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Abstract

Despite significant progress in model editing
methods, their application in real-world scenar-
ios remains challenging as they often cause
large language models (LLMs) to collapse.
Among them, ROME is particularly concern-
ing, as it could disrupt LLMs with only a single
edit. In this paper, we study the root causes
of such collapse. Through extensive analysis,
we identify two primary factors that contribute
to the collapse: i) inconsistent handling of pre-
fixed and unprefixed keys in the parameter up-
date equation may result in very small denom-
inators, causing excessively large parameter
updates; ii) the subject of collapse cases is usu-
ally the first token, whose unprefixed key dis-
tribution significantly differs from the prefixed
key distribution in autoregressive transformers,
causing the aforementioned issue to materialize.
To validate our findings, we propose a simple
yet effective approach: uniformly using pre-
fixed keys during editing phase and adding pre-
fixes during testing phase to ensure the consis-
tency between training and testing. The experi-
mental results show that the proposed solution
can prevent model collapse while maintaining
the effectiveness of the edits1.

1 Introduction

Recent works (Yang et al., 2024; Gupta et al.,
2024b; Gu et al., 2024) have revealed that model
editing (Zhang et al., 2024) poses significant risks
of compromising the capabilities of large language
models (LLMs). Among them, Rank-One Model
Editing (ROME) (Meng et al., 2022), a cutting-
edge method, has been found to cause model col-
lapse with just a single edit (Yang et al., 2024). In
this paper, we aim to study the underlying causes
behind this phenomenon.

†Corresponding author.
1Code and data are available at: https://github.com/

WanliYoung/Collapse-in-Model-Editing.

Intuitively, for a knowledge tuple (subject, rela-
tion, object), ROME takes a prompt constructed
from the subject and relation as input and models
the knowlege in a key-value format. Here, the key
is a vector representation of the subject within the
prompt, and the value is a vector representation
capable of yielding the target object, obtained by
transforming the key through a transformation ma-
trix. To insert a new fact about a subject, ROME
adjusts the transformation matrix to match the key
of the subject with the value of the new fact, as
described in Eq. 3.

To uncover the underlying causes of ROME’s
collapse, we investigate the differences in param-
eter update process of ROME between collapse
cases (i.e., samples that induce collapse) and nor-
mal cases (i.e., samples that do not). The results
reveal that the collapse directly stems from the
anomalously small denominator within the parame-
ter update equation (Eq. 3). This anomaly orig-
inates from the irregular implementation of the
keys in the denominator, where one is derived by
prepending varying prefixes to the subject to simu-
late diverse contexts (termed prefixed key), while
the other is obtained directly from the original sub-
ject without any prefix (termed unprefixed key).
This issue has also been independently identified
by Gupta et al. (2024a) concurrently. However, it
is still unclear why the irregular implementation
only fails in collapse cases.

To answer this question, we examine the distri-
bution of elements in the denominator. It reveals
that, in collapse cases, the distribution of the unpre-
fixed keys exhibits significant difference from the
prefixed keys. This leads to an exceptionally small
denominator in the update equation, which in turn
causes the model to collapse.

To elucidate the anomalous behavior observed in
the collapse cases, we conduct an analysis starting
from their characteristics. The collapse cases of
both GPT-2-XL (Radford et al., 2019) and GPT-J
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Figure 1: To update “the president of the United States” from “Donald Trump” to “Joe Biden”, ROME locates the
knowledge into the MLP module within a specific transformer block using the Causal Tracing mechanism. It then
adjusts the second layer of MLP (i.e., weight matrix W ) to change the value v for the key k that represents the
subject “the United States” to a new value v∗, thereby inducing the LLMs to predict the target object “Joe Biden”.

(Wang and Komatsuzaki, 2021) exhibit a consistent
pattern: the subjects in nearly all of these instances
correspond to the first tokens within their respective
prompts. Furthermore, we discover that the repre-
sentation distribution of the first tokens markedly
diverges from that of the subsequent tokens in these
autoregressive models. These two factors, working
in concert, lead to the anomalous distribution of
unprefixed keys in collapse cases.

To validate our findings, we propose unifying all
keys as prefixed during editing to prevent model
collapse. To ensure consistency with the editing
process, when using the edited model, we prefix a
random text for instances where subjects are in the
first token. Experiments validate that our proposed
method effectively prevents model collapse while
ensuring the success of edits.

