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Abstract

To improve the performance of the dual-
encoder retriever, one effective approach is
knowledge distillation from the cross-encoder
ranker. Existing works prepare training in-
stances by pairing each query with one positive
and a batch of negatives. However, most hard
negatives mined by advanced dense retrieval
methods are still too trivial for the teacher to
distinguish, preventing the teacher from trans-
ferring abundant dark knowledge to the student
through its soft label. To alleviate this issue, we
propose ADAM, a knowledge distillation frame-
work that can better transfer the dark knowl-
edge held in the teacher with Adaptive Dark
exAMples. Different from previous works that
only rely on one positive and hard negatives as
candidate passages, we create dark examples
that all have moderate relevance to the query
by strengthening negatives and masking posi-
tives in the discrete space. Furthermore, as the
quality of knowledge held in different training
instances varies as measured by the teacher’s
confidence score, we propose a self-paced dis-
tillation strategy that adaptively concentrates
on a subset of high-quality instances to conduct
our dark-example-based knowledge distillation
to help the student learn better. We conduct
experiments on two widely-used benchmarks
and verify the effectiveness of our method.

1 Introduction

Information retrieval (IR) that aims to identify rel-
evant passages for a given query is an important
topic for both academic and industrial areas, and
has powered many downstream tasks such as open-
domain QA (Chen et al., 2017) and knowledge-
grounded conversation (Dinan et al., 2018). Typi-
cally, IR systems usually follow the retrieve-and-
re-rank paradigm (Hofstätter et al., 2020; Huang
et al., 2020; Zou et al., 2021) where a fast retriever
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Figure 1: Distributions of the prediction for the cross-
encoder of R2anker (Zhou et al., 2023) over MS-
MARCO. POS and NEG mean the distribution of posi-
tive and hard negatives respectively. The hard negatives
are provided by RocketQAv2 (Ren et al., 2021c).

first retrieved a bundle of relevant passages from
a large-scale corpus through pre-built indices and
then a more sophisticated ranker comes to re-rank
these candidate passages to further obtain more
accurate retrieval results.

Under this paradigm, recent years have wit-
nessed a growing number of works that utilize
pre-trained language models (PLMs) (Qu et al.,
2021; Gao and Callan, 2021b) as retrievers and
rankers to build IR systems. Among these ef-
forts, there are two commonly adopted architec-
tures: cross-encoder (Devlin et al., 2019a) that
measure the relevance of a query-passage pair
through jointly modeling their deep interactions;
dual-encoder (Karpukhin et al., 2020; Qu et al.,
2021) that encodes queries and passages separately
into dense representations and calculate the sim-
ilarity. Although dual-encoders are efficient for
billions of indices, they suffer from inferior perfor-
mance compared with cross-encoders since they
can’t capture the fine-grained semantic relevance
between the query and the passage due to the ab-
sence of their deep interactions (Luan et al., 2021a).
To help dual-encoders achieve better retrieval per-
formance, a common practice is to draw on the
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powerful but cumbersome cross-encoder through
knowledge distillation (Yang et al., 2020; Zhang
et al., 2022; Ren et al., 2021c; Zeng et al., 2022; Lin
et al., 2023). Along this line of research, various
techniques are proposed to improve the knowledge
transfer including data curriculum (Lin et al., 2023;
Zeng et al., 2022), on-the-fly distillation (Zhang
et al., 2022; Ren et al., 2021c) and new distillation
objectives (Lu et al., 2022; Menon et al., 2022).

Though effective, we argue that existing dense
retrieval distillation methods may not fully exploit
the dark knowledge deeply held by the teacher.
In knowledge distillation (Xu et al., 2018; Lin
et al., 2023), the student learns not just the highest-
scored class from the soft labels provided by the
teacher, but also the entire probability distribution
over classes, as this contains comprehensive fine-
grained information referred to as "dark knowl-
edge". However, we empirically find that for ex-
isting distillation methods, the soft labels (i.e., the
probability distributions over one positive and mul-
tiple negatives for a query) given by the teacher are
too “sharp”, despite they already adopted hard neg-
atives (Ren et al., 2021c). As illustrated in Figure 1,
we draw the score distributions of the positive and
negative pairs using a pre-trained cross-encoder
teacher. It can be observed that the scores for most
hard negatives are quite low (concentrated in (-7.5,
-2.5)) and distributed far from the positives that
have high scores. A similar observation is also
drawn by Menon et al. (2022). This phenomenon
indicates that even the hard negatives mined by the
dense retriever are still too trivial for a well-trained
cross-encoder teacher to distinguish, losing most
of the utile dark knowledge.

