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Abstract

Data plays a fundamental role in the training
of Large Language Models (LLMs). While
attention has been paid to the collection and
composition of datasets, determining the data
sampling strategy in training remains an open
question. Most LLMs are trained with a sim-
ple strategy, random sampling. However, this
sampling strategy ignores the unbalanced na-
ture of training data distribution, which can be
sub-optimal. In this paper, we propose Clus-
terClip Sampling to balance the text distribu-
tion of training data for better model training.
Specifically, ClusterClip Sampling utilizes data
clustering to reflect the data distribution of the
training set and balances the common samples
and rare samples during training based on the
cluster results. A repetition clip operation is
introduced to mitigate the overfitting issue led
by samples from certain clusters. Extensive
experiments validate the effectiveness of Clus-
terClip Sampling, which outperforms random
sampling and other cluster-based sampling vari-
ants under various training datasets and large
language models 1.

1 Introduction

Large Language Models (LLMs) have opened new
frontiers in understanding and generating human
languages (Brown et al., 2020; Touvron et al.,
2023a; OpenAI, 2023). A critical aspect of train-
ing these models lies in the acquisition and or-
ganization of training data (Wang et al., 2023).
Some works focus on selecting high-quality data.
These works usually perform data filtering or data
cleaning from a large corpus, based on either rule-
based (Gao et al., 2021; Computer, 2023) or model-
based algorithms (Abbas et al., 2023; Tirumala
et al., 2023; Marion et al., 2023). On the other hand,
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1Our code is released at https://github.com/
choosewhatulike/cluster-clip

several approaches concentrate on optimizing the
composition weights of the collected data. These
methods typically focus on optimizing the domain
weights either using heuristics (Du et al., 2022; Tou-
vron et al., 2023a) or model statistics (Xie et al.,
2023a; Fan et al., 2023). While much attention has
been given to the collection and composition of di-
verse datasets for training LLMs (Gao et al., 2021;
Computer, 2023; Touvron et al., 2023b; Mukherjee
et al., 2023; Sun et al., 2024), it is still unclear how
the training data sampling affects the optimization
of language models.

The sampling methods of existing works are
coarse-grained, which determines the sampling
weights or sampling order of each domain. The
domain is usually defined based on the data source
or other metadata during the dataset collection,
which is coarse-grained and inaccurate. For in-
stance, the Llama models (Touvron et al., 2023a) as-
sign domain mixture weights heuristically, includ-
ing 67% CommonCrawl web data, 4.5% Github
code, 4.5% Wikipedia documents, etc. And Roz-
ière et al. (2023); Azerbayev et al. (2023) improve
certain abilities of LLMs by tuning the model on
specific domains, like code or mathematical texts.
However, the texts are sampled randomly in each
domain, which ignores the unbalanced distribu-
tion of the expressed meanings and topics. Due
to the nature of the data corpus, texts with simi-
lar meanings have a long tail distribution in the
training set (Zipf, 1949; Chan et al., 2022; Abbas
et al., 2023). When using random sampling, LLMs
can underfit rare documents and overfit common
samples. It is straightforward to utilize a uniform
sampling strategy that samples texts with differ-
ent meanings evenly, which up-samples rare docu-
ments and down-samples common texts. However,
uniform sampling will up-weight rare documents
and repeat them so many times in the training, re-
sulting in severe overfitting of trained LLMs on
these training samples.
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Figure 1: Illustration of ClusterClip Sampling. The algorithm utilizes data clustering to describe the training
data distribution. Then, it balances the sampling probabilities of samples in different clusters during the training.
Moreover, a clip operation is introduced to knock out samples with too many repetitions.

