thinking)

+100%

-100%

0

Sentiment

End

Review

Corresponds toSentiment causes Review
Y → X

Review causes Sentiment
X → Y

Two Possible Causal Directions:

Task 1. Causal Discovery

Fast Thinking
Overall = Peak-End of the Emotion Arc

Psychology Theories (§3)

Corresponds to Slow Thinking
Overall = Average of the Emotion Arc

Task 2. Improving LLM Performance on SA

I initially selected a star rating, and then provided the following explanations in my
review: {review} The review clarifies why I gave a rating of ___

I initially composed the following feedback: {review} After carefully considering the
facts, my final rating was ___C1

C2

C1

C2

Causal Prompts (§4.2)

1. LLMs perform better on C2 data (§4.1)

3. LLMs follow some mechanisms with causal prompts, but not perfectly (§4.3)

2. We can give inductive bias to LLMs by causal prompts (§4.2)

Applying the Peak-End Rule to discover the causal direction

Peak

Figure 1: An overview of the paper structure, where we first investigate the causal discovery task, and then use it to improve
LLM performance. For each document-level text review, we parse its emotion arc consisting of the sentiment of each sentence in
the review, and then use the peak-end rule (Kahneman et al., 1993; Kahneman, 2011) to identify whether the overall sentiment is
an average of the arc (corresponding to Slow Thinking), or an average of the peak and end sentiments (corresponding to Fast
Thinking).

from psychology (Kahneman et al., 1993; Kahne-
man, 2011). As shown in the right part of Figure 1,
we classify a sample as C1 if its overall sentiment
score approximates an average of all the sentence-
level sentiments in the review, and as C2 if the
overall sentiment score approximates an average of
the peak and end sentiments.

Based on the identified causal mechanism behind
SA data from the causal discovery task, we further
explore how it can improve prediction performance
in the era of LLMs. Existing literature highlights
“causal alignment,” namely to align the prediction
direction along the underlying causal direction (Jin
et al., 2021; Schölkopf, 2022; Schölkopf et al.,
2021), but to our knowledge we are the first to
explore how causal alignment improves model per-
formance of SA in the era of LLMs. Specifically,
we answer three subquestions: (Q1) If using the
standard SA prompt, do models perform differ-
ently on C1/C2 data? (Q2) Does it help if we make
the prompt aware of the underlying causality, i.e.,
use causal prompts? And (Q3) When prompted
causally, do LLMs mechanistically understand the
corresponding causal processes?

Our empirical results show that under the standard
prompt, LLMs perform better on data correspond-
ing to the C2 causal process. Moreover, causal
prompts aligned with the causal direction of the
data can substantially improve the performance of
zero-shot SA. Finally, we apply mechanistic inter-

pretability methods to probe the models, and find
that there is still improvement space for LLMs to
correctly grasp the essence of the two causal pro-
cesses. In summary, the contributions of this paper
are as follows:

1. We propose the dual nature of SA as a combi-
nation of two tasks: a causal discovery task,
and a prediction task.

2. For causal discovery, we ground the two pos-
sible causal processes in psychology, and use
the peak-end rule to identify them.

3. For the prediction task, we inspect existing
LLMs’ performance on data corresponding
to the two underlying causal processes, and
design causal prompts to improve model per-
formance by up to 32.13 F1 points.

2 Problem Formulation of SA

In this section, we formulate SA as a combination
of two tasks: the traditional prediction task in NLP
and the causal discovery task in statistics, which
we will introduce in the following.

2.1 The Prediction Task (in NLP)

SA is a prediction task to identify the sentiment
y given a piece of text x. We adopt the setup in
most existing SA datasets (Maas et al., 2011; Zhang
et al., 2015; Keung et al., 2020), where the text x
is a review consisting of n sentences (t1, . . . , tn),
and the label y is a sentiment score corresponding
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to the star rating of the review in 1 (most negative),
2, . . . , 5 (most positive).

2.2 The Cause-Effect Discovery Task (in
Statistics)

As a separate problem, there is an established task
in causal discovery, the causal-effect problem (see
the review by Janzing, 2019), which aims to tell the
cause from effect using only observational data. Its
formal formulation is as follows: Suppose we have
an i.i.d. dataset D := {(xi, yi)}ni=1 containing n
observational data pairs of the two variables, X and
Y . The task is to infer whether X causes Y (i.e.,
X → Y ), or Y causes X (i.e., Y → X), if one out
of the two is true. In causality, “→” indicates the
directional causal relation between two variables.
The two hypotheses can also be expressed in their
equivalent structural causal models (SCMs; Pearl
et al., 2000) as introduced in Peters et al. (2017):

Causal Hypothesis 1 (C1): X → Y (1)

⇔ Y := fY (X,NY ) with NY ⊥ X , (2)

Causal Hypothesis 2 (C2): Y → X (3)

⇔ X := fX(Y,NX) with NX ⊥ Y , (4)

where Ni is an unobserved noise term orthogonal
to the input distribution.

2.3 Causality and NLP Model Performance

For many years, causality and machine learning
have been two separate domains on their own. Re-
cently, researchers started to think about how the
causal knowledge of the data can improve ma-
chine learning performance on the prediction task,
especially for the two variable cause-effect case
(Schölkopf et al., 2012; Jin et al., 2021; Ni et al.,
2022). The essence of this line of research is that
causality makes the two learning tasks x 7→ y and
y 7→ x asymmetric, as one function’s prediction
direction aligns with the ground-truth causal di-
rection behind the two random variables, and an-
other contradicts. We call this phenomenon “causal
alignment,” or “direction match,” of the prediction
task and the causality.

To contrast the contribution of our work, we review
the previous literature on causal alignment, which
only shows its effect on the performance of trained-
from-scratch machine learning models, without any
indications in the era of LLMs:

1. Causal alignment makes a model more ro-
bust against covariant shifts (Jin et al., 2021;
Schölkopf, 2022; Schott et al., 2018, inter
alia)

2. Semi-supervised learning (SSL) only works
under causal misalignment, as the cause vari-
able contains no information about the mech-
anism, but the effect variable does. So in the
misaligned case, additional PX (i.e., the effect
variable) helps SSL (Schölkopf et al., 2012;
Jin et al., 2021).