To alleviate this issue, we propose ADAM, a
knowledge distillation framework that can better
exploit dark knowledge deeply held in the teacher
by distillation with adaptive dark examples. Our
method originated from the intuition that a good
soft label for the retriever to learn should be more
smooth, which implies that the provided query-
passage pairs should diversely distribute from
highly-relevant pairs to loosely-relevant pairs from
the view of the teacher. To fill the gap between
highly-relevant pairs and loosely-relevant pairs ex-
isting in current negative sampling methods, we
propose two approaches to construct dark exam-
ples that all have moderate relevance to the query.
The first approach is to make negatives more rel-
evant to the query by strengthening the negatives
with the positive passage. The second approach is

to make positives less relevant to the query by re-
placing some randomly selected tokens with mask
tokens. Considering that the newly created pas-
sages have moderate relevance to the query, we
believe it is more appropriate to call them dark
examples instead of negatives. With these dark
examples added, we successfully make the score
distribution smoother as shown in Figure 3(b), so
that we can transfer more useful dark knowledge
from the teacher. Moreover, since the soft label
for different query-positive-negatives have differ-
ent “sharpness” which we consider as an indication
of how well the dark knowledge has been exploited,
we further propose a self-paced distillation strategy
that adaptively selects those examples whose soft
labels are sharp to conduct our dark-example-based
distillation to better transfer the dark knowledge.

We conduct experiments on two benchmarks, in-
cluding MS-MARCO (Nguyen et al., 2016) and
TREC Deep Learning 2019 (Craswell et al., 2020).
In both benchmarks, the model is required to select
the best response from a candidate pool. Evalua-
tion results indicate that our method is significantly
better than existing models on two benchmarks. To
sum up, our contributions is three-fold:

• Propose to augment dark examples including
reinforced negatives and noisy positives for
more effective knowledge distillation in IR;

• Propose to adaptively concentrate on high-
confidence training instances to better transfer
knowledge;

• Empirical verify of the effectiveness of the
proposed approach on two public datasets.

2 Related Works

There are two lines of research related to our work:
dense retriever and knowledge distillation.

Dense Retriever. To overcome the vocabu-
lary and semantic mismatch problems exist-
ing in conventional term-based approaches such
as BM25 (Robertson and Zaragoza, 2009), re-
searchers began to build neural retrievers upon
pre-trained language models (Devlin et al., 2019b;
Liu et al., 2019). In this way, the whole input
text can be represented as a dense vector in a low-
dimensional space (e.g., 768) and efficient retrieval
can be achieved by approximate nearest neighbor
search (ANN) algorithms such as FAISS (Johnson
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et al., 2019). To learn a good dense retriever, vari-
ous attempts have been made including hard neg-
ative mining (Karpukhin et al., 2020; Luan et al.,
2021a; Qu et al., 2021; Xiong et al., 2021; Zhan
et al., 2021a), retrieval-oriented pre-training (Lee
et al., 2019; Gao and Callan, 2021a,b), knowledge
distillation (Ren et al., 2021c; Zhang et al., 2022;
Lu et al., 2022; Zhang et al., 2023), etc. We mainly
focus on knowledge distillation in this paper.

Knowledge Distillation. Knowledge distilla-
tion (Hinton et al., 2015; Xu et al., 2024) aims
to transfer the knowledge from a powerful teacher
model to a student model to help it learn better. To
achieve this goal, the student model is provided
with the teacher’s outputs as the supervision sig-
nal that it is enforced to mimic. There are multi-
ple types of supervision signals for the student to
learn, including the teacher’s output logits (Hinton
et al., 2015), intermediate representations (Romero
et al., 2014), relations of representations (Park et al.,
2019), etc. In the context of dense retrieval distilla-
tion, researchers basically adopt the cross-encoder
as the teacher and use the teacher’s probability dis-
tribution over candidate passages as the supervision
signal. On this basis, several studies (Ren et al.,
2021c; Zhang et al., 2022; Lu et al., 2022) explored
on-the-fly distillation to jointly optimize the teacher
and the student, Zeng et al. (2022) and Lin et al.
(2023) combined knowledge distillation with cur-
riculum strategies to gradually improve the student.
Different from existing work, we focus on the qual-
ity of knowledge held in the teacher’s soft label and
propose to distill with adaptive dark examples to
better transfer the dark knowledge to the student.

3 Methodology

In this section, we first introduce the preliminar-
ies in dense retrieval distillation, then present our
dark example augmentation method and adaptive
distillation with dynamic data selection.

3.1 Preliminary

Task Description In this work, we study the
learning of the dense retriever following the gen-
eral setting of dense retrieval in existing work (Qu
et al., 2021; Ren et al., 2021c; Zhang et al., 2022).
Formally, there is a training set D = {(qi,Pi)}ni=1

where qi is the query and Pi is the set of candidate
passages. Commonly, Pi consists of a positive pas-
sage p+i and m negative passages P−

i = {p−i,j}mj=1

constructed by random negative sampling (Hen-

derson et al., 2017; Gillick et al., 2018) or hard
negative mining (Xiong et al., 2020; Karpukhin
et al., 2020; Qu et al., 2021). Based on D, we aim
to learn a retriever that can select the most relevant
passage from the whole candidate pool.