To address the above challenges, we propose
ClusterClip, a cluster-based sampling strategy
with clip operation to mitigate overfitting. This
sampling strategy has two steps. Firstly, we lever-
age data clustering to reflect the data distribution.
Based on off-the-shelf NLP tools, the semantic-
related texts could be grouped into the same cluster.
By calculating the size of each semantic cluster, we
can evaluate the data rarity. Secondly, we perform
the data sampling using the cluster information.
The documents from different clusters are sampled
evenly at the beginning of the training, thus en-
couraging the model to learn from rare documents
instead of wasting computation on common texts.
As the training progresses, a clip operation is ap-
plied. If certain documents are sampled too many
times, these documents are clipped and no longer
sampled from the dataset. Thus, ClusterClip re-
balances the data distribution, which facilitates the
model to learn rare documents but avoids severe
overfitting of repeated texts by clipping.

Our approach is distinguished by its ability to
improve model learning efficiency and generaliza-
tion without relying on dataset-specific metadata
or complicated optimizations. Extensive experi-
ments demonstrate the versatility and effectiveness
of our proposed ClusterClip Sampling. We show
that it consistently enhances the performance of
representative LLMs, Llama2-7B (Touvron et al.,
2023b) and Mistral-7B (Jiang et al., 2023), in both
pre-training and supervised fine-tuning scenarios,
indicating its broad applicability. Moreover, we
further evaluate several variants of cluster-based
sampling methods and demonstrate that: (1) All the
cluster-based sampling method variants outperform
random sampling, indicating the effectiveness of
sampling based on semantic distribution; (2) The
Clip operation effectively mitigates the overfitting

of repeated documents, leading to large improve-
ments in diverse tasks. (3) Specializing data train-
ing order (e.g. General-to-Specific or Specific-to-
General) can affect the performance of LLMs on
various downstream tasks, showing the promise of
progressive learning on LLMs;

To sum up, our contributions are as follows:

• We propose ClusterClip Sampling, which re-
balances the occurrence of common or rare
documents with a clip operation to avoid se-
vere overfitting.

• We validate the effectiveness of ClusterClip
Sampling on multiple datasets and LLMs,
demonstrating the broad applicability and sta-
ble improvements across pre-training and fine-
tuning.

• We present representative variant cluster-
based sampling methods to show where the
improvements of ClusterClip come from and
provide interesting results for future design of
sampling strategies.

2 Related Works

Data Clustering for LLMs Clustering methods
are widely applied in data curation of LLM pre-
training. A line of work incorporates clustering for
data deduplication. Semdedup (Abbas et al., 2023)
aims to eliminate semantic duplicates from the pre-
training corpus and use clustering in the sentence
embedding space to reduce the computational cost.
D4 (Tirumala et al., 2023) further aggressively re-
moves duplicate documents by combining multiple
clustering-based deduplication methods. Moreover,
clustering also has been used to improve data qual-
ity. Existing works perform quality filtering using a
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classifier to find data samples that are close to high-
quality texts (Brown et al., 2020; Gao et al., 2021;
Du et al., 2022; Touvron et al., 2023a),. And MiniP-
ile (Kaddour, 2023) is constructed by filtering out
low-quality clusters based on semantic embeddings.
Different from previous works, we explore the ef-
fectiveness of clustering for learning strategies in-
stead of data curation for LLM training.

Data Composition for LLM Pre-Training The
composition of pre-training data is a determinant
of LLM performance. Efforts are made to collect
and utilize domain mixtures of pre-training data to
improve LLM performance (Longpre et al., 2023;
Shen et al., 2023; Nijkamp et al., 2023). Brown
et al. (2020); Chung et al. (2022); Du et al. (2022);
Azerbayev et al. (2023); Touvron et al. (2023a,b)
exploit manually designed domain composition
weights by small-scale pre-training experiments.
However, we focus on cluster-based data sampling
approaches, which do not rely on manual selec-
tion of data composition. In addition, existing
works also explore the algorithms for searching
optimal domain weights. Several methods involve
training auxiliary models, either proxy models or
reference models to determine the composition
weights (Mindermann et al., 2022; Xie et al., 2023a;
Fan et al., 2023; Suzuki et al., 2023). Furthermore,
some works concentrate on sample-level data se-
lection by introducing model-based metrics to mea-
sure sample weights, which include importance
score (Xie et al., 2023b), perplexity (Xia et al.,
2023), and gradients (Marion et al., 2023). Differ-
ent from these works, the cluster-based sampling
strategies utilize off-the-shelf embedding models
and semantic-based cluster-level data sampling.