Our main contributions are as follows:

• Comprehensive analysis that identifies two
factors behind ROME’s collapse: i) inconsis-
tent implementation of key vectors; ii) anoma-
lous distribution of first token representations.

• A straightforward solution to prevent collapse
while maintaining editing efficacy.

2 Background

ROME (Meng et al., 2022) hypothesizes that the
MLP modules in the Transformer architecture
(Vaswani et al., 2017) can be modeled as a linear
key-value associative memory. Under the hypoth-
esis in ROME, a knowledge triplet (s, r, o) corre-
sponds to a key-value pair (k,v), where k rep-
resents the subject s, and v encodes the property
(r, o) for s. The entire knowledge within a model
can thus be represented as a set of key vectors K =

[k1, . . . ,kn] and value vectors V = [v1, . . . ,vn].
A linear operation W matches keys to values by
solving WK ≈ V .

In practice, for an input prompt p(s, r), the re-
call of the target object o mainly occurs within
a two-layer MLP in a specific transformer block
identified by the Causal Tracing mechanism (Meng
et al., 2022). Specifically, output of the first layer
for the subject s forms a key k, and the second
layer (parameterized with W ) retrieves an associ-
ated value v based on this key k, ultimately induc-
ing the LLMs to predict the target object o.

In this context, to replace the current knowledge
(s, r, o) with a new knowledge tuple t∗ = (s, r, o∗),
we need to find the corresponding key k and the
new value v∗. To simulate various contexts for
generalization, ROME assigns k as an average vec-
tor k derived from subject s with a small set of N
randomly sampled prefixes:

k =
1

N

N∑

i=1

K (xi ⊕ s) (1)

where K is the output of the first MLP layer in
transformer block, xi is the prefixes, and ⊕ is string
concatenation operator.

To illustrate the selection of v∗, we take the sub-
ject s= “United States” and relation r= “president
of ” as an example. A specifically designed loss
function is utilized to optimize v∗ so that it can
produce o∗ = “Joe Biden” when given the prompt
p(s, r) = “The president of the United States is”.

With the computed (k,v∗), ROME finds optimal
Ŵ by solving the following problem:

argmin
Ŵ

∥ŴK − V ∥ subject to Ŵk = v∗ (2)
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Component Cases GPT-2-XL GPT-J Llama2-7b

numerator: collapse 168.55 140.27 4.57(
v∗ −Wk

) (
C−1k

)⊤
normal 79.91 88.69 16.52

denominator: collapse 0.04 0.04 0.01(
C−1k

)⊤
k normal 9.60 12.78 2.63

Table 1: Average norm of the numerator and average ab-
solute value of the denominator in ROME’s update ma-
trix ∆ across various LLMs for different sets of cases.

It has the following closed-form solution:

Ŵ = W +

(
v∗ −Wk

) (
C−1k

)⊤
(
C−1k

)⊤
k︸ ︷︷ ︸

update matrix ∆

(3)

where W denotes the weight matrix of the second
layer in the MLP before editing, Ŵ denotes the
weight matrix after editing, and C=KK⊤ is a pre-
cached constant.

The complete editing process of ROME is illus-
trated in Figure 1. Interested readers are directed
to Meng et al. (2022) for a detailed introduction.

3 Why Does ROME Cause Collapse?

Previous studies (Yang et al., 2024; Gupta et al.,
2024b) have revealed that a single edit of ROME
can induce LLMs to collapse. To further an-
alyze the cause, we investigate the differences
in parameter updates between samples that in-
duce collapse and those do not. For this pur-
pose, we introduce two distinct subsets: i) collapse
cases, using the HardCF set built by Yang et al.
(2024), which includes collapse cases on GPT-2-
XL, GPT-J, and Llama2-7b from the COUNTER-
FACT dataset (Meng et al., 2022); and ii) normal
cases, comprising 1000 random samples from the
remaining part of COUNTERFACT.

3.1 Inconsistent Keys in Editing
Existing work (Yang et al., 2024) has found that
collapse is caused by the values of update matrix ∆
in Eq. 3 being excessively large. For fine-grained
analysis, we split ∆ into numerator (a matrix) and
denominator (a scalar), and then apply single edits
to analyze the intermediate values for parameter
updating in different cases. As illustrated in Ta-
ble 1, the denominators of collapse cases are two
orders of magnitude smaller than those of normal
cases, while the numerators do not show significant
differences. This disparity directly results in the
exceptionally large ∆ of collapse cases.