Dual-Encoders A typical text retrieval system
adopts the retrieve-and-rank paradigm, where the
retriever is responsible for collecting a bubble of
candidate passages and the ranker further re-ranks
them. Considering the trade-off between efficiency
and accuracy, dual-encoders (Karpukhin et al.,
2020; Qu et al., 2021; Cai et al., 2022) are often cho-
sen as the retriever while cross-encoders (Devlin
et al., 2019b) are usually adopted as the ranker.1

The dual-encoder-based retriever Encde is re-
sponsible for encoding the given query qi and each
of the candidate passage pj into dense vectors
Encde(qi), Encde(pj) ∈ Rh. Then the relevance
score for qi and pj is simply calculated as the inner
product of their representations:

Rde(qi, pj) = Encde(qi)
⊤ · Encde(pj). (1)

To fulfill this goal, the retriever is typically trained
with supervised contrastive loss:

Lsup = − log
expRde(qi,p

+
i )

expRde(qi,p
+
i )+

∑
p−i,j∈P

−
i

expRde(qi,p
−
i,j)

.

where p+i is the labeled positive document paired
with qi and P−

i denotes the set of candidate docu-
ments for qi which is typically constructed during
training by random negative sampling or hard neg-
ative mining methods.

Cross-Encoders The cross-encoder ranker Encce
is in charge of calculating the matching score of qi
and pj more accurately as it can model their fine-
grained interactions, and re-ranking the retrieved
candidate passages provided by the retriever to
improve the retrieval results. Concretely, given
a query qi and a passage pj , the input is formed as
the concatenation of q and p with [CLS] in the be-
ginning and [SEP] as their separation and is fed into
transformer (Vaswani et al., 2017). The represen-
tation of [CLS] in the top layer is used to calculate
the relevance score with a projection head f(·):

Rce(qi, pj) = f(Encce([CLS], qi, [SEP], pj)). (2)
1We will use retriever and dual-encoder interchangeably.
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Figure 2: Illustration of dark examples. The solid rectan-
gle and triangles mean the gold passage and the negative
passages respectively. Dotted rectangles and circles de-
note noisy positives and mixed samples respectively.

Knowledge Distillation in IR As cross-encoders
are more capable of measuring the relevance of
qi and pj than dual-encoders but at a cost of com-
putational inefficiency, it’s promising to transfer
the knowledge from the strong cross-encoders to
the weak dual-encoders through knowledge distil-
lation (Zhang et al., 2022; Ren et al., 2021c; Zeng
et al., 2022; Lu et al., 2022; Lin et al., 2023). In
dense retrieval distillation, as both the positive pas-
sage p+i and the negatives P−

i can be treated uni-
formly, we use Pi = {p+i } ∪ P−

i to denote the
whole candidate set of passages. The relevance
score of qi and each pj ∈ Pi can be calculated
using a dual-encoder Encde and a cross encoder
Encce using Eq. 1 and Eq. 2. Then, the probability
distributions over candidate passages of the dual-
encoder and the cross-encoder pde,i,pce,i ∈ R|Pi|

are calculated by normalizing the relevance scores
over Pi, where each element is calculated as:

R̂j
de,i =

expRde(qi,pj)

∑
pk∈Pi

eRde(qi,pk)

R̂j
ce,i =

expRce(qi,pj)

∑
pk∈Pi

expRce(qi,pk)
.

(3)

To distill the knowledge from the cross-encoder
to the dual-encoder, the distribution of the cross-
encoder R̂ce,i is considered as the soft label that
guides the learning of the dual-encoder by minimiz-
ing the KL-divergence between R̂ce,i and R̂de,i:

Lkd = −
∑

(qi,Pi)∈D
KL-Div(R̂ce,i||R̂de,i) (4)

3.2 Dark Examples Construction
When transferring the knowledge from the cross-
encoder teacher to the dual-encoder student using

Eq. 4, the set of candidate passages Pi plays a vital
role. Previous works in dense retrieval distilla-
tion (Zhang et al., 2022; Ren et al., 2021c; Zeng
et al., 2022; Lu et al., 2022; Lin et al., 2023) sim-
ply follow the supervised learning setting where
they utilize Pi = {p+i } ∪ P−

i as the candidate set.
However, by empirical analyses on Fig. 1, we have
found that the negative set P−

i produced by exist-
ing hard negative mining approaches (Qu et al.,
2021) is too trivial for the cross-encoder teacher,
which makes the soft label provided by the cross-
encoder teacher too sharp at the positive passage
and therefore prevents the student from learning
utile dark knowledge hidden in the distribution of
other passages (i.e., negatives).