3 Methodology

We propose ClusterClip Sampling, a cluster-based
sampling strategy to rebalance the data distribution
of the training corpus to facilitate model learning
and mitigate overfitting. In this section, we delve
into the detailed process of data clustering and the
sampling strategy using cluster information to bal-
ance the sampling probabilities of common and
rare documents.

3.1 Data Clustering
Aiming to describe and manipulate the distribu-
tion of texts in the training set, we introduce data
clustering to group samples into semantic clus-
ters. We choose not to rely on metadata from the

dataset itself, as such information is often absent
or fuzzy (Gao et al., 2021; Azerbayev et al., 2023).
Instead, data clustering can automatically discover
semantic similar documents and group these data
points into clusters. Specifically, we first utilize
off-the-shelf transformer-based models to generate
text representations for each data sample. Then we
conduct a K-Means clustering on these generated
data embeddings to group samples into clusters.
By clustering, we classify data with similar topics
into the same subset. Thus, we can analyze the
data distribution and rebalance the data distribution
when sampling the training data.

We choose out-of-the-box transformer-based em-
bedding models and the K-Means method in the
experiments as these methods are well-established,
efficient at scale, and can produce semantic-related
data clusters. Other embedding functions, includ-
ing rule-based or model-based, could also be uti-
lized for more accurate clustering. Comparing the
impact of different embedding or clustering meth-
ods on the data sampling strategies would be a
valuable topic and is our future work.

3.2 ClusterClip Sampling
After data clustering, the clusters can describe the
long tail distribution of the training set. Based on
the cluster information, ClusterClip Sampling in-
creases the sampling weights of rare documents
and decreases the weights of common texts. More-
over, a clip operation is introduced to mitigate over-
fitting. Thus, ClusterClip Sampling balances the
learning on both very common texts and extremely
rare documents.

Uniform Sampling At the beginning of training,
ClusterClip Sampling performs a Uniform Sam-
pling from the clusters, which aims to up-sample
rare data points and down-sample common texts.
We ensure that each cluster has the same proba-
bility of being sampled. After sampling the clus-
ter, amount of tokens in each cluster. This also
improves the data diversity within the batch as it
balances the occurrence of samples in each cluster
in a batch.

Clip Operation When uniformly sampling the
data, documents from small clusters can be sam-
pled a huge number of times. In this case, the
model will suffer from overfitting on these small
semantic clusters and not learn well on the whole
training set. To solve this issue, we further propose
a clip operation to add a maximum repetition of
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each sample. When different clusters are uniformly
sampled, small clusters can be consumed multiple
times. The ClusterClip will record the repeated
times of each cluster. When one cluster has been
consumed a certain number of times, the cluster
will be knocked out and will not be sampled in
further training. Thus, the model will see a sample
at most a certain number of times, which mitigates
the overfitting.

4 Experimental Setups

To validate the proposed ClusterClip Sampling, we
conduct extensive experiments on multiple datasets
and LLMs. In this section, we introduce the exper-
imental setups of our experiments, including the
baselines, training datasets, training hyperparame-
ters, and evaluation setups.

4.1 Baselines

To demonstrate the effectiveness of ClusterClip
Sampling, we introduce several representative sam-
pling methods for comparison.

Random The texts are sampled randomly, which
is widely used in the pre-training and fine-tuning of
many LLMs (Touvron et al., 2023a,b; Azerbayev
et al., 2023; Mukherjee et al., 2023).

Uniform The texts are uniformly sampled from
each cluster, which is a simplified version of Clus-
terClip without the clip operation.