Method Cases GPT-2-XL GPT-J Llama2-7b

Original 68.77 49.04 33.18

ROME
collapse 26,084.66 25,909.24 10,574.76

normal 74.32 50.77 36.68

C-ROME
collapse 70.71 51.77 33.20

normal 70.28 50.57 33.55

Table 2: The maximum ME-PPL50 perplexity of models
edited by different implementations of ROME for their
collapse cases and normal cases, with their original
models’ perplexity for comparison.

These results guide our focus to the key k in the
denominator (C−1k)⊤k, given that the matrix C
is a constant for both collapse cases and normal
cases. We revisited the official implementation of
ROME and identified that different variants of k
are used. Specifically, only k within (C−1k)⊤ is
the prefixed key as in Eq. 1. In contrast, k in other
positions is unprefixed, utilizing a representation
over the subject s without any prefix, denoted as
ku = K (s). However, ideally, all k in Eq. 3 should
be the same, i.e., the average representation derived
from a set of prefixed subjects as in Eq. 1.

To verify if this inconsistency of keys is respon-
sible for the collapse, we substitute all ku with k
in the implementation. The aligned implementa-
tion is referred to as Consistent-ROME, C-ROME
for short. We evaluate the different implementa-
tions on collapse and normal cases using perplexity
on the ME-PPL50 dataset, whose effectiveness has
been validated by Yang et al. (2024). According
to Table 2, C-ROME with aligned implementation
of k does not significantly alter the edited models,
avoiding the sharp increase in perplexity seen with
ROME. This demonstrates that such inconsistency
of k in the update matrix ∆ is a primary factor
behind ROME-induced model collapse.

3.2 Anomalous Key Distribution for Collapse

While unifying the keys as k can prevent model
collapse, it remains unclear why inconsistent keys
only encounter issues in collapse cases.

To enhance intuitive understanding, we analyze
the spatial distribution of C−1k and ku in the de-
nominator for different cases by projecting them
into a two-dimensional space using t-SNE (Van der
Maaten and Hinton, 2008). Taking the results of
GPT-2-XL in Figure 2a as an example, in normal
cases, the distribution of C−1k and ku show no
significant differences. However, a noticeable di-
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Figure 2: t-SNE visualization of (a) elements in the de-
nominator; (b) different implementation of key vectors.

vergence in the distribution occurs in collapse cases,
explaining the exceptionally small denominators.

Considering that C is a constant, the differences
between normal and collapse cases should arise
from the variations in the prefixed key k and the
unprefixed key ku. Figure 2b clearly illustrates that
the distribution of ku in collapse cases significantly
diverge from those of k. This confirms that in
collapse cases, the significant differences between
k and ku result in a particularly small denominator
in the update matrix, which in turn leads to the
collapse of the edited model. Similar phenomena
are also observed in other LLMs, detailed in § A.1.

3.3 Special Role of the First Token

To elucidate the anomalous distribution of ku in
collapse cases, we focus our analysis on their char-
acteristics. A common pattern is observed in the
collapse cases for both GPT-2-XL and GPT-J: in
almost all instances, the subjects consist of a single
word, which is encoded as a single token and posi-
tioned at the beginning of the input prompt p(s, r)2.
Therefore, the unprefixed key ku for a collapse case
is the intermediate representation within the MLP
layer of the first token in the input. This inspires us
to investigate whether the anomalous distribution
of ku in collapse cases can be attributed to their
position as the first tokens in the prompts.

To explore this, we first examined the represen-
tation distribution of the first tokens in the prompts
for normal cases. The results presented in Figure 3a
indicate that, within GPT-2-XL, the first tokens of
normal cases consistently exhibit an abnormal dis-
tribution similar to that of ku in collapse cases.
From an opposing perspective, to verify whether
artificially shifting the ku in collapse cases away
from the first position would eliminate the anomaly
in distribution, we prefixed the prompts of collapse
cases with randomly sampled texts. This adjust-

2The only exception involves few instances with subjects
like “Jackson Jackson” in the collapse cases of GPT-J.
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Figure 3: t-SNE visualization of representation distribu-
tions of (a) the first token in randomly sampled normal
prompts; (b) ku in prefixed collapse prompts.

ment results in their distribution aligning with that
of normal cases, as illustrated in Figure 3b. These
findings suggest that the anomalous distribution of
ku for collapse cases in ROME is not related to
the editing process. Instead, it is due to the unique
pattern of their subjects encountering the special
distribution of the first token in GPT-2-XL and
GPT-J models.