We suppose smoother soft labels naturally ob-
tained (instead of scaled by softmax temperature)
can be better knowledge carriers that transfer the
dark knowledge. Given the teacher and the query,
we point out that the natural way to smoothen the
soft label is to operate on the set of candidate pas-
sages, or more precisely, to replace the original set
of candidate passages Pi that are either too relevant
or too irrelevant from the teacher’s view with new
ones P̃i whose relevance to the query cannot be
easily tell apart by the cross-encoder teacher.

To construct the new set of candidate passages
that satisfy this desired characteristic, we propose
two dual approaches that operate on the original
positive passage p+i and the negative set P−

i respec-
tively. We name the newly constructed passages in
P̃i dark examples to demonstrate that can no longer
be simply categorized into positives and negatives
as they have moderate relevance to the query. An
illustration of dark examples is shown in Figure 2.
It should be noticed that it is the specific setting of
knowledge distillation where the supervision signal
is derived from the teacher’s soft label instead of
human labels that make it possible to learn from
dark examples.

Sampled Negatives. Early works (Henderson
et al., 2017; Gillick et al., 2018) randomly choose
negative passages by considering the passages
of other query-passage pairs within the same
mini-batch as the negatives. More recently, re-
searchers use BM25 (Karpukhin et al., 2020) or
dual-encoders (Xiong et al., 2020) to select hard
negatives globally from the whole candidate pas-
sages with the fast retrieval method (Qu et al., 2021;
Ren et al., 2021c). We will compare the effective-
ness of random negatives (denoted as Rand) and
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hard negatives (denoted as Hard) with our method
(denoted as Dark) in experiments.

Dark Examples with Reinforced Negatives The
reasonable way to create dark examples based on
P−
i is to make hard negatives harder, or in other

words, more relevant to the query. To achieve this
goal, it is non-trivial to accurately edit the seman-
tics of a negative passage towards increasing its
relevance to the query with controllable text gen-
eration techniques. Instead, we propose a rather
simple yet effective approach that mixes up query-
relevant content with negative passages to direct-
edly strength their relevance to the query. Based on
this motivation, we consider mixing up hard nega-
tives with the positive passage2. Formally, given a
training example (qi, p

+
i ,P

−
i ), we concatenate p+i

with each of the negative passage p−i,j to form the
set of dark examples for qi:

N rein
i = {p+i [SEP]p−i,j}mj=1. (5)

Here, we choose to mix-up passages at the lexical
level instead of the embedding space (Guo et al.,
2019) because our method can produce valid lan-
guage inputs and can preserve the relevant cues
while introducing some less-relevant content. We
also tried mixing-up negatives with the positive in
the embedding space but found this kind of mix-
up resulted in low-quality predictions of the cross-
encoder teacher since it has never seen samples
based on mixed embeddings during training.

Dark Examples with Noisy Positive Different
from the above approach that creates dark examples
by making hard negatives harder, we also consider
the opposite direction: making the positive passage
p+ not that relevant to the query by introducing
noise. We achieve this goal by input-masking (De-
vlin et al., 2019b). Given the positive passage p+i
for the query qi, we randomly sample a subset of
tokens from p+i and replace them with the special
token [MASK] with the masking ratio mr:

Nmask
i = {MASKmr(p

+
i )}mr . (6)

To generate noisy positives with more diverse rele-
vant to the query, we use masking with a variety of
masking ratios.

2We also tried to make the hard negatives even harder by
mixing up hard negatives with the query following Kalantidis
et al. (2020), however, we found little change in performance.

3.3 Distillation with Adaptive Dark Examples

We have elaborated our motivation and approach
to create dark examples, the remaining question
is how to conduct effective knowledge distillation
with dark examples. Existing knowledge distilla-
tion methods using all the labeled data without dis-
tinction, which we argue is sub-optimal. As knowl-
edge distillation relies on the teacher’s prediction
as the supervision signal, the “quality” of knowl-
edge held in the teacher’s soft label naturally varies
among different training examples. We assume that
those training examples that the teacher is more
confident than others are better carriers of knowl-
edge for three reasons: (1) These instances are far
from the decision boundaries of the model, and
thus the corresponding passages are more likely
to be true positives and true negatives, avoiding
data noise. (2) Only the knowledge held in the
instances that the teacher can cope with well are
reliable and worth to be learned by the student.
(3) The teacher’s soft label for the high-confidence
instances is too sharp, which indicates the dark
knowledge held in these reliable instances has not
been well exploited.

Therefore, we propose to adaptively concentrate
on these high-confidence training instances during
the training process to conduct our dark-example-
based knowledge distillation. Formally, for a train-
ing instance, we can calculate the log-probability
of the positive passage p+i against negatives P−

i

with the teacher as the confidence score:

C(qi) = log
expRce(qi,p

+
i )

expRce(qi,p
+
i )+

∑
p−i,j∈P

−
i

expRce(qi,p
−
i,j)

.