General-to-Specific (G2S) Inspired by recent
practice of training domain-specific language mod-
els (Rozière et al., 2023; Azerbayev et al., 2023),
we want the model to learn general abilities before
acquiring specific domain knowledge and skills.
Thus, G2S is initiated by uniform sampling from
each cluster. If a particular cluster is exhausted,
sampling from that cluster ceases until the entire
dataset has been traversed. By doing so, the model
learns diverse and general samples before concen-
trating on some specific clusters.

Specific-to-General (S2G) The objective of S2G
is to prioritize the model’s learning of rare sam-
ples and can be viewed as the opposite of G2S.
It involves initially training the model to acquire
knowledge in some specific domains before learn-
ing general capabilities. To achieve this, it employs
the exactly reversed sampling order of the G2S
strategy for training. This can be related to progres-
sive training or curriculum learning (Bengio et al.,

2009; Hacohen and Weinshall, 2019), in which
the model first learns from easy samples and then
transfers to hard ones.

4.2 Training Datasets
To fully validate the effectiveness of ClusterClip
Sampling, we train the models with different sam-
pling methods, including the proposed method and
baselines, on both supervised fine-tuning and pre-
training setups.

Superivsed Fine-Tuning Dataset We choose
Open-Orca (Lian et al., 2023) to probe the sam-
pling strategies on supervised fine-tuning. It is
an open-source implementation of Orca (Mukher-
jee et al., 2023) that employs GPT-3.5 and GPT-
4 to generate detailed answers and intermediate
thoughts given a diverse set of NLP tasks. Follow-
ing the methodology of Orca, Open-Orca collects 1
million outputs from GPT-4 and 3.2 million outputs
from GPT-3.5 based on these inputs. The total size
of the training set is about 1B tokens.

Pre-Training Dataset We utilized the Proof-
Pile-2 dataset (Azerbayev et al., 2023) to inves-
tigate the influence of various sampling strategies
for continual pre-training on specific domains. The
Proof-Pile-2 dataset is motivated by enhancing
the mathematical reasoning capabilities of mod-
els and consists of three components: code files,
web pages, and scientific papers, leading to 55B
tokens in total.

Preprocessing and Clustering We use the base-
sized Jina Embeddings 22 (Günther et al., 2023)
with mean pooling to generate text embeddings.
For Open-Orca, we do not differentiate between
data generated by GPT-4 and GPT-3.5 and mix
them for clustering and training, which reflects the
results in a more realistic scenario with mixed in-
struction data quality. We concatenate the inputs
and outputs and truncate the result text into 1024
tokens for embedding computation. Then, we run
K-Means with cosine distance on generated embed-
dings over 300 iterations to obtain 2000 clusters.
For Proof-Pile-2, we combined and shuffled dif-
ferent sub-domains of the mixture together and
sampled 10B tokens as our training set. This ap-
proach allows us to explore the model behavior
when changing data sampling strategies in the con-
text of continual training on data mixtures with

2https://huggingface.co/jinaai/
jina-embeddings-v2-base-en

14015

https://huggingface.co/jinaai/jina-embeddings-v2-base-en
https://huggingface.co/jinaai/jina-embeddings-v2-base-en


multiple domains. After obtaining the document
embeddings, we set the number of iterations and
clusters of K-Means to 300 and 100 to obtain the
clusters, respectively.

4.3 Training Setups
We adopt representative LLMs for training using
the InternLM (Team, 2023). All models are trained
on 64 A800 GPUs with bfloat16 mixed precision.

Supervised Fine-Tuning Setups We choose
Mistral-7B (Jiang et al., 2023) without aligning
for chat as the backbone for supervised-fine-tuning.
We fine-tuned the model with these sampling strate-
gies separately, each for 20000 steps with a global
batch size of 0.25 million tokens on Open-Orca,
totaling 5B tokens. The context length is 4096 with
packing. The learning rate is warmed up to 3e− 6
over the first 200 steps and then cosine decayed
to 3e− 7 at the end of training. Following Muen-
nighoff et al. (2023), the threshold of clipping is set
to 5 for all experiments unless specified. To train
one model, it utilizes 384 GPU hours.

