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Abstract
Large language models (LLMs) have signifi-
cantly advanced the field of natural language
processing, while the expensive memory and
computation consumption impede their practi-
cal deployment. Quantization emerges as one
of the most effective methods for improving
the computational efficiency of LLMs. How-
ever, existing ultra-low-bit quantization always
causes severe accuracy drops. In this paper,
we empirically investigate the micro and macro
characteristics of ultra-low bit quantization and
present a novel Dual-Binarization method for
LLMs, namely DB-LLM. For the micro-level,
we take both the accuracy advantage of 2-bit-
width and the efficiency advantage of binariza-
tion into account, introducing Flexible Dual Bi-
narization (FDB). By splitting 2-bit quantized
weights into two independent sets of binaries,
FDB ensures the accuracy of representations
and introduces flexibility, utilizing the efficient
bitwise operations of binarization while retain-
ing the inherent high sparsity of ultra-low bit
quantization. For the macro-level, we find the
distortion that exists in the prediction of LLM
after quantization, which is specified as the de-
viations related to the ambiguity of samples.
We propose the Deviation-Aware Distillation
(DAD) method, enabling the model to focus
differently on various samples. Comprehen-
sive experiments show that our DB-LLM not
only significantly surpasses the current State-
of-The-Art (SoTA) in ultra-low bit quantization
(e.g., perplexity decreased from 9.64 to 7.23),
but also achieves an additional 20% reduction
in computational consumption compared to
the SOTA method under the same bit-width.
Our code is available at https://github.com/Hon-
Chen/DB-LLM.

1 Introduction

Recently, Large Language Models (LLMs), such
as ChatGPT and LLaMA (Touvron et al., 2023a)

*Equal contribution.
†Corresponding author.
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Figure 1: The perplexity on WikiText2 for LLaMA
family models. 2-bit DB-LLM is close to FP results
and surpasses 3-bit AWQ by a large margin.

have catalyzed a paradigm shift in various natu-
ral language processing tasks (Zhong et al., 2023;
Peng et al., 2023; Lu et al., 2023). Their unprece-
dented capabilities evolved from a massive mem-
ory footprint (e.g., billion-scale parameters), which
constrains the widespread application of LLMs
on resource-limited devices. Several compression
schemes are thus proposed to reduce the memory
demands of LLMs, which can be roughly catego-
rized into weight quantization (Frantar et al., 2022;
Lin et al., 2023), network pruning (Sun et al., 2023;
Ma et al., 2023; He et al., 2022), knowledge dis-
tillation (Gu et al., 2023; Zhong et al., 2024) and
low-rank factorization (Xu et al., 2023; Yuan et al.,
2023). Among these methods, weight quantization
is highly effective and practical since it achieves the
best trade-off between the performance and the cost
of the compression process. Nevertheless, although
many works (Shao et al., 2023; Shang et al., 2023)
attempt to quantize LLMs to ultra-low-bit (e.g., 2-
bit), their performance is unsatisfactory and falls
far short of industrial application requirements.

Ultra-low-bit quantization (≤ 4 bits), as an ex-
tremely efficient form of quantization, enjoys over
8× memory compression ratio. Despite these spe-
cialized weight-only quantization schemes achiev-
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ing savings in storage consumption, they still can-
not avoid costly floating-point arithmetic. More-
over, we notice that they will cause catastrophic
degradation in accuracy.

For instance, despite the application of advanced
2-bit quantization techniques, a 65B model still
falls marginally short of the performance level at-
tained by a 7B model (Shao et al., 2023). And
fully binarized Large Language Models are almost
impracticable (Shang et al., 2023). The rationale
lies in two important aspects: From the micro-
level perspective: We empirically observe that
the symmetric Gaussian distribution of pre-trained
weights poses great challenges when quantizing to
extremely low-bit (1-bit and 2-bit). Binarization
suffers from poor representation capability, leading
to a collapse in performance. While 2-bit quanti-
zation alleviates this issue to some extent, it still
exhibits limited efficiency and presents optimiza-
tion obstacles. Thus, directly applying the afore-
mentioned strategies to LLMs is suboptimal which
necessitates a novel specialized operator. From the
macro-level perspective: We make in-depth investi-
gations of the prediction preferences and discover
the low-bit LLMs exhibit a form of distortion, far
from the original long-tail distribution of the full-
precision models. Especially, the extremely low-bit
LLMs tend to potentially predict head classes when
encountering ambiguous samples. This tendency
highlights a potential bias in their performance.