(7)
Suppose the training process consists of T

epochs, in each epoch t, we can sort a batch of
training instances Bt in ascending order based on
the confidence scores. Then we adaptively select
the subset of instances B̂t in the batch that have the
highest confidence scores with the ratio (1− t

2∗T )
to construct dark examples:

B̃t = argmax
qi∈Bt,B̃t⊂Bt,∥B̃t∥=(1− t

2∗T )×b

C(qi). (8)

where b is the batch size for training.
Thereby, we have two sets in each step of the

t-th training epoch: the original training batch Bt

and the subset with the highest confidence that has
both original candidate passages and our created
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Methods PLM KD MS-MARCO Dev TREC DL 19
MRR@10 R@50 R@1000 NDCG@10 R@100

Sparse retrieval
BM25 (anserini) (Yang et al., 2017a) - - 18.7 59.2 85.7 50.6 -
doc2query (Nogueira et al., 2019b) - - 21.5 64.4 89.1 - -
DeepCT (Dai and Callan, 2019b) BERTbase - 24.3 69.0 91.0 55.1 -
docTTTTTquery (Nogueira et al., 2019a) - - 27.7 75.6 94.7 - -
UHD-BERT (Jang et al., 2021) BERTbase - 29.6 77.7 96.1 - -
COIL-full (Gao et al., 2021) BERTbase - 35.5 - 96.3 70.4 -
UniCOIL (Lin and Ma, 2021) BERTbase - 35.2 80.7 95.8 - -
SPLADE-max (Formal et al., 2021) BERTbase - 34.0 - 96.5 68.4 -
Unifierlexicon (Shen et al., 2023) coConbase ✓ 39.7 - 98.1 73.3 -

Dense retrieval
DPR-E (Ren et al., 2021c) ERNIEbase - 32.5 82.2 97.3 - -
ANCE (single) (Xiong et al., 2020) RoBERTabase - 33.0 - 95.9 65.4 44.5
TAS-Balanced (Hofstätter et al., 2021a) BERTbase ✓ 34.0 - - 71.2 -
ME-BERT (Luan et al., 2021b) BERTlarge - 34.3 - - - -
ColBERT (Khattab and Zaharia, 2020a) BERTbase - 36.0 82.9 96.8 67.0 -
ColBERT v2 (Santhanam et al., 2021) BERTbase ✓ 39.7 86.8 98.4 72.0 -
ADORE+STAR (Zhan et al., 2021b) RoBERTabase - 34.7 - - 68.3 -
Condenser (Gao and Callan, 2021a) BERTbase - 36.6 - 97.4 - -
RocketQA (Qu et al., 2021) ERNIEbase - 37.0 85.5 97.9 - -
PAIR (Ren et al., 2021a) ERNIEbase - 37.9 86.4 98.2 - -
CoCondenser (Gao and Callan, 2022) BERTbase - 38.2 - 98.4 - -
RocketQAV2 (Ren et al., 2021c) BERTbase ✓ 38.8 86.2 98.1 - -
AR2 (Zhang et al., 2022) BERTbase ✓ 39.5 - 98.6 - -
CL-DRD (Zeng et al., 2022) DistilBERT ✓ 38.2 - - 72.5 45.3
ERNIE-Search (Lu et al., 2022) BERTbase ✓ 40.1 87.7 98.2 - -
RetroMAE (Xiao et al., 2022) BERTbase ✓ 39.3 87.0 98.5 - -
Unifierdense (Shen et al., 2023) coConbase ✓ 38.8 - 97.6 71.1 -
bi-SimLM (Wang et al., 2023) BERTbase ✓ 39.1 87.3 98.6 69.8 -
PROD (Lin et al., 2023) ERNIE-2.0-BASE ✓ 39.3 87.1 98.4 73.3 48.4
InDi (Cohen et al., 2024) coConbase - 38.8 86.6 98.5 - -

Rand KD (Teacher = RocketQAV2) BERTbase ✓ 38.1 86.9 98.2 - -
Hard KD (Teacher = RocketQAV2) BERTbase ✓ 39.1 87.6 98.5 - -
ADAM (Teacher = RocketQAV2) BERTbase ✓ 39.8 88.1 98.6 72.1 50.3

Rand KD (Teacher = R2anker) BERTbase ✓ 38.1 86.0 97.9 - -
Hard KD (Teacher = R2anker) BERTbase ✓ 40.0 87.6 98.1 - -
ADAM (Teacher = R2anker) BERTbase ✓ 41.0 88.5 98.5 73.4 49.8

Table 1: Passage retrieval results on MS-MARCO and TREC DL 19 datasets. PLM is the abbreviation of the
pre-trained language Model. KD indicates whether a model is distilled by a ranker. We copy the results from original
papers and leave them blank if the original paper does not report the result. The best results are in underlined fonts.

dark examples B̃t. We jointly optimize the student
with the supervised loss (Eq. 3.1) on Bt and the
knowledge distillation loss (Eq. 4) on B̃t:

Lt = λ·
∑

Bt∈D

∑

(qi,Pi)∈Bt

Lsup +
∑

B̂t∈D

∑

(qi,P̃i)∈B̃t

Lkd.