Pre-Training Setups We initialize the backbone
model from the Llama2-7B (Touvron et al., 2023b)
base model for continual pre-training. We trained
the model with each sampling method for 5000
steps with a global batch size of 4 million tokens,
which used 20B tokens in total. The context length
is 4096 with packing, and the learning rate is first
warmed up to 5e − 5 over 200 steps and then co-
sine decayed to 1e− 5 at the end of training. The
training utilizes 1216 GPU hours for each model.

4.4 Cost Comparison
We calculate the costs of clustering and training
to figure out whether the clustering operation is a
good investment when training a language model
at scale. As shown in Table 1, the cost of clustering
is relatively low compared with the large language
model (LLM) training, because the model to gen-
erate document embedding is very small (100M
in our experiments), and the K-means algorithm is
very fast by paralleling on GPUs. The Proof-Pile-
2 is much faster because it contains much longer
documents, e.g. Arxiv papers and web pages, and
the clustering only considers the first 1024 tokens.
Thus, the clustering cost mainly depends on the
number of samples in datasets, instead of the actual
tokens.

Moreover, clustering is a one-time investment,
and we may train many models of varying scales

once the training data is clustered, which can fur-
ther amortize the clustering costs. To further speed
up the clustering and lower the memory usage, one
can use more efficient methods and shrink the em-
bedding size as mentioned in Yamada et al. (2021);
Kusupati et al. (2022).

4.5 Evaluation Setups

We introduce a diverse set of evaluation tasks and
datasets to reflect the general and detailed model
performance when incorporating different sam-
pling methods.

Evaluation Datasets The trained models are
evaluated on a wide range of downstream
tasks, including SuperGLUE (Wang et al., 2019),
GSM8K (Cobbe et al., 2021), MATH (Hendrycks
et al., 2021b), OpenBookQA (Mihaylov et al.,
2018), MMLU (Hendrycks et al., 2021a),
BBH (Suzgun et al., 2023) and MT-Bench (Zheng
et al., 2023).

Evaluation Methods Following Team (2023),
we use perplexity-based evaluation for Super-
GLUE, OpenBookQA, and MMLU. The few-shot
chain-of-thought prompting (Wei et al., 2022) is
used to evaluate the accuracy of reasoning tasks, in-
cluding GSM8K, MATH and BBH. The MT-Bench
is evaluated by GPT-4 with reference-based scoring
prompts (Zheng et al., 2023).

5 Experimental Results

In this section, we present the experimental results,
including the comparison of the proposed sampling
method with baselines (Sec 5.1), a detailed analy-
sis of multiple variants of cluster-based sampling
methods (Sec 5.2), and the ablation study of differ-
ent parts of ClusterClip (Sec 5.3).

5.1 Main Results

Supervised Fine-Tuning Experimental results
on Open-Orca show the effectiveness of Cluster-
Clip Sampling on the overall model performance
across multiple domains and capabilities. As
shown in Table 2, the model trained on Open-Orca
with ClusterClip Sampling outperforms Uniform
Sampling on SuperGLUE, OpenBookQA, and MT-
Bench, and beats the Random Baselines with a
large margin. The ClusterClip also achieves com-
parable performance when compared with the sam-
pling methods G2S and S2G on Open-Orca. It
demonstrates that the ClusterClip alleviates the
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Dataset Tokens Samples Avg. Length Embedding Storage

Open-Orca 1.8B 4.2M 429 tokens 14GB
Proof-Pile-2 13.4B 2.7M 4963 tokens 9GB

Dataset Embedding Cost Kmeans Cost Total Clustering Cost Training 7B Cost

Open-Orca 6 GPU hours 0.3 GPU hour 6.3 GPU hours 384 GPU hours
Proof-Pile-2 5.5 GPU hours 0.3 GPU hour 5.8 GPU hours 1216 GPU hours

Table 1: Clustering and Training Costs of Datasets.

overfitting issue of Uniform Sampling and im-
proves the overall performance.