To address these issues, we propose a novel
Dual Binarization method to achieve accurate 2-bit
LLMs in a data-free manner, dubbed as DB-LLM.
Specifically, we (1) introduce a Flexible Dual Bi-
narization (FDB) to enhance the representation
capability by flexible dual-binarizer, while fully
leveraging the efficiency benefits of the binarized
parameter. Explicitly, we initialize an INT2 coun-
terpart as the intermediary, splitting its weights into
dual-binarized representations deftly in our DB-
LLM. Then, in a data-free manner, we fine-tune the
scales to further enhance the representation capa-
bility. Second, we (2) propose a Deviation-Aware
Distillation (DAD) to mitigate the distorted prefer-
ences. DAD jointly leverages the student-teacher
entropy as an ambiguous indicator and further am-
plifies the sample-wise ambiguity by re-weighting
the distillation loss. This method enables the low-
bit LLMs to perceive the uncertainty of each sam-
ple, which fulfills the balanced knowledge transfer.

Extensive experiments on several benchmark
datasets and model families show that DB-LLM

outperforms the existing state-of-the-art (SOTA)
quantization methods by a convincing margin (see
Figure 1). For example, our DB-LLM achieves
perplexities of 5.52 and 4.84 under 2-bit weight
on LLaMA-1-30B and LLaMA-1-65B respectively,
comparable to full-precision LLaMA-1-7B (per-
plexity of 5.68) and even surpassing the 3-bit
AWQ (Lin et al., 2023), which highlights its su-
periority and versatility. To summarize, our main
contributions are:

• We present Flexible Dual Binarization, which
transcends data format constraints, maximiz-
ing representation capability while maintain-
ing the efficiency of binary operations.

• We analyze the distortion related to predic-
tion preference in the ultra-low bit LLMs and
introduce a Deviation-aware Distillation to
emphasize the ambiguous samples.

• Extensive experiments on Llama1&2 families
spanning 7∼70B show that our DB-LLM sig-
nificantly and consistently outperforms prior
quantization strategies on various tasks.

2 Related Work

2.1 LLM Quantization

The quantization schemes of LLM can be briefly
classified into two fields: weight-only quanti-
zation (Frantar et al., 2022; Lin et al., 2023;
Chee et al., 2023) and weight-activation quanti-
zation (Wei et al., 2023; Xiao et al., 2023; Shao
et al., 2023; Zhu et al., 2023). The first approach
concentrates on reducing the model storage while
the second one simultaneously accelerates the in-
ference speed. For the weight-only quantization,
GPTQ (Frantar et al., 2022) proposes a layer-wise
quantization that compensates the rounding errors
with second-order information. AWQ (Lin et al.,
2023) prioritizes preserving the salient weights
by the activation magnitude. QuIP (Chee et al.,
2023) introduces quantization with incoherence
processing, optimizing quantization in large lan-
guage models but introducing additional overhead
during inference. For the weight-activation quanti-
zation, several efforts (Xiao et al., 2023; Wei et al.,
2023; Liu et al., 2023a; Shao et al., 2023) shift the
challenge of outliers from activations to weights
with per-channel scaling transformation, including
optimization-free methods (Wei et al., 2023; Xiao
et al., 2023) and optimization-based methods (Shao
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et al., 2023; Liu et al., 2023a). However, these
works undergo non-trivial performance degrada-
tion in ultra-low-bit (e.g., 2-bit). In contrast, our
method achieves satisfactory accuracy.