(9)
where P̃i = {P−

i ∪ Nmix
i ∪ Nmask

i } is the new
candidate set for qi, and λ is a hyper-parameter as
a trade-off between the supervised objective and
distillation objective with adaptive dark examples.

4 Experiments

We evaluate our method on two public human-
annotated real-world benchmarks, namely MS-
Marco and TREC Deep Learning 2019.

4.1 Datasets and Evaluation Metrics

Consisting with previous studies on dense informa-
tion retrieval (Hofstätter et al., 2021b; Xiong et al.,
2021), we use popular passage retrieval datasets,
MS-MARCO (Nguyen et al., 2016). The dataset
contains 8.8M passages from Web pages gathered
from Bing’s results to real-world queries. The
training set contains about 500k pairs of query
and relevant passage, and the dev set consists of
6, 980 queries. Based on the queries and pas-
sages in the dataset, MS-MARCO passage retrieval
and ranking tasks were created. Following pre-
vious works (Zeng et al., 2022), we report the
performance on MS-MARCO Dev set as well as
TREC Deep Learning (DL) 2019 set (Craswell
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et al., 2020) which includes 43 queries. We report
MRR@10 and Recall@50/1K for MS-MARCO,
and nDCG@10 and Recall@100 for TREC DL
19. We also report zero-shot transfer performance
(nDCG@10) on BEIR benchmark (Thakur et al.,
2021).

4.2 Baselines

To make a comprehensive comparison, we choose
the following state-of-the-art approaches as base-
lines. These methods contain both sparse and dense
passage retrievers.

The sparse retrieval methods include the tradi-
tional retriever BM25 (Yang et al., 2017b) and
several representative sparse retrievers, including
doc2query (Lu et al., 2020), DeepCT (Dai and
Callan, 2019a), docTTTTT-query (Nogueira et al.,
2019a), UHD-BERT (Jang et al., 2021), COIL-
full (Gao et al., 2021), UniCOIL (Lin and Ma,
2021), and SPLADE-max (Formal et al., 2021).

The dense retrieval methods produce con-
tinuous neural vectors for each passage and
query. The methods include DPR-E (Qu
et al., 2021), ANCE (Xiong et al., 2021),
TAS-Balanced (Hofstätter et al., 2021b), ME-
BERT (Luan et al., 2021a), ColBERT (Khat-
tab and Zaharia, 2020b), ColBERT v2 (San-
thanam et al., 2021), NPRINC (Lu et al.,
2021), ADORE+STAR (Zhan et al., 2021a), Con-
denser (Gao and Callan, 2021a), RocketQA (Qu
et al., 2021), PAIR (Ren et al., 2021b), CoCon-
denser (Gao and Callan, 2022), RoketQAV2 (Ren
et al., 2021c), AR2 (Zhang et al., 2022), CL-
DRD (Zeng et al., 2022), ERNIE-Search (Lu
et al., 2022), RetroMAE (Xiao et al., 2022), Uni-
fier (Shen et al., 2023), bi-SimLM (Wang et al.,
2023), PROD (Lin et al., 2023) and InDi (Cohen
et al., 2024). Some of them are enhanced by knowl-
edge distillation from the ranker. For example,
RoketQAV2, AR2, and ERNIE-Search introduce
the on-the-fly distillation method. CL-DRD and
PROD propose progressive distillation with a data
curriculum to gradually improve the student.

4.3 Implementation Details

Consisting with the setting of RocketQA V2 (Ren
et al., 2021c), we choose the learned dual-encoder
in the first step of RocketQA (Qu et al., 2021)
as the initialization of our dense retriever3. We

3The retriever can also be replaced with other trained re-
triever. We observed that using the trained model to initialize
the retriever can help achieve slightly better results.

adopt two advanced cross-encoder rankers as our
teacher model: RocketQAV2 (Ren et al., 2021c)
and R2anker (Zhou et al., 2023)4. We randomly
select m hard negatives provided by Ren et al.
(2021c) for each query. For supervised learning,
a positive passage and all the selected negatives
are used. While for distillation, the candidate pas-
sage set for a query consists of m original nega-
tives, m dark examples in Nmix

i , and 5 dark exam-
ples in Nmask

i with different masking ratios mr ∈
{0.15, 0.25, 0.35, 0.45, 0.55}. We set the number
of negatives m to 10 from {5, 10, 15, 20, 25, 30}5.
We set the maximum lengths for queries and pas-
sages as 32 and 128. The dropout rate is set
to 0.1 on the cross-encoder. In training, we use
AdamW (Loshchilov and Hutter, 2017) as the op-
timizer to train the model. We set the batch size
as 128, the peak learning rate as 5e − 5, and the
warm-up steps as 100. We set the weight λ for
the supervised objective as 0.01 by varying it in
{0.001, 0.01, 0.05, 0.1, 0.5}.