SuperGLUE GSM8K OpenBookQA MT-Bench

Mistral-7b 50.19 47.61 64.20 -

Random 62.11 61.49 79.80 6.60
Uniform 63.00 58.83 78.20 6.75
G2S 65.41 59.36 79.40 6.81
S2G 64.95 62.55 80.20 7.08

ClusterClip 64.30 58.68 81.40 6.90

Table 2: Comparison of different sampling strategies on
Open-Orca.

Continual Pre-Training We also demonstrate
the effectiveness of ClusterClip Sampling in con-
tinual pre-training. As shown in Table 3, the model
trained on Proof-Pile-2 with ClusterClip obtains
strong overall performance, which achieves 7.90
on MATH and 51.05 on MMLU. This demonstrates
that the ClusterClip Sampling outperforms other
sampling methods on Proof-Pile-2. We also notice
that the ClusterClip Sampling consistently outper-
forms Uniform Sampling both on Proof-Pile-2 and
Open-Orca, which demonstrates that the overfitting
issue is significant for Uniform Sampling and the
Cutoff strategy alleviates this issue while still main-
taining the benefits of data diversity of Uniform
Sampling. Moreover, the G2S and S2G sampling
methods underperform the ClusterClip method on
all these downstream tasks, which are not consis-
tent compared with results from supervised fine-
tuning. It indicates that the effect of changing the
training order is unstable. And ClusterClip Sam-
pling is effective in both continual pre-training and
supervised fine-tuning, demonstrating the general-
ization and board application.

Results on Different Domains We find that Clus-
terClip can also boost the general performance of
large language models on different domains. As
shown in Figure 2, the model trained with Clus-
terClip improves scores of all subsets of MMLU.
The results on MMLU demonstrate that the model

MATH GSM8K MMLU BBH

LLama2-7B 3.50 16.68 46.79 38.20

Random 6.52 25.55 48.84 41.81
Uniform 7.62 26.00 49.98 42.89
G2S 6.92 23.43 49.42 41.69
S2G 6.98 23.12 48.61 40.90

ClusterClip 7.90 24.79 51.05 42.78

Table 3: Comparison of different sampling strategies on
Proof-Pile-2.

trained with ClusterClip can generalize across di-
verse tasks and domains even though the training
set Proof-Pile-2 mainly targets mathematical tasks.
Besides, Uniform Sampling also improves the per-
formance when compared with Random Sampling,
but still underperforms ClusterClip in all the cat-
egories of MMLU. Notably, the special cluster-
based sampling methods (G2S and S2G Sampling)
do not generalize well across different subsets of
MMLU, which even underperform Random Sam-
pling on humanities, stem, or social-science cate-
gories.
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Figure 2: Accuracy of models trained with different
sampling methods on each subset of MMLU.

Results on Different Models We also investi-
gate the effectiveness of the proposed methods
under different models. We train Llama2-7B on
Open-Orca and compare the results with the per-
formance of Mistral-7B. The training setups are
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kept the same in the supervised fine-tuning setups
but the peak learning rate is set to 1e-5 to meet the
requirements of fine-tuning Llama2-7B. As shown
in Figure 3, ClusterClip consistently outperforms
Random and Uniform Sampling by a large margin
on both Llama2 and Mistral. However, the other
three cluster-based sampling variants only improve
marginal performance on different models, com-
pared with Random Sampling.
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Figure 3: The results of different sampling methods on
Llama2-7B and Mistral-7B, measured by MT-Bench
Score.

5.2 Analysis ClusterClip Sampling in
Training

To find out how the ClusterClip Sampling affects
the model performance as the training goes on, we
massively evaluate the intermediate checkpoints of
models trained with different sampling strategies.
The supervised fine-tuning results are shown in
Figure 4 and the pre-training results are shown in
Figure 5. We also present the data distribution of
the training set in Figure 6 to see the connection
between the data distribution and the results of
these sampling methods.