2.2 Network Binarization

BNN (Hubara et al., 2016) is a radical quantiza-
tion form to compress weights and activations into
only 1 bit. Following the success of binarization in
computer vision (Rastegari et al., 2016; Liu et al.,
2018; Qin et al., 2020; Liu et al., 2020), its ex-
ploration in natural language processing also at-
tracts wide research interest. BinaryBERT (Bai
et al., 2021) equivalently splits the weights of well-
trained TernaryBERT (Zhang et al., 2020) and fur-
ther fine-tune it to enhance the performance. Sub-
sequent works aim to binarize both weight and acti-
vations, which is more challenging. BiBERT (Qin
et al., 2021) revisits the performance bottleneck
(i.e., softmax function) and proposes Bi-Attention
to tackle information degradation. BIT (Liu et al.,
2022) introduces a two-set binarization scheme, ap-
plying different mapping levels for non-negative
and positive-negative activation layers. Most re-
cently, PB-LLM (Shang et al., 2023) first attempts
to bianrize the un-salient weights for LLM. Yet,
such a mixed-precision manner limits its hardware
deployment and extreme storage savings.

3 Methodologies

3.1 Preliminaries

In this section, we briefly review the necessary
backgrounds. We consider the quantization and
binarization as follows:

Uniform quantization is the most widely used
method. For the k-bit setting, the quantization and
de-quantization procedures can be written as:

wq = clamp(⌊w
s
⌉,−2k−1, 2k−1 − 1), (1)

ŵ = s · wq ≈ w, (2)

where Wq is the quantized integer and s is the
scaling factor determined by max(|W|)

2k−1 . To over-
come the non-differentiable issue in the back-
ward propagation, the Straight-Through-Estimator
(STE) (Courbariaux et al., 2015) is introduced to
compute the approximate gradient.

The traditional BNNs binarize the network pa-
rameters (weights and activations) into 1-bit. The
binarization on weights can be achieved by apply-

ing the sign function for the forward propagation:

wb = sign(w) =

{
1 if w ≥ 0

−1 otherwise
, (3)

where w and wb represent the 32-bit floating-point
weight and 1-bit binarized weight.

3.2 Flexible Dual Binarization
These days, researchers discover the weights of
LLMs exhibit symmetric Gaussian distribution and
a small fraction of salient weights is critical to the
quantization performance (Lin et al., 2023; Shao
et al., 2023). We make in-depth investigations
about the optimization from multi-low-bit perspec-
tives (see Figure 4). The binarization suffers from
poor representation capabilities. The remaining
two levels converge towards 0 (shown in blue in
Figure 3), which neglects the salient weights and
is attributed to the highest loss values. Alterna-
tively, 2-bit quantization naturally overcomes the
representation bottleneck (expression span exceeds
twice that of binarization in Figure 3). The mini-
mum loss point is significantly reduced while the
loss surface is still steep which brings the optimiza-
tion difficulty.

To combine the notable efficiency inherent in
binarization and the flexible representation capa-
bilities of 2-bit quantization, we propose the Flexi-
ble Dual Binarization (FDB) whose loss landscape
is flat and enjoys the lowest loss. Our FDB pri-
marily consists of the initialization phase and the
fine-tuning phase. It first inherits the considerably
high-performing initialization from relatively high-
bit LLMs and then fine-tunes the scales to further
enhance the representation capability. In particular,
we consider a 2-bit LLM as a proxy to be sufficient
to tackle this obstacle (in Figure 3) thus we split
its quantized weights into two separate 1-bit. We
formulate such a splitting process as follows:

ŵ = s ·wq = α1 ·wb
1 + α2 ·wb

2, (4)

where wb
1,w

b
2 represent two 1-bit weights and

α1, α2 are their corresponding scaling factors. To
achieve the isometric step s between quantization
levels in Equation 4 and maintain higher sparsity,
we revisit the binarization levels and adjust it to
{0, 1}. To illustrate, suppose that α1 is positive and
α2 is negative in Figure 5. Thus the initial value of
α1, α2 can be expressed as:

α1 := 2s, α2 := −s. (5)
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Figure 2: Illustration of our proposed DB-LLM. The Flexible Dual Binarization (FDB) approach, employing two
independent 1-bit sparse weights for simultaneous matrix multiplication, significantly enhances the flexibility in
weight representation. Deviation-Aware Distillation (DAD) steers the quantized model towards a heightened focus
on ambiguous samples, enhancing its performance by refining quantization parameters.
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0.0390

Figure 3: Distributions of the first output projection’s
weight matrix (LLaMA-1-7B). Colored levels, indicat-
ing the optimal solutions from grid search, minimize the
proxy quantization error (MSE loss of outputs) for bina-
rization, 2-bit quantization, and FDB. Influenced by the
weight distribution’s normality, binarization compresses
the two levels closer to 0 due to the absence of a level
representing 0, hindering the precise representation of
numerous significant weights with higher values, whose
expression span is less than half that of the 2-bit.

The quantization parameters, α1 and α2 will be
optimized during the fine-tuning stage, which leads
to the non-isometric quantization levels (in Fig-
ure 3). Therefore, our goal is to compare the mag-
nitude between values and level center in Figure 5:

wb
1 = H(w − α1 + α2

2
), (6)

wb
2 = H(−(w − α1 ·wb

1 −
α2

2
)), (7)

where H(·) is the unit step function, defined as 0 for
negative values and 1 for positive values. Therefore,
the whole forward process of FDB is expressed as:

ŷ = α1 · (wb
1 ⊗ x) + α2 · (wb

2 ⊗ x), (8)

Where x and ŷ denote inputs and outputs of the
current layer respectively, and ⊗ denotes the inner
product with bitwise operation.

It is noteworthy that our elaborate Flexible Dual
Binarization (FDB) enjoys multiple advantages: 1)
it inherits and enhances the superior representation
capacities of ultra-low bit quantization, 2) it capi-
talizes on the considerable efficiency derived from
bitwise operation, 3) it maintains the notable high
sparsity characteristic of ultra-low bit quantization.

Discussion on compression and acceleration.
We have innovated the sparsity of neural network
weights by decomposing traditional 2-bit weights
into dual 1-bit representations. This method, ap-
plied in the LLaMA-1-7B model, significantly in-
creases the average weight sparsity, exceeding 60%.
Notably, there is a distinct variation in the degree
of sparsity between wb

1 and wb
2, with the sparsity

of wb
2 consistently surpassing 70%. This enhanced

sparsity level is not only instrumental in drasti-
cally reducing the computational power require-
ments, potentially leading to significant accelera-
tion in processing speed, but also facilitates more
compression of wb

2 using various encoding meth-
ods (Van Leeuwen, 1976; Han et al., 2016). Theo-
retically, this approach could reduce the average bit
size of the overall weights to approximately 1.88
bits (Shannon, 1948). These reductions, as previ-
ously mentioned, are significant when compared to
traditional quantization methods, highlighting the
superior efficiency of our approach.

Discussion on flexibility. As shown in Figure 4,
we compare the layer-wise loss landscapes in bi-
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(d) All Together.

Figure 4: Loss landscape of a single quantized linear
layer based on binarization (a), 2-bit quantization (b),
and our FDB (c). For (a), (b), and (c), we perturb the
training parameters of the single layer and calculate the
MSE loss, comparing the outputs of the quantized layer
with those of the full-precision model. (d) highlights the
disparity among the three surfaces by juxtaposing them
within a single coordinate framework. The variables v1
and v2 represent perturbations applied to the training
parameters along two orthogonal directions.

narization, 2-bit quantization, and Flexible Dual
Binarization (FDB). Our FDB achieves a minimum
loss comparable to that of 2-bit quantization but
significantly differs from binary quantization. FDB
features a flatter optimization surface, which al-
lows it to maintain a lower loss over a considerable
range, reflecting its flexibility in net-wise optimiza-
tion. Given that our FDB can be initialized through
2-bit quantization, the closeness of their lowest loss
points also indicates that further optimization of
FDB is likely to be easier.