4.4 Overall Performance

We report the overall evaluation results on MS-
MARCO and TREC Deep Learning 2019 respec-
tively. On both benchmarks, we not only show the
performance of our dual-encoder retriever under
knowledge distillation from two different cross-
encoder teachers, but also provide comparisons
between different choices of construction of candi-
date set Pi. The main results are shown in Table 1.
We can draw three main conclusions:

Our created dark examples improve the perfor-
mance of knowledge distillation over hard nega-
tives and random negatives. With the same cross-
encoder as the teacher, we analyze the impact of
how the candidate set of passages is constructed. It
can be observed that using random negatives results
in poor performance and the integration of hard
negative mining indeed improve the performance.
When equipped with our created dark examples
which are even harder than existing hard negatives,
our model further makes a substantial improvement
over that using hard negatives.

Our framework ADAM is compatible with dif-
ferent teachers. To test the generalization ability

4The results of BM25-reranking on MS-MARCO Dev for
R2anker (Zhou et al., 2023) and RocketQAV2 (Ren et al.,
2021c) are 40.1 and 40.7 respectively.

5We found m = 15 to be the optimal parameter. However,
considering that our method will expand the number of nega-
tives with the augmented dark examples, we set m=10 in our
experiment.
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Rep type Sparse Mul-vec Dense

Method BM25 SPLADE UnifieR ColBERT DPR ANCE TAS-B CoCond CL-DRD RocQA ADAM

Distillation ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✓

TREC-COVID 65.6 71.0 71.5 73.8 33.2 65.4 48.1 71.2 58.4 67.5 73.0
NFCorpus 32.5 33.4 32.9 33.8 18.9 23.7 31.9 32.5 31.5 29.3 31.5
FiQA 23.6 33.6 31.1 35.6 11.2 29.5 30.0 27.6 30.8 30.2 31.5
ArguAna 31.5 47.9 39.0 46.3 17.5 41.5 42.9 29.9 41.3 45.1 40.3
Tóuche-2020 36.7 27.2 30.2 26.3 13.1 24.0 16.2 19.1 20.3 24.7 25.6
Scidocs 15.8 15.8 15.0 15.4 7.7 12.2 14.9 13.7 14.6 13.1 14.1
SciFact 66.5 69.3 68.6 69.3 31.8 50.7 64.3 61.5 62.1 56.8 59.4
NQ 32.9 52.1 51.4 56.2 47.4 44.6 46.3 48.7 50.0 50.5 51.9
HotpotQA 60.3 68.4 66.1 66.7 39.1 45.6 58.4 56.3 58.9 53.3 58.6
DBPedia 31.3 43.5 40.6 44.6 26.3 28.1 38.4 36.3 38.1 35.6 39.6
Fever 75.3 78.6 69.6 78.5 56.2 66.9 70.0 49.5 73.4 67.6 66.8
Climate-FEVER 21.3 23.5 17.5 17.6 14.8 19.8 22.8 14.4 20.4 18.0 21.4

AVERAGE 41.1 42.4 44.5 47.0 26.4 37.7 40.4 38.9 42.0 41.0 42.8

Table 2: Zero-shot transfer performance (nDCG@10) on BEIR benchmark. ‘BEST ON’ and ‘AVERAGE’ do not take the
in-domain result into account. ‘ColBERT’ is its v2 version (Santhanam et al., 2021). ‘CoCond’ refers to CoCondenser (Gao and
Callan, 2021b) and ‘RocQA’ means RocketQAV2 (Ren et al., 2021c).

over different teachers, we conduct experiments
using two advanced cross-encoders (R2anker and
RocketQAV2) as the teacher. Consistent improve-
ment can be observed when using our proposed
dark examples for knowledge distillation with the
two different teachers. Moreover, we can compare
the effectiveness of the two teachers. When using
random negatives, knowledge distillation with the
two teachers results in comparable results. But
when using hard negatives and dark examples, the
model distilled by R2anker yields significantly bet-
ter performance than its counterparts. Therefore,
for the remaining ablation studies and analyses, we
use R2anker as the teacher by default.

With R2anker as the teacher, our method (the bot-
tom line) achieves superior performance over most
baselines. Our model achieves 41.00 on MRR@10
on the development set of MS-MARCO, outper-
forming most of the existing methods and is com-
parable with SimLM (Wang et al., 2023) which
is obtained by a time-consuming large-scale pre-
training followed with a cumbersome multi-stage
supervised fine-tuning.