3. Learning a causally-aligned model induces
less Kolmogorov complexity (a more min-
imal description length) than the causally-
misaligned model on the same X-Y data (Jin
et al., 2021; Janzing and Schölkopf, 2010)

4. Causal alignment significantly affects model
performance in supervised learning, in the
case of machine translation (Ni et al., 2022).

All the above findings are drawn under the training
condition that we can isolate the training data to be
only of one causal direction. In the era of LLMs,
we have seen substantial differences: (1) the train-
ing data can be a mixture of both causal directions,
(2) the operationalization of the prediction task is
through prompting, but no longer a separate model
for each direction, and, (3) in general, research
has shifted to designing better prompts for already
pre-trained models in their inference mode.

Given these changes, we use the rest of the paper
to address the following research questions:

1. What is the causal direction in SA? (Section 3)
2. Can causal alignment help us improve SA

prompts in the era of LLMs? (Section 4)

3 Causal Discovery: Does Sentiment
Cause the Review, or Vice Versa?

3.1 Problem Setup

As mentioned previously, the setup of the bivariate
causal discovery problem is to infer whether X
causes Y (C1), or Y causes X (C2), based on a
dataset D := {(xi, yi)}ni=1 containing only obser-
vational data of the joint distribution.

Challenges The common paradigm to check
causal discovery results is to generate simulated
data, of which the ground truth causal graph is
known (Zhang and Hyvärinen, 2009; Spirtes and
Zhang, 2016). However, in the context of the es-
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tablished SA datasets, such as Yelp (Zhang et al.,
2015), Amazon (Keung et al., 2020), and App Re-
view (Grano et al., 2017), we would not be able to
track each individual user and survey their original
causal process when composing the review and the
rating. Another solution would also be difficult, as
it would require SA to abandon all the above well-
established datasets, and meticulously collect new
data while surveying the users’ underlying causal
process.

Our Approach In the context of our work, we pro-
pose that there are still rich findings that we could
derive from the observation-only data in the exist-
ing datasets, without interviewing or conducting
new costly data collection.

The key to our approach is the psychology theories
of the two causal processes, as the relation between
sentiment and text has been well-studied and veri-
fied by randomized control trials (RCTs), among
many other experiments. In the rest of the section,
we first introduce in Section 3.2 the psychology
theories of fast and slow thinking, followed by the
Peak-End Rule as the quantitative signal. Then,
we operationalize the theory with computational
techniques in Section 3.3, and the report findings
on three different SA datasets in Section 3.4.

3.2 Psychological Processes Underlying
Sentiment Processing

Two Systems of Emotional Responses In psy-
chology, the bifurcation into System 1 and System
2 in human decision-making, including sentiment
processing, has garnered substantial empirical sup-
port (Kahneman, 2011; Epstein, 1994).

System 1, or the “Fast Thinking” system, oper-
ates involuntarily, effortlessly, and without con-
scious awareness. It is often optimized in evolution
to provide rapid responses to environmental stim-
uli (LeDoux, 1998), and guides most of our daily
cognitive processing (Kahneman, 2011), and emo-
tional responses such as fear or joy (Zajonc, 1980).

Conversely, System 2, often termed as “Slow Think-
ing,” is deliberate, slower, and more rational, re-
quires more conscious effort (Kahneman, 2011),
and allows for self-regulation and thoughtful con-
sideration before making decisions (Baumeister
et al., 1998). The interplay between these systems
influences everything from mundane to critical de-
cisions, highlighting the complexity of human emo-
tional and cognitive processing (Kahneman and

Frederick, 2002; Kahneman, 2011).

Correspondence to the Two Causal Processes
There is a nice correspondence between the
fast/slow thinking systems and our two causal hy-
potheses. As mentioned previously, the Causal
Hypothesis 2 (C2) posits Y → X , where the sen-
timent Y causes the review X , which aligns well
with the Fast Thinking system (Kahneman, 2011;
LeDoux, 1998), as it rapidly generates an emo-
tional reaction Y , and then writes text to justify
it Y . On the other hand, the Causal Hypothesis 1
(C1) refers to the case where X → Y , namely the
review X causing the sentiment Y . It is an instance
of Slow Thinking (Baumeister et al., 1998; Kahne-
man and Frederick, 2002), which deliberately uses
conscious efforts to list out the up- and downsides
of an experience in the review X , and come up
with a thoughtful final decision as the rating Y .

Quantitative Signals of the Two Processes In
sentiment processing, an evidence for the two pro-
cesses is the famous Kahneman et al. (1993) study
illustrating the Peak-End Rule of how individu-
als recall and evaluate past emotional experiences,
which we show in Figure 1. As we know, fast think-
ing is prone to systematic biases and errors in the
judgment (Tversky and Kahneman, 1974), and the
Kahneman et al. (1993) study provides important
quantitative results showing that, in the Fast Think-
ing system, people’s emotional memories of an
experience are disproportionately influenced by its
most intense point (the “peak”) and its conclusion
(the “end”), rather than by the average experience
as in the Slow Thinking system. The important
role of peak and end for the fast thinking system
implies that it is the intensity of specific moments
that dominate memory and judgment.

3.3 Operationalizing the Theory

We summarize the previous psychological insights
in the upper left part of Figure 1, where the Causal
Hypothesis 1 corresponds to taking the average of
all emotional experiences mentioned in the review
X for the sentiment Y , and the Causal Hypothesis
2 uses the peak and end emotions in the review
X to derive the sentiment Y . In this section, we
introduce a formalization of the theory, and suggest
signals to distinguish the two causal hypotheses.