Analysis on Supervised Fine-Tuning As shown
in Figure 4, all sampling strategies based on cluster-
ing outperform Random sampling, which demon-
strates that cluster information can provide insights
for sampling strategy design. Moreover, Random
sampling improves the instruction-following abil-
ity at first but is quickly saturated and even over-
fitting at the end of the training. This indicates
that Random sampling is unstable and sub-optimal
for Open-Orca fine-tuning. Comparing clustering-
based sampling methods, we surprisingly find that
all these methods consistently improve the MT-
Bench score across the training phases. Uniform
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Figure 4: MT-Bench Scores of different sampling strate-
gies during the training on Open-Orca dataset.

sampling achieves good performance in the early
stage but improves slowly, which may result from
cluster repetition as the training for a large number
of iterations. ClusterClip Sampling outperforms
Uniform Sampling by a large margin at the end
of the training, which indicates the effectiveness
of the clip operation as the training goes on. Sur-

0 2500 5000
Training Steps

4

5

6

7

8

M
AT

H

Random
Uniform
G2S
S2G
ClusterClip

Figure 5: MATH Accuracy of different sampling strate-
gies as the training progresses on the Proof-Pile-2
dataset.

prisingly, both G2S and S2G outperform Uniform
sampling at the end of training. S2G sampling even
outperforms other sampling methods and shows a
tendency to continue increasing the score for longer
training. We assume that it benefits from the na-
ture of Open-Orca, as the S2G sampling first learns
large clusters followed by other clusters. These
large clusters provide dense supervision in specific
domains that helps the model quickly align to the
instruction-following style in these domains and
then transfer to more diverse domains and distribu-
tions.
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Analysis on Pre-Training However, the results
of continual pre-training are different from the re-
sults of supervised fine-tuning. As shown in Fig-
ure 5, the random sampling under-performs com-
pared with these cluster-based sampling strategies.
Uniform sampling outperforms both G2S and S2G
sampling methods, which is inconsistent with the
results of supervised fine-tuning. It is the data dis-
tribution and the repetition rate of data samples in
different datasets that lead to the divergence.

Open-Orca Proof-Pile-2
Size per Cluster (Bytes)

104

105

106

107

108

109

D
at

as
et

Figure 6: Distribution of cluster size (the number of
bytes in each cluster) in different training sets. Clusters
of Open-Orca have many outliers, especially tiny clus-
ters, which could affect the sampling performance.

Connection to Data Distribution As the distri-
bution of cluster sizes of Open-Orca and Proof-Pile-
2 shown in Figure 6, both training sets have a bell
shape that indicates a nearly normal distribution
of document sizes, with a long tail of large-size
clusters. While Open-Orca has a lot of clusters
that have similar sizes, it contains some outlier
clusters, like several huge clusters and many tiny
clusters. We further calculate the repeated times
of samples in these datasets when using Uniform
Sampling and visualize the distribution of data repe-
tition in Figure 7. The repetition leads to the model
over-fitting on these clusters and side effects on the
overall performance of the model. The clusters in
Open-Orca have been trained up to more than 30
epochs while the clusters in Proof-Pile-2 have been
trained for at most 14 epochs. Thus the overfitting
of Uniform Sampling is not severe on Proof-Pile-2,
which makes the model generalize well on down-
stream mathematical tasks. However, the proposed
ClusterClip Sampling still outperforms Uniform
Sampling in Proof-Pile-2, indicating that the over-
fitting of rare documents still affects the model per-

formance. The clip operation of ClusterClip effec-
tively mitigates the overfitting of these texts, lead-
ing to performance gains on MATH and MMLU
tasks.

It is worth noting that the training order of the
samples may need to be carefully scheduled de-
pending on different datasets, based on the re-
sults of G2S and S2G Sampling. It can be related
to domain-specific learning or curriculum learn-
ing (Bengio et al., 2009; Hacohen and Weinshall,
2019; Rozière et al., 2023), which can be investi-
gated in future work. And the cluster-based sam-
pling methods are worth further exploration in this
area.
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Figure 7: Distribution of sample repetition on different
clusters in Open-Orca and Proof-Pile-2 datasets.