4.5 Ablation study

We have analyzed the overall performance on two
benchmarks and proved the effectiveness of our
method. Here, we conduct ablation studies to verify
the indispensability of each crucial design. We
provide the results of the ablation study in Table 3.

Dark examples. Recall that we propose two
types of methods to construct dark examples: (1)
strengthening negatives (N rein) by mixing with

Methods MRR@10

ADAM 38.99

w/o. N rein (Eq.5) 38.82
w/o. Nmask (Eq.6) 38.76
w/o. {N rein & Nmask } 38.64
w/o. {N rein & Nmask & ADA } 38.61
w/o. {N rein & Nmask & ADA & Lsup} 38.36

Table 3: Ablation results on MS-Marco. We report the
reranking performance.

the positive to make negatives more relevant to
the query, and (2) polluting positives ((Nmask))
to make positives not that relevant. We first test
the individual effect of N rein and Nmask. When
removing each of them individually, performance
drops can be observed. And when we remove both
of them, the model performs worse. This observa-
tion indicates that the incorporation of both N rein

and Nmask is beneficial to the overall performance.
Distillation with adaptive dark examples. In

addition to dark examples, we also introduce a self-
paced distillation algorithm that can better trans-
fer dark knowledge with adaptive dark examples.
When this strategy is removed, we create dark ex-
amples for all the training instances. It can be seen
that distillation adaptively using the subset of in-
stances that the teacher is most confident is better
than using the whole training set, which is in ac-
cord with our assumption that the instances with
higher confidence are a better carrier of knowledge.

Distillation with additional supervised loss. Al-
though the teacher’s soft label provides abundant
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Figure 3: (a) The impact of m; (b) Distributions of
model prediction for the R2anker over MS-MARCO.

dark knowledge for the student to learn, we also
involve the traditional supervised loss. We can
observe that although the weight λ for supervised
loss is quite small (i.e., 0.01), we find this term
indispensable for the overall performance.

4.6 Discussions

Zero-shot transfer performance. We also curious
about the transfer ability of our method and con-
duct experiments on the BEIR benchmark. Table 2
reports the zero-shot performance. We can find that
our method surpasses existing dense approaches
and three distillation methods (TAS-B, CL-DRD,
and RocketQAV2). These results demonstrate that
the reranker can transfer knowledge more effec-
tively to the dense retriever using dark examples,
and its out-of-distribution (OOD) adaptation ability
is also well inherited by the retriever.

The impact of the number of negatives. When
constructing the training set, the number of nega-
tives plays a vital role as it also indirectly controls
the number of dark examples. To explore the effect
of the number of negative samples as well as to find
the best choice for m, we conduct experiments on
different m6. As illustrated in Figure 3(a), when
m is small, increasing m brings a positive effect
and leads to the best performance when m = 15.
But as the curve indicates, incorporating more neg-
atives brings no benefit, which is also in line with
existing findings (Karpukhin et al., 2020). The
above trend also indicates that too many trivial
negatives (m > 15) can not always bring improve-
ment while incorporating our dark examples can
still bring improvement to the knowledge transfer.
The phenomenon also reveals the importance of
distillation data in IR knowledge transfer.

The impact of dark examples on the output dis-
6To better analyze the impact of the number of negative

samples, we conduct the experiment on the model without
adaptive dark examples.

tribution of ranker. Finally, we examine the impact
of dark examples on the output distribution of the
ranker. As illustrated in Figure 3(b), we draw the
score distributions of the positive, negative candi-
dates, and negative candidates plus dark examples
using a teacher (R2anker) over MS-MARCO. It can
be observed that the scores for most original hard
negatives are quite low and distributed far from the
positives that have high scores. By incorporating
these dark examples, we are able to improve the
smoothness of the score distribution and prob our
teacher model with a wider range of candidates that
are more diversely relevant to the query. This en-
ables us to more effectively transfer valuable "dark"
knowledge from the teacher model.

5 Conclusion
In this paper, we propose a knowledge distillation
framework that can better transfer the dark knowl-
edge in the cross-encoder with adaptive dark ex-
amples to help the dual-encoder achieve better per-
formance. We propose two approaches to create
dark examples that are much harder for the cross-
encoder teacher to distinguish than typical hard
negatives to transfer more dark knowledge. Fur-
ther, we propose a self-paced distillation strategy
that transfers the knowledge adaptively with high-
confidence training instances. Experimental results
in two widely-used benchmarks verify the effec-
tiveness of our proposed method.

Limitations

(i) Training computation overheads: although hav-
ing the same inference complexity as any other
dense retrieval models, our approach requires more
computation resources during training as it expands
the number of negatives with the augmented dark
examples. (ii) More analysis on noisy positives:
due to the limited computation resource, we only
test and compare several typical settings of noisy
positives, better strategies for constructing noisy
positives (e.g., better masking methods and varying
the number of noisy positives) can be explored to
further improve the performance.
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