Emotion Arc To capture the aforementioned tra-
jectory of emotional experiences, we use the con-
cept of the emotion arc (Reagan et al., 2016), an

9356



Yelp Amazon App Review
All C1 C2 All C1 C2 All C1 C2

# Samples 34,851 19,557 (56%) 15,294 (44%) 2,582 1,393 (54%) 1,189 (46%) 9,696 3,809 (39%) 5,887 (61%)
# Sents/Review 11.11 11.30 10.87 6.70 6.62 6.80 6.34 6.33 6.35
# Words/Sent 15.53 15.55 15.49 11.04 11.28 10.77 10.53 10.90 10.29
Vocab Size 64,864 48,889 44,826 10,271 7,609 7,049 20,248 12,773 15,400
Avg Sentiment 2.93 2.74 3.18 2.94 2.82 3.07 2.9 2.72 3.02
Avg λ1 3.78 2.97 4.83 3.77 3.10 4.55 6.03 5.18 6.58
Avg λ2 4.48 6.05 2.48 4.21 5.72 2.45 5.10 7.96 3.26

Table 1: Statistics of the entire datasets and their C1 and C2 subsets for Yelp, Amazon, and App Review. We can see that a
roughly balanced number of reviews aligning with the C1 and C2 processes.

example of which we visualize in Figure 1. Con-
textualizing it in the task of SA, we formally define
an emotion arc of the review as follows. Given a
review x consisting of n sentences (t1, . . . , tn), we
identify the sentiment for each of them, thus ob-
taining a series of sentiment labels (s1, . . . , sn).
We denote this series as the emotion arc e :=
(s1, . . . , sn) of the review.

The Two Causal Processes Provided the notion
of the emotion arc e := (s1, . . . , sn) for a review
x, we formulate the sentiment labels corresponding
to the two causal processes as follows:

Slow Thinking (Causal Process 1):

ŷavg =
1

n
(s1 + · · ·+ sn) , (5)

λ1 = |y − ŷavg| , (6)

Fast Thinking (Causal Process 2):

ŷpeakEnd =
1

2
(Peak(s1, . . . , sn) + sn) , (7)

λ2 = |y − ŷpeakEnd| , (8)

where λi indicates the alignment of the actual sen-
timent y with the Causal Process i, and Peak(·)
selects the sentiment with the strongest intensity by
its distance from the neutral sentiment 3, which is
the middle point among the sentiment range 1–5,
i.e., Peak(s1, . . . , sn) := sargmaxi |si−3|.

Here, we interpret λi as an indicator for each causal
process, where a small value (with the best value
being zero) implies the alignment with the process
i. We show two examples in Table 2, one aligning
well with the Causal Process C1 with a small λ1,
and another aligning well with the Causal Process
C2 with a small λ2.

3.4 Findings on SA Datasets
Dataset Setup We adopt three commonly used
datasets in SA: Yelp (Zhang et al., 2015), Ama-
zon (Keung et al., 2020), and App Review (Grano

Example of a C1-Dominant Review
· This was a great spot to take a break from it all and just
people watch. s1 = 4.57
· We sat at the bar facing the casino and we were entertained
the whole time.s2 = 4.67
· The mini grilled cheese (appetizer) was fantastic. s3 =
4.53
· It came with a tomato based dipping sauce that was the
perfect compliment to the bite sized wedges. s4 = 4.20
· Tip - ask for two dipping sauces because one just won’t do.
s5 = 1.60
Stars y: 4
Psychology Scores (↓): λ1 = 0.0884 < λ2 = 0.8683

Example of a C2-Dominant Review
· I read the reviews and should have steered away... but it
looked interesting. s1 = 3.72
· Salad was wilted, menus are on the wall, with no expla-
nation so you are ordering blind, service was NOT with a
smile from the bartender to the waitress, to the server who
helped the waitress, and the waitress never checked back to
see how everything is. s2 = 2.20
· Terribly overpriced for what you get, and as an Italian, this
does not even pass for a facsimile thereof! s3 = 1.45
· Stay away for sure. s4 = 1.85
· I only gave them one star, as I had to fill something in, they
should get no stars! s5 = 1.32
Stars y: 1
Psychology Scores (↓): λ1 = 1.1827 > λ2 = 0.3647

Table 2: Examples of C1- and C2-dominant reviews.

et al., 2017). For the Amazon data, we concatenate
each review’s title with its text. Since the model
performance on many binary classification datasets
is saturated (Poria et al., 2023; Yang et al., 2019),
we use the 5-way classification version of the SA
datasets when applicable.

Since we need to utilize the emotion arc, we keep
only reviews with at least five sentences, after sen-
tence tokenization using the Spacy package (Hon-
nibal and Montani, 2017). We apply this filtering
above on the test set of the Yelp dataset, the English
test of Amazon, and the unsplit entire dataset of
App Review. We report the statistics of remaining
samples in Table 1.

To obtain the emotion arcs, we calculate the sen-
timent score of each sentence produced by the
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Random GPT-2 XL LLaMa-7B Alpaca-7B GPT-3 GPT-3.5 GPT-4

F1
Overall 19.82 ±2.07 10.23 ±4.12 31.78 ±5.32 46.01 ±5.35 52.71 ±1.73 57.98 ±5.11 59.54 ±4.69

C1 Subset 21.36 ±2.26 5.80 ±3.11 27.30 ±4.73 37.77 ±7.66 43.96 ±2.93 58.64 ±1.48 58.62 ±2.54

C2 Subset 20.43 ±2.95 16.37 ±5.33 37.66 ±7.86 55.82 ±4.02 65.40 ±1.37 59.09 ±9.13 62.57 ±6.85

Accuracy
Overall 19.78 ±2.07 23.06 ±2.10 39.28 ±5.07 47.72 ±4.19 53.22 ±1.35 58.36 ±4.13 59.84 ±4.17

C1 Subset 20.61 ±2.23 16.18 ±1.59 36.55 ±4.05 42.14 ±5.26 43.61 ±2.89 59.89 ±1.09 59.62 ±1.96

C2 Subset 18.86 ±2.78 30.79 ±2.68 42.33 ±7.24 53.93 ±3.91 63.93 ±1.28 56.66 ±8.08 60.08 ±7.05

Table 3: Performance of different models on the five-class classification of Yelp-5. We use five paraphrases for the prompt (in
Appendix A.4), and report the average performance with the standard deviation.