It is important to note that Llama2-7b (Touvron
et al., 2023), Mistral-7b (Jiang et al., 2023), and
Llama3-8b (Meta, 2024) avoid collapse in such
cases due to their tokenizers additionally incorpo-
rating a special token, e.g., <s>, at the beginning of
the input, which shifts the subject from being the
first token. In fact, we found they also succumb to
collapse when the special token is removed, with
results detailed in Appendix A.2.

Analysis. To elucidate the underlying reasons
for the anomalous distribution of the first token in
autoregressive language models, we explored two
potential factors as follows.

Firstly, we speculate that this phenomenon may
arise from the inherent nature of autoregressive
models, where the first token cannot interact with
any other token except itself. As a counterexam-
ple with non-autoregressive architecture, the rep-
resentation distribution of the first token in T5-3B
encoder (Raffel et al., 2020) does not differ from
that of subsequent tokens. This may be attributed
to the bidirectional attention in the encoder, which
enables interactions between the first token and
subsequent tokens. A detailed analysis is presented
in Appendix A.3.

Secondly, considering the specificity of the first
token may originate from its position embedding,
we verify it from two aspects. For collapse cases
where the subjects are the first tokens, setting the
position embedding of the first token as that of the
second token can not completely eliminate collapse.
While for normal cases where the subjects are the
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Model GPT-2-XL GPT-J Mistral-7b Llama3-8b

Ori PPL 68.39 50.34 51.75 41.67

Max PPL 68.91 50.59 52.19 43.98

Table 3: The maximum perplexity for various LLMs
edited by ROME on the collapse cases of Llama2-7b,
with their original perplexity for comparison.

Model efficacy generalization locality

GPT-2-XL 5.19% 14.29% 97.40%

GPT-J 30.59% 30.77% 82.35%

Llama2-7b 18.65% 12.70% 100%

Table 4: Performance of C-ROME on various LLMs for
corresponding collapse cases. Notably, the efficacy in
normal cases typically exceeds 90%.

second tokens, replicating the position embedding
of the first token onto the second token does not
consistently lead to collapse. These findings sug-
gest that while position embedding plays a role, it
is not the only determining factor. The detailed
investigation is provided in Appendix A.4.

Additionally, we observed that in GPT-2-XL and
GPT-J, the representations of the first tokens rapidly
become significantly more concentrated than those
of subsequent tokens as the layers progress. How-
ever, this phenomenon does not appear in Llama2-
7b, Mistral-7b, and Llama3-8b. A detailed investi-
gation is presented in Appendix A.5.

Regarding the collapse cases of Llama2-7b, we
found that the subjects of them terminate with a
period “.”. It is worth noting that, such cases are
extremely rare, amounting to just 21 out of 21,919
samples in the COUNTERFACT dataset. Further-
more, they do not induce model collapse in various
other models, including GPT-2-XL, GPT-J, Mistral-
7b and Llama3-8b (the successor of Llama2-7b), as
shown in Table 3. Consequently, we have decided
not to pursue an exhaustive investigation of this
isolated phenomenon.

4 A Simple Solution to Avoid Collapse

Having identified the reasons for ROME’s collapse,
it is crucial to provide a solution to prevent these
problems. C-ROME introduced in § 3.1 can ef-
fectively keep the stability of edited models, but
Table 4 reveals that it fails to successfully integrate
target knowledge into the model, as evidenced by
its low efficacy and generalization (Yao et al., 2023)

Model Cases efficacy generalization locality

GPT-2-XL
collapse 100% 16.88% 100%
normal 96.16% 41.88% 97.34%

GPT-J
collapse 100% 32.94% 89.41%
normal 99.77% 50.00% 95.61%

Llama2-7b
collapse 91.27% 29.37% 100%
normal 91.95% 46.73% 97.56%

Table 5: Performance of C-ROME, enhanced by prefix-
ing random texts to the prompts of collapse cases during
testing, across various LLMs on both collapse cases and
the remaining data within COUNTERFACT.

metrics on collapse cases. This failure arises from
the inconsistency of C-ROME between editing and
testing. Specifically, C-ROME employs prefixed
keys k only when editing, while during testing, the
prompts used to evaluate efficacy adopt unprefixed
keys ku, which significantly differ from k. This
inconsistency results in an inability to obtain the
appropriate target value vector corresponding to
the key of collapse cases, finally leading to low
efficacy of editing.