5.3 Ablation of ClusterClip Sampling

We conduct experiments on Proof-Pile-2 to demon-
strate how different configuration of ClusterClip
Samping affects the overall performance.

Clip Threshold The number of maximum rep-
etitions of one sample in ClusterClip Sampling is
primarily manually set to 5, as suggested by Muen-
nighoff et al. (2023). Nonetheless, we aim to ver-
ify that our setup is effective in reducing the over-
fitting on certain clusters. We train Llama2-7B
on Proof-Pile-2 datasets with various clip thresh-
olds of repeated samples and keep other setups the
same. We provide the results in Figure 8, where
the too-small (only one time) or too-large (more
than 10 times to repeat) clip thresholds degenerate
the performance. Moreover, as the clip threshold
increases, the MMLU performance of the trained
LLM slightly decreases, which indicates that the
overfitting issue becomes worse when samples are
repeated more times. Thus, the value of 5 is near
optimal for the threshold of the clipping.

The Number of Clusters We aim to investigate
the impact of the number of clusters in the applica-
tion of ClusterClip Sampling methods. We conduct
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Figure 8: MMLU Accuracy of ClusterClip Sampling
when changing the number of clipping thresholds on
Proof-Pile-2.

training of Llama2-7B on Proof-Pile-2 datasets
with different numbers of clusters, following other
setups in the main experiments. The results are
shown in Figure 9, in which the ClusterClip sam-
pling consistently outperforms Uniform sampling
by a large margin on the MMLU benchmarks, even
though the number of clusters is changing from
50 to 1000, respectively. Moreover, the number
of clusters does not affect the performance much
under the same cluster-based sampling methods.
Thus, the ClusterClip sampling is not sensitive to
the number of clusters.
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Figure 9: MMLU Accuracy of different sampling meth-
ods when changing the number of clusters on the Proof-
Pile-2 dataset.

6 Conclusion

In this work, we propose ClusterClip Sampling
based on data clustering to balance the long-tail dis-
tribution of the training set of large language mod-
els. We compare the proposed method with Ran-
dom Sampling and other cluster-based sampling
method variants in both supervised fine-tuning and
pre-training. Extensive experimental results across

7 datasets across diverse tasks and domains demon-
strate the effectiveness of ClusterClip Sampling,
which outperforms baselines under different train-
ing sets and models. We hope this work can insti-
gate more research on data sampling approaches
for improving language model training.

Limitations

The ClusterClip Sampling proposed in this work
can improve the training of LLMs and mitigate
overfitting on small clusters. However, there are
limitations in our current work and we hope to en-
hance the framework of data sampling in future
research. Firstly, We use transformer-based sen-
tence embedding to generate data representation
and exploit K-Means for clustering. Nonetheless,
other data representation or clustering methods can
be incorporated. For example, using an LLM to
process the texts to achieve better clustering accu-
racy. Secondly, our current method samples data
mainly based on cluster size. However, extra model
information or dataset statistics can be incorporated
for better sampling strategies. Future work should
explore more sophisticated methods to determine
the document-level or token-level sampling prob-
abilities. Finally, this study concentrates on lan-
guage models that only process texts. Training
multi-modal generative models that can understand
and generate images, videos, and audio poses its
challenges. And it requires more sophisticated data
processing and sampling techniques, which can be
explored in the future.

Ethics Statement

We leveraged data clustering to find semantic clus-
ters of training data and utilize the cluster infor-
mation for data sampling. There is a risk that the
cluster-based sampling aggregates the bias or toxic
content in the dataset. However, in this work, we
utilize open-sourced datasets to train the LLMs,
including Open-Orca (Lian et al., 2023) and Proof-
Pile-2 (Azerbayev et al., 2023). These datasets
are specifically collected and filtered to avoid toxic
and safety issues. When applying the cluster-based
sampling strategies for new datasets, data cleaning,
and filtering methods can be used to remove the
harmful content before clustering and training.
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