Random GPT-2 XL LLaMa-7B Alpaca-7B GPT-3 GPT-3.5 GPT-4

F1

Data=C1, Prompt=C1 20.47 ±2.47 6.12 ±2.77 55.16 ±7.16 52.74 ±5.04 38.36 ±6.66 60.62 ±3.24 54.23 ±4.17

Data=C1, Prompt=C2 20.26 ±2.31 15.98 ±3.59 36.22 ±8.95 35.10 ±5.40 54.44 ±1.64 52.85 ±6.01 58.58 ±3.33

Data=C2, Prompt=C1 22.35 ±3.02 31.98 ±8.66 56.69 ±8.46 54.74 ±14.26 74.64 ±3.06 78.18 ±1.21 72.52 ±3.68

Data=C2, Prompt=C2 20.35 ±2.18 48.50 ±7.66 66.82 ±7.90 71.22 ±3.99 77.09 ±1.33 78.16 ±1.81 76.80 ±1.36

Acc

Data=C1, Prompt=C1 19.60 ±2.67 12.96 ±2.91 58.23 ±5.30 55.81 ±4.00 43.16 ±6.20 60.39 ±3.25 54.06 ±3.97

Data=C1, Prompt=C2 19.68 ±2.46 22.61 ±5.73 43.07 ±8.18 41.45 ±4.06 56.36 ±1.94 53.11 ±5.89 58.68 ±3.45

Data=C2, Prompt=C1 20.97 ±3.19 43.51 ±6.30 57.54 ±7.21 54.82 ±12.59 76.60 ±3.23 77.38 ±1.43 70.69 ±3.93

Data=C2, Prompt=C2 19.03 ±2.18 51.59 ±5.09 68.16 ±9.24 71.83 ±4.33 76.70 ±1.35 78.92 ±1.31 75.38 ±1.70

Table 4: Performance on Yelp using the causal prompts on the two causal subsets. We report the average performance across the
five paraphrases for each prompt, with the standard deviation.

sentiment-analysis pipeline2 from Hug-
gingface (Wolf et al., 2020).

Causal Discovery For each input sample, we pro-
cess them as in Table 2, namely first obtaining the
sentence-level sentiments to form the emotion arc,
and then calculating the alignment scores λ1 and λ2

for each causal process, respectively. We consider
an example as dominated by the causal process
Ci if the alignment score λi is more optimal than
the other. We report the resulting statistics in Ta-
ble 1. For each dataset, we describe their overall
statistics, as well as the statistics of data with the
underlying causal process of C1, and that of C2.
We can see that Yelp and Amazon have an almost
balanced split of C1 and C2, while App Review
has 61% C2 data compared to 39% C1 data. See
Appendix B.2 for an additional visualization of the
λ1-λ2 distribution across the 1K data points.

4 How to Improve Sentiment Classifiers
with Causal Alignment?

Using our proposed causal discovery method, we
have identified two distinct subsets with their cor-
responding causal processes C1 and C2. Now, we
address the last practical question proposed in Sec-
tion 2.3:

Can causal alignment help us improve
SA in the era of LLMs?

Specifically, we take the commonly used approach
2https://huggingface.co/distilbert-base-uncased-

finetuned-sst-2-english. See details in Appendix A.2.

in the era of LLMs, i.e., prompting pre-trained
LLMs for the SA task, and look into how align-
ment with the underlying causal process could help
SA performance. We answer the following three
subquestions in this section:

Q1. Using the standard SA prompt, do models per-
form differently on C1/C2 data? (Section 4.1)

Q2. Does it help if we make the prompt aware
of the underlying causality, i.e., use causal
prompts? (Section 4.2)

Q3. When prompted causally, do LLMs really un-
derstand the causal processes? (Section 4.3)

4.1 Q1: Do Models Perform Differently on
C1/C2 Data?

Experimental Setup The first question is whether
models perform differently on data with the causal
nature of C1 or C2. We use the subsets identi-
fied by our psychologically-grounded causal dis-
covery, and test a variety of available autore-
gressive LLMs, including the open-weight GPT-
2 (Radford et al., 2019), LLaMa (Touvron et al.,
2023), and Alpaca (Taori et al., 2023); as well as
the closed-weight models with OpenAI API, the
instruction-tuned GPT-3 (text-davinci-002) (Brown
et al., 2020; Ouyang et al., 2022), GPT-3.5 (gpt-3.5-
turbo-0613), GPT-4 (gpt-4-0613) (OpenAI, 2023).
We also add a random baseline which uniformly
samples the label space for each input.

We use the standard prompt formulation for SA
in the format of “[Instruction] Review
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Text: {x}\n Label:”. The experiments
are on a set of randomly selected 1K samples from
the test set of Yelp-5 (Zhang et al., 2015), due
to the time- and cost-expensive inference of the
above LLMs. (E.g., LLaMa/Alpaca takes 96 GPU
hours to run.) See more experimental details in
Appendix A.1.

Results We show the performance of the six LLMs
in Table 3, and report the F1 and accuracy across
the five-class classification on Yelp-5. We can see
that the existing LLMs perform the best on the
subset with the causal process C2, implying that
the decision pattern of LLMs is closer to the Fast
Thinking system, which takes the peak-end average
of the emotion arc.

4.2 Q2: Do Causal Prompts Help?

Designing Causal Prompts Inspired by the fact
that models perform differently on C1/C2 data, our
next question is, will it help if we directly give
a hint to the LLMs about the underlying causal
graph?

Prompt Design
C1 As a customer writing a review, I initially com-

posed the following feedback: “[review]”
After carefully considering the facts, I selected a
star rating from the options of “1”, “2”, “3”, “4”,
or “5”. My final rating was:

C2 As a customer writing a review, I initially se-
lected a star rating from the options “1”, “2”,
“3”, “4”, and “5”, and then provided the follow-
ing explanations in my review: “[review]”
The review clarifies why I gave a rating of

Table 5: Causally-aware prompts describing the SA task in
contexts with the C1 and C2 causal graphs.

To this end, we propose the idea of causal prompts,
which are prompts that describe the causal story
behind the input and output variables. We list our
designed prompts for the C1 and C2 stories in Ta-
ble 5.

Results We report the performance for all combi-
nations of the dataset natures and prompt natures
in Table 4, where we find that the most-performant
setting uses Prompt C2 on the data subset with the
same causal nature, C2. This alignment leads to the
best performance across almost all models by both
F1 and accuracy. On the C2 data, we also see that
Prompt C2 outperforms the standard SA prompt
in Table 3 by a substantial margin, such as 32.13
F1 points increase for GPT-2, and 14.23 F1 points
increase for GPT-4.

However, although Prompt C2 shows a strong per-
formance, the other causal prompt, i.e., Prompt
C1, does not always help the data subset C1 in all
cases, from which we raise a further question – how
well do LLMs really mechanistically understand
our prompts? We explore this question in the next
section.

4.3 Q3: Can LLMs Correctly Capture the
Causal Stories in the Prompts?

Although the proposal of the two causal prompts
is intuitive for humans, we still need to inspect
whether LLMs are able to understand them cor-
rectly.

Method Mechanistically, for a model to solve SA
for the causal process C1 correctly, it needs to treat
the sentence-level sentiments across all sentences
equally; and for a model to solve SA for the causal
process C2 correctly, it needs to pay more attention
to the peak and end sentiments on the emotion arc.

Targeting the two mechanisms, we use causal trac-
ing (Meng et al., 2022) to attribute the final sen-
timent prediction to the source sentences in the
input. Briefly, causal tracing uses causal media-
tion analysis (Pearl, 2001) to quantify the causal
contribution of the internal neuron activations of
a model to its final prediction (Vig et al., 2020).
We use causal tracing to inspect the causal effects
of the hidden states on the model prediction, us-
ing the open-weight models, LLaMa and Alpaca.
We use the causal effects of the first-layer neurons
for each sentence, which we aggregate to obtain
the final prediction. See implementation details in
Appendix A.3.

Results We plot the causal attribution results of
how much each sentence contributes to the final
prediction in Figure 2. Here, the ideal behavior
of the models is that Prompt C1 should trigger
uniform attention over all the sentences, which is
roughly observed through the more even shades of
color of the “Prompt C1” row than the “Prompt C2”
row in Figure 2 in the row of “Prompt C1”.

On the other hand, Prompt C2 should trigger more
attention to the sentences corresponding to the peak
and end sentiments. For this, we see the models
have high attention to the middle sentence, as in
the “Prompt C2” row in Figure 2. The average
causal effect of the peak sentence on predictions
under Prompt C2 is 3% higher than the mean ef-
fect for the LLaMa model, and 39% higher for the
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Figure 2: Causal attribution in LLaMa-7B and Alpaca-7B,
showing how much each sentence contributes to the prediction
probability.

Alpaca model. This aligns with our expectation
that the peak sentence would have a high contribu-
tion. Nonetheless, note that no model sufficiently
attends to the end sentence under Prompt C2. This
implies that they do not fully grasp the expected
contribution pattern of the peak-end rule, missing
the significant role of the end sentence.

5 Related Work

SA The task of SA aims to identify the sentiment
given a piece of text. It has a rich history orig-
inating from subjectivity analysis (Wiebe, 1994;
Hatzivassiloglou and Wiebe, 2000), and developing
rapidly with the availability of large opinionated on-
line data such as reviews with star ratings (Turney,
2002; Nasukawa and Yi, 2003; Zhang et al., 2015;
Keung et al., 2020, inter alia). Most literature
on SA focuses on building computational models,
from using traditional linguistic rules (Hatzivas-
siloglou and McKeown, 1997; Choi and Cardie,
2008), to the application of machine learning meth-
ods, from traditional naive bayes and support vector
machines (Pang et al., 2002; Moraes et al., 2013;
Tan et al., 2009), to early deep learning models
(Socher et al., 2013; Kim, 2014; Xing et al., 2020),
and finally entering the era of LLMs (Hoang et al.,
2019; Raffel et al., 2020; Yang et al., 2019).

Psychology and Affective Science In the study
of emotion, or affect science (Salovey and Mayer,
2004; Barrett, 2006; Feinstein, 2013), previous
work finds that not only the emotion people per-
ceive influences or prime how they communicate
in the moment (Barrett, 2006), but language can
also influence emotion, which can be observed in
functional magnetic neuroimaging (Satpute et al.,
2013), and also experiments showing the act of
self-reporting the emotion in writing can change
the physical reaction to the emotion (Kassam and
Mendes, 2013). In his seminal work, Kahneman

(2011) uses the two systems of thinking to reveal
the mechanisms of how people come up with their
sentiment, where fast thinking conforms to the
peak-end rule (Kahneman et al., 1993), and slow
thinking is more reflective of the overall sentiment.

Cause-Effect Distinction Distinguishing the
cause from effect based on observational data
is a long-standing and fundamental problem in
causality (Hoyer et al., 2008; Zhang and Hyväri-
nen, 2009; Janzing, 2019). Existing methods
to address this problem are based on statistics
(Hoyer et al., 2008; Peters et al., 2010; Shajarisales
et al., 2015; Mooij et al., 2014), physics (Janzing,
2007; Janzing et al., 2016), information theory
(Janzing et al., 2012; Chaves et al., 2014; Mejia
et al., 2022), and algorithmic complexity (Janzing
and Schölkopf, 2010; Jin et al., 2021). However,
we are the first to look at the rich nature of NLP
datasets, and directly approach the difference in
the causal and anticausal mechanisms grounded in
interdisciplinary insights.

As for our causal prompts, the most similar stud-
ies are the non-causally-grounded explorations for
prompt tuning, such as by varying the patterns of
masked language modeling (Schick and Schütze,
2022) and using the noisy channel method (Min
et al., 2022). However, these studies are not aware
of the underlying causal processes, thus neglecting
the connection of prompts with the causal nature
of data, and also the explicit causal story of the
sentiment-review relation.

6 Conclusion

In conclusion, we have formulated the task of SA
into a prediction problem and a causal discovery
problem. We first identified the cause-effect rela-
tion among existing SA datasets, namely whether
the review primes the rating, or the sentimental
judgment primed the review writing process. To
achieve this causal discovery, we obtain insights
from existing psychology studies, namely aligning
the above two causal processes with the famous
Fast Thinking and Slow Thinking systems, with
their distinct qualitative signals. Given the causal
understanding of the dataset, we further improve
the performance of LLMs on SA using our pro-
posed causal prompts. Our research paves the way
for more causally-aware future research in SA.
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Limitations and Future Work

This study has several limitations. First, the rapid
progression of LLMs makes it challenging to keep
up with all newly proposed models and architec-
tures. Since our work covers only a set of recent
LLMs at the time of this study, we encourage future
research to apply our methods to additional LLMs
and other SA datasets.

Although our study is grounded in well-established
psychological theories, there remains the possi-
bility that new theories could emerge, necessitat-
ing updates to the calculation of the λ values for
the two causal processes. However, the causal
processes identified in this work appear plausible,
as evidenced by the effectiveness of the causally
aligned prompts in improving language model per-
formance.

Regarding the causal graph formulation, we focus
on basic bivariate causal graphs, but future work
could include more variables, such as confounders,
mediators, and colliders.

The nature of this work is to introduce a paradigm
shift for SA, and formulate the task differently.
Therefore, we see lots of space for future exten-
sions, such as to explore the causal nature of
SA in different settings, different languages, and
also aspect-based sentiment analysis (Pontiki et al.,
2014; Xing et al., 2020; Hua et al., 2023).

Ethical Considerations

Regarding data concerns and user privacy, our
study employs several established NLP datasets,
and the examples we cite do not include sensitive
user information.

Concerning potential stakeholders and misuse, this
research primarily introduces a new perspective on
the SA task. A possible negative impact concerns
the general application of SA, which could be used
to analyze user mentality for surveillance or fraud-
ulent purposes. We acknowledge that studies on
SA inherently involve these risks, and we firmly
oppose the misuse of SA models in such contexts.
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A Implementation Details

A.1 Model Details
Using Closed-Weight Models For the use of GPT
model series, we use the OpenAI API,3 with a text
generation temperature of 0. We spent around 400
USD across around 20-30K single API calls.

Using Open-Weight Models For reproducibility,
we set the generation temperature to 0 for all the
models used in our work. For the open-weight
models, GPT2-XL, LLaMa-7B and Alpaca-7B, it
took around 24 hours on 4 GPUs RTX 2080 to
generate their predictions on 1K data points for
the 5 paraphrases of the causally-neutral prompt
(denoted as C0), and on 500 data points for the 5
paraphrases of the C1 prompt, and 5 paraphrases
of the C2 prompt. The causal tracing experiments
with LLaMa-7B and Alpaca-7B on 100 data points
took around 24 hours each using one GPU V100.

A.2 Sentence Sentiment Score Calculation
We apply the inverse sigmoid function to convert
sentiment score probabilities from the range [0,1]
to [−∞,∞].

logit(p) = log

Å
p

1− p

ã
, (9)

where p is the probability of the positive class.

In practice, we cap the output of the logit function
to the range [−10, 10] as the sentence sentiment
score. Namely,

score(p) = max(−10,min(10, log (logit(p)))) .
(10)

In this way, our scores fall between -10 and 10,
corresponding approximately to probabilities of
the positive label between 0.0001 and 0.9999.

To map our 5-class scores to the [−10, 10] range,
we assign the class labels as follows: -10 corre-
sponds to the label 1, -5 to the label 2, 0 to the label
3, 5 to the label 4, and 10 to the label 5.

A.3 Implementation Details for Causal
Tracing

We introduce the workings of the causal tracing
method (Meng et al., 2022) as follows. First, we
compute the hidden states of the residual stream of
LLaMa-7B’s layers for two inputs, (1) the original

3https://openai.com/api/

input: the prompt+review, and (2) the corrupted
input: prompt + a corrupted version of the review
by adding random noise immediately after the to-
ken embeddings. Then, we restore one by one the
clean state of the residual stream into the corrupted
version and measure the effect of the clean state on
the probability of the originally predicted token for
each token sequence and layer position.

Since this process is highly time-consuming, taking
around 12 hours for 50 samples even using the
smallest LLaMa model with 7B parameters, we do
a case study on the 7B LLaMa and Alpaca using
100 random samples from the 1K test set. For these
experiments, we follow the idea of APE (Zhou
et al., 2023) to use the best-performing prompts on
the 1k test set for C1 and C2.

A.4 Prompts

A.4.1 Prompts to Get Paraphrases

Since we need to report the average performance
across five paraphrases of the same prompt, for
each original prompt, we call GPT to generate the
four paraphrases.

Below is the prompt that we used for this para-
phrase generation process:

You are an expert in prompt engineering
for large language models (LLMs). And
you are also a native English speaker who
writes fluent and grammatically correct
text.

Given the following prompt for NLP sen-
timent analysis, you provide four alterna-
tive prompts.

####### Original Prompt #######
[Our original prompt]

####### Alternative Prompt 1 #######

... (Then, we let the model to generate
all the way to “Alternative Prompt 4”.)

We queried the GPT-4 model with temperature 0 on
June 8, 2023.