To address this issue, we propose a straightfor-
ward solution, which appends a random prefix,
drawn from those utilized in the editing process,
to the prompt of collapse cases during the testing
phase. The results in Table 5 demonstrate that
this method significantly improves the efficacy for
GPT-2-XL, GPT-J, and Llama2-7b, albeit with a
relatively limited improvement of generalization.

5 Conclusion and Future Work

In this paper, we thoroughly investigate the under-
lying causes of LLMs collapse triggered by a single
edit of ROME. Our extensive experiments demon-
strate that such collapse arises from two aspects:
i) irregularities in the official implementation of
ROME, which employs two types of keys in param-
eter updating; ii) anomalous representation distri-
bution of the first token in autoregressive models.
Consequently, we propose a straightforward and
simple method to address the model collapse is-
sue of ROME, and validate its effectiveness with
extensive experiments

For future research, we intend to investigate the
root causes of model collapse in sequential editing
and to devise more robust editing methods that
ensure the stability of the edited model and superior
editing performance across various scenarios.
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Limitations

We acknowledge following limitations of our work:
• The analysis in this paper primarily focuses on

GPT-2-XL and GPT-J. Regarding Llama2-7b,
which exhibits a unique pattern of collapse
cases, our solution successfully prevents its
collapse. However, the specific characteristics
of its collapse cases remain unknown.

• Due to space limitations, we have left an in-
depth investigation into the anomalous repre-
sentation distribution of the first token in au-
toregressive models for future research. This
anomaly represents a broader issue that re-
quires further exploration.

• This paper focuses on the root causes of model
collapse triggered by a single edit of ROME.
The collapse resulting from the cumulative ef-
fects of sequential editing, a phenomenon ob-
served in existing works, is beyond the scope
of this paper and is reserved for future work.
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Figure 4: t-SNE visualization of (a) elements in the de-
nominator; (b) different implementation of key vectors
for GPT-J.
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Figure 5: t-SNE visualization of (a) elements in the de-
nominator; (b) different implementation of key vectors
for Llama2-7b.

A Appendix

A.1 Distribution of Keys in Other LLMs

The distribution of C−1k and ku for collapse and
normal cases of GPT-J in two-dimensional space
is shown in Figure 4a, demonstrating a significant
difference between the distributions of these two
elements in collapse cases. The results for k and
ku is depicted in Figure 4b, revealing similar dis-
parities. The corresponding results for Llama2-7b
are provided in Figure 5a and Figure 5b, showing
consistent phenomena.

A.2 Results without Prepended Token

To validate that the absence of collapse in Llama2-
7b, Mistral-7b, and Llama3-8b for the collapse
cases of GPT-2-XL and GPT-J, is due to the addi-
tion of a prefix token, we manually removed the
prepended token of these models, thereby position-
ing the unprefixed key ku of the collapse cases
as the first token of the input. In this setting, we
employed ROME to edit these three models on
the collapse cases of GPT-2-XL and GPT-J. The
results presented in Figure 7 indicate that Llama2-
7b, Mistral-7b, and Llama3-8b also succumb to
collapse after editing.
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Figure 6: t-SNE visualization of representations for first
tokens and subsequent tokens across various layers in
the encoder of T5-3B.

A.3 Representation of First Token in T5-3B

The anomalous representation distribution of the
first tokens in autoregressive models may be at-
tributed to their inability to interact with subsequent
tokens. To verify it, we take the encoder-decoder
model T5-3B as a counterexample and analyze the
representation distribution of the first tokens in the
collapse cases compared to an equal number (77)
of subsequent tokens from the normal cases across
various layers in its encoder. The results in Fig-
ure 6 indicate that there is no significant difference
between the representations of the first token and
subsequent tokens, corroborating our hypothesis.

A.4 Impact of Position Embedding

In this section, we conducted experiments on
GPT-2-XL, GPT-J, and Llama2-7b to investigate
whether the anomalous distribution of the first to-
ken is attributable to its position embedding. For
Llama2-7b, we removed the special token <s> that
the tokenizer additionally prepends at the beginning
of the input to maintain consistency with GPT-2-
XL and GPT-J.