Inspired by LLM-QAT (Liu et al., 2023b), we
can further utilize distillation techniques to effi-
ciently fine-tune the quantization parameters using
the original full-precision model, without the need
for introducing additional data. This data-free ap-
proach helps avoid the risk of overfitting.

3.3 Deviation-aware Distillation

The tokenizer construction of current mainstream
Large Language Models is based on Byte Pair En-
coding (BPE) (Gage, 1994; Sennrich et al., 2016),
which leverages the long-tail corpus. Similarly,
we observe that the prediction preference of full-

Figure 5: The splitting procedure of FDB. The dual
separate 1-bit weight can be computed by comparing
the central values.
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(a) FP LLaMA-1-7B.
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(b) 2-bit LLaMA-1-7B.

Figure 6: Frequency histograms depicting the dis-
tributions of prediction results for the full-precision
model (a) and extremely low-bit (2 bits) quantized
model (b), gathered through random generation. The
data is specifically presented for the [260,29870] in-
terval, a range shaped by the construction of the BPE
algorithm and connected to the long-tail distribution
within the corpus.

precision LLMs obeys the long-tail distribution
in Figure 6(a). However, the predictions of ex-
tremely low-bit models deviate from such long-
tail distribution and exhibit increased distortion (in
Figure 6(b)), which manifests as a bias towards
high-frequency words. In particular, the quantized
models are more inclined to predict head classes
(i.e., the higher frequency region of the vocabu-
lary). Statistically, we count the prediction devia-
tions given the same inputs, and the low-bit model
is about 1.6 times more likely to predict commonly
occurring head classes than the less frequent tail
classes, indicating a bias towards more prevalent
categories.

To delve deeper into the reason for distortion,
we explore the failure predictions and utilize the
information entropy (Shannon, 1948) to measure
their corresponding uncertainty, defined by:

H(P ) = −
C∑

i=1

pi log(pi), (9)

where C is the class number and pi is the probabil-

8723



Figure 7: The correlation between the uncertainty
of model prediction results and task loss. The un-
certainties of the quantized and the original models are
quantified as per Equation 9.

ity of i-th class. As shown in Figure 7, surprisingly,
the entropy of the teacher/student model is consis-
tent with the task loss (i.e., cross-entropy). It means
that the quantized model struggles with making pre-
dictions for ambiguous samples. Considering pre-
vious observations, it is reasonable to assume that
the effectiveness of the quantized model decreases
when dealing with ambiguous samples, leading to
a preference for more conservative predictions.

Inspired by these findings, we propose the
Deviation-Aware Distillation (DAD) which prior-
itizes uncertain samples by utilizing a pair of en-
tropy (i.e., teacher-student entropy) as a difficulty
indicator. Specifically, the twin entropy is multi-
plied into the original loss function as two terms,
which is defined as:

ℓDAD = H(P t)γ ·H(P s)1−γ ·ℓCE(P
t, P s), (10)

where superscript t and s denote teacher and stu-
dent models respectively. ℓCE(P

t, P s) is the cross-
entropy loss between quantized student logits P s

and teacher logits P t. The overall distill loss is:

ℓtotal = λ · ℓDAD + ℓCE , (11)

where λ is the trade-off parameter.
Eventually, we analyze the issue of head class

convergence in ultra-low-bit student models and
propose the DAD loss to address it. DAD utilizes
the teacher-student entropy as a challenge indica-
tor and pays sufficient attention to the ambiguous
samples by reweighting the distillation loss, which
promotes the more balanced transfer of knowledge
from full-precision teacher models.

4 Experiments

Models and datasets We conduct extensive ex-
periments on LLaMA-1 (Touvron et al., 2023a) and

LLaMA-2 (Touvron et al., 2023b) families. To eval-
uate the effectiveness