A.4.2 Neutral Prompt

In addition to the standard prompt to query LLMs
in the main paper, we show its four paraphrases in
Table 6.
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Prompt Design
As a proficient data annotator in natural language pro-
cessing (NLP), your responsibility is to determine the
sentiment of the given review text. Please assign a senti-
ment value from “1” (very negative) to “5” (very posi-
tive).
Review Text: “[review]”
Sentiment Score:
As a skilled data annotator in the field of natural lan-
guage processing (NLP), your task is to evaluate the
sentiment of the given review text. Please classify the
sentiment using a scale from “1” (highly negative) to “5”
(highly positive).
Review Text: “[review]”
Sentiment Rating:
As an expert data annotator for NLP tasks, you are re-
quired to assess the sentiment of the provided review text.
Kindly rate the sentiment on a scale of “1” (extremely
negative) to “5” (extremely positive).
Review Text: “[review]”
Sentiment Score:
As a proficient data annotator in natural language pro-
cessing (NLP), your responsibility is to determine the
sentiment of the given review text. Please assign a senti-
ment value from “1” (very negative) to “5” (very posi-
tive).
Review Text: “[review]”
Sentiment Assesment:

Table 6: Four additional paraphrases of the neutral prompt
(C0) generated with GPT-4.

A.4.3 Causal Prompts
In addition to the standard C1 and C2 prompts in
the main paper, we show the four paraphrases for
each of them in Tables 7 and 8, respectively.

B Additional Experimental Results

B.1 Few-Shot Results

For reproducibility and controllability, we use the
zero-shot prompting setting across the experiments
in the main paper, to avoid randomness in few-
shot prompting according to which examples are
selected as the few shots, and the order of the ex-
amples.

As a supplementary information in case this is of
some readers’ interest, we provide the few-shot
prompting results in Tables 9 and 10.

B.2 λ1-λ2 Distribution Plot

To provide a clear understanding of the distribu-
tions of λ1 and λ2, we include their density plots
of the causal processes C1 and C2 in Figure 3. The
mean values of λ1 and λ2 for each group are in
Table 11.

Further, we performed the Mann-Whitney U rank
test to determine if the underlying distributions of

Prompt Design
As a customer sharing my experience, I crafted the fol-
lowing review: “[review]”
Taking into account the details of my experience, I chose
a star rating from the available options of “1”,“2”, “3”,
“4”, or “5”. My ultimate rating is:
As a client providing my opinion, I penned down the
subsequent evaluation: “[review]”
Upon thorough reflection of my encounter, I picked a
star rating among the choices of “1”,“2”, “3”, “4”, or
“5”. My conclusive rating stands at:
As a patron expressing my thoughts, I drafted the ensu-
ing commentary: “[review]”
After meticulously assessing my experience, I opted for
a star rating from the range of “1”,“2”, “3”, “4”, or “5”.
My definitive rating turned out to be:
As a consumer conveying my perspective, I authored the
following assessment: “[review]”
By carefully weighing the aspects of my interaction, I
determined a star rating from the possibilities of “1”,“2”,
“3”, “4”, or “5”. My final verdict on the rating is:

Table 7: Four additional paraphrases of the causal prompt C1
generated with GPT-4.

λ1 and λ2 for groups C1 and C2 are the same. The
results are as follows:

• For λ1, the p-value is 8.4572×10−71, leading
us to reject the null hypothesis that the two
groups come from the same distribution.

• For λ2, the p-value is 1.36138× 10−11, also
leading us to reject the null hypothesis that
the distributions are the same.

These statistical results indicate significant differ-
ences between the distributions of λ1 and λ2 across
the causal process groups, which indicate distinct
underlying characteristics in the sentiment dynam-
ics of the two groups.

C Emotion Arc Clustering

We analyze the emotional arc patterns of Yelp re-
views. Reagan et al. (2016) identified 6 basic emo-
tional arc shapes in stories. However, reviews are
usually shorter and therefore present fewer vari-
ations. We take each sentence of the review and
predict its sentiment. Then we divide the review
into ten bins and compute an average sentence senti-
ment for each decile to make reviews with different
lengths comparable. Reviews shorter than 10 sen-
tences generate null values for some deciles which
we fill with the information of the next decile. In
Figure 5, we illustrate the 4 clusters found, they
have the following characteristics:

Positive + Early Rise: This cluster primarily com-
prises highly positive reviews, where customers
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Prompt Design
As a customer sharing my experience, I first chose a star
rating from the available choices of “1”,“2”, “3”, “4”, or
“5”, and subsequently elaborated on my decision with
the following statement: “[review]”
The review elucidates the reasoning behind my assigned
rating of
As a client providing my opinion, I initially picked a star
rating from the range of “1” to “5”, and then proceeded
to justify my selection with the following commentary:
“[review]”
The review sheds light on the rationale for my given
rating of
As a patron expressing my thoughts, I started by select-
ing a star rating from the scale of “1” to “5”, and then
offered an explanation for my choice in the following
review text: “[review]”
The review expounds on the basis for my designated
rating of
As a consumer conveying my perspective, I began by
opting for a star rating within the “1” to “5” spectrum,
and then detailed my reasoning in the subsequent review
passage: “[review]”
The review delineates the grounds for my conferred rat-
ing of

Table 8: Four additional paraphrases of the causal prompt C2
generated with GPT-4.

Random GPT-3 Few-Shot

F1
Overall 19.82 ±2.07 63.35 ±0.80

C1 Subset 21.36 ±2.26 54.44 ±1.24

C2 Subset 20.43 ±2.95 75.65 ±0.45

Accuracy
Overall 19.78 ±2.07 64.14 ±0.86

C1 Subset 20.61 ±2.23 54.22 ±1.28

C2 Subset 18.86 ±2.78 75.18 ±0.53

Table 9: Few-shot performance of the standard SA prompts
on Yelp-5. We use five paraphrases for the prompt, and report
the average performance with the standard deviation.

express satisfaction and praise for their overall ex-
perience. Interestingly, 21.1% of these reviews
begin with a negative first sentence, which often
indicates initially low expectations or a negative
first impression. However, despite the initial nega-
tivity, the reviews tend to turn positive as customers
elaborate on their positive experiences.

Negative + Early Fall: This cluster mainly con-
sists of predominantly negative reviews. Similarly
to the Positive cluster, some reviews (28.14%) start
with a sentence with the opposite sentiment, usu-
ally indicating high expectations followed by dis-
appointment.

Rise: The main characteristic of this cluster is the
positive ending of the review, despite the initial
negativity observed in the first half, with an aver-
age sentiment of -1.63. An important fraction of
the reviews in this cluster (52.49%) start with a
positive comment as a summary, but then proceed

Random GPT-3 Few-Shot

F1

Data=C1, Prompt=C1 20.47 ±2.47 49.18 ±0.76

Data=C1, Prompt=C2 20.26 ±2.31 52.79 ±2.64

Data=C2, Prompt=C1 22.35 ±3.02 80.46 ±1.29

Data=C2, Prompt=C2 20.35 ±2.18 75.88 ±1.86

Acc

Data=C1, Prompt=C1 19.60 ±2.67 50.12 ±0.71

Data=C1, Prompt=C2 19.68 ±2.46 53.83 ±2.46

Data=C2, Prompt=C1 20.97 ±3.19 81.21 ±1.17

Data=C2, Prompt=C2 19.03 ±2.18 76.36 ±1.53

Table 10: Few-shot performance on Yelp using two different
causal prompts on the two causal subsets. We use five para-
phrases for each prompt, and report the mean performance
with the standard deviation.
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Figure 3: The λ1-λ2 density plots of C1 (above) and C2
(below).

to highlight the negative aspects of the experience.
Despite the initial criticisms, the reviews conclude
with positive points, suggesting that the overall
experience was still satisfactory.

Fall: In contrast to the previous cluster, the Fall
cluster is characterized by a negative ending of the
review, despite a generally positive first half with
an average sentiment of 2.18. An important propor-
tion (36%) of the reviews in this cluster begin with
a negative comment as a summary, but then proceed
to describe the positive aspects before eventually
highlighting the negative ones. This cluster show-
cases a shift in sentiment from positive to negative,
indicating a decline in satisfaction as the review
progresses.

D Additional Interpretability by Shapley
Values

We further analyze the effect of each part of the
prompts on LLaMa’s predictions. Using 50 re-
views, we compute the shapley values of each to-
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C1 C2
µ(λ1) 4.48 5.62
µ(λ2) 7.31 3.02

Table 11: Mean values of the lambdas for C1 and C2.

Figure 4: The λ1-λ2 plot on Yelp-5 (left), Amazon (middle),
and App Review (right). We draw the y = x diagonal line,
and the orange dots in the upper-left triangle represent the
C1-dominant subset, and green dots in the lower-right triangle
are the C2-dominant subset.

ken. In Figure 6 we observe that the tokens with
the largest shapley values are the ones in the end,
which is expected since they are the ones helping
to form a grammatically correct sentence. To ac-
count for that, we subtracted the average shapley
values computed for the other possible start rating
answers. In Figure 7 we show the adjusted shapley
values. We observe that the tokens in prompt C1
have a larger effect than the tokens in prompt C2.
The words introducing the review have a positive
effect on C2 but a negative one on C1. Whereas,
the phrase “I chose a star rating” has a negative
effect on C2 but a positive one on C1.
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Figure 7: Adjusted shapley values for the 2 types of prompt.
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Positive + Early Rise
Review: Was there last Friday. Seats right in front if the
stage. The show was good. The headliner, while a bit long,
was good. Fantastic service from our waitresses. Will
definitely go back.
Review: This is by far my favorite Panera location in the
Pittsburgh area. Friendly, plenty of room to sit, and good
quality food & coffee. Panera is a great place to hang out
and read the news - they even have free WiFi! Try their
toasted sandwiches, especially the chicken bacon dijon.
Negative + Early Fall
Review: Pass on this place, there are better restaurants
mere feet away.
The menu here is too large, which is a sure sign none of
the food is going to be good. And, its not good. Some of
the salads are alright, but its just not good food.
The service is friendly and prompt, but the beer is over
priced. They do have a good selection though.
This place is open late if you need a bite to eat, but there
are so much better options out there.
Review: Wings are overpriced. And the quality of them
are bad. They were tough and greasy. The staff are pleas-
ant but then over all experience was too expensive for a
sports bar.
Rise
Review: To be honest, I feel that this is one of the most
overpriced restaurants in the entire city. The food is aver-
age to good, the place is beautiful with outdoor seating,
but in my opinion the price is just not worth it. They have
a really good happy hour, so I would definitely recommend
going to that and maybe trying an appetizer or two.
Review: The first time I came here, I waited in line for 20
minutes. When it was my turn, I realized I left my wallet
in the car. It hurt so bad, I didn’t come back for a year.
I can walk to this place from my house- which is dangerous
because those biscuits are just OH SO DREAMY. I can’t
describe them. Just get some.
Do I feel guilty about noshing on fabulous Strawberry
Napoleons and Jewish Pizza (kind of like a modified, yet
TOTALLY delicious fruitcake bar) at 10:15am? Hecks,
naw... But they do have quiche and some other breakfast-y
items for those who prefer a more traditional approach to
your stomach’s opening ceremony.
Just go early :) They open at 10 on Saturdays. And bring
cash...it’s easier that way.
Fall
Review: It’s cheap, I’ll say that, but otherwise it’s bland
food served by workers who mostly don’t seem to notice
they’re working, and when they do, only respond snarkily.
There are many better vegetarian and vegan options to
choose from
Review: I do like my Mad Mex, however predictable and
non-authentic it may be. The portion sizes are mammoth
and I come away with a satisfied sense of regret. Their
beer menu is happily extensive. Charging me $9 for chips
and salsa is a bit of crime, wouldn’t ya say though!?! I
mean, c’mon! Our service has most times been lacking–
a bit rushed and on the inattentive side. Also, why do
you require your wait staff to not servestraws/ lemons/etc
unless asked by cusotmers—weirdness-cut out these odd
cost-cutting, anti-service friendly measures please

Table 12: Example reviews for each emotion arc cluster.
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