For collapse cases where the subjects are the
first tokens, we set the position embedding of the
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Figure 7: Scatter plot of perplexity for Llama2-7b, Mistral-7b, and Llama3-8b models edited by ROME, with each
point representing a unique edit case in the collapse cases of GPT-2-XL and GPT-J. “Case ID” refers to the index of
each edit sample.

Model Perplexity Original Second2First

GPT-2-XL
min 2177.82 1008.21

avg 19,877.79 1397.87

max 179,185.99 2153.86

GPT-J
min 5094.73 8153.70

avg 28,835.21 26,978.14

max 85,936.24 124,982.41

Llama2-7b
min 16,279.75 17,561.97

avg 67,436.51 72,692.50

max 206,307.60 349,577.58

Table 6: The minimum, average, and maximum perplex-
ity observed in collapse cases when utilizing the original
position embeddings (Original) and when assigning the
first token’s position embedding as that of the second
token (Second2First) for various LLMs.

first token as that of the second token (Noted as
Second2First). The results presented in Table 6
indicate that this approach mitigates model collapse
on GPT-2-XL, but it is completely ineffective on
GPT-J and Llama2-7b.

For normal cases where the subjects are the sec-
ond tokens, we assign the position embedding of
the second token as that of the first token (Noted
as First2Second). The results in Table 7 reveal
that this change leads to partial model collapse in
GPT-2-XL and Llama2-7b, but all edited models
of GPT-J remain stable.

The results from the two aforementioned aspects
suggest that position embedding may be a contribut-
ing factor to the abnormal representation of the first
token, but it is not the sole factor.

A.5 Collapse of First Token Representation

From Figure 2 and Figure 3, we observed an un-
usual phenomenon that the collapse keys ku (i.e.,

Model Perplexity Original First2Second

GPT-2-XL
min 68.55 81.39

avg 68.81 39,714.90

max 69.03 912,001.20

GPT-J
min 48.80 48.47

avg 49.03 48.68

max 49.50 49.48

Llama2-7b
min 32.83 33.14

avg 33.32 2104.90

max 37.03 42,154.10

Table 7: The minimum, average, and maximum perplex-
ity observed in normal cases when utilizing the original
position embeddings (Original) and when assigning the
second token’s position embedding as that of the first
token (First2Second) for various LLMs.

representations of the first tokens) appear to be
more concentrated than the normal keys ku (i.e.,
representations of the subsequent tokens). To as-
sess the degree of aggregation of the first tokens
and subsequent tokens, we calculated the average
distance of each element from the cluster center for
both the first tokens and all the subsequent tokens,
denoted as D (F ) and D (S), correspondingly.

D =
1

N

N∑

i=1

∥∥∥∥∥ei −
1

N

N∑

k=1

ek

∥∥∥∥∥
2

(4)

Here, ei and ek represent the embeddings of the
i-th and k-th tokens, which are the outputs of the
first MLP layer within the transformer block.

With this metric established, we computed the
values within the edited layers of GPT-2-XL, yield-
ing D (F ) being 0.578 and D (S) being 13.895.
The result suggests a markedly higher concentra-
tion in the representations of the first tokens com-
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Figure 8: Average distances of each element from the
cluster center for the first tokens and the subsequent
tokens, across layers from the first layer to the edited
layer in GPT-2-XL and GPT-J.

pared to those of subsequent tokens. This observa-
tion raises a further question: Given that different
first tokens have distinct embeddings when input
into the transformer, why are their representations
in the middle layers so closely concentrated?

To investigate this, we computed the distances
D (F ) and D (S) from the first layer to the edited
layer (layer 17) in GPT-2-XL. As depicted in Fig-
ure 8a, prior to layer 8, D (F ) and D (S) exhibit
no significant divergence. However, post layer 8,
the representations of the first tokens rapidly shrink.
The same phenomenon is also observed in GPT-J,
as shown in Figure 8b. However, our experimen-
tal results indicate that such phenomenon does not
appear on Llama2-7b, Mistral-7b, and Llama3-8b.
Consequently, we decide not to delve further into
this particular aspect.

The underlying causes of the first token’s repre-
sentation concentration in GPT-2-XL and GPT-J
remain unclear. A potential factor, as explored in
Appendix A.3, is that within autoregressive LLMs,
the first token cannot interact with subsequent to-
kens. Continuous self-interaction may lead to the
contraction of its representation. Since this phe-
nomenon is not related to the model collapse during
editing examined in this paper, it has been remained
for future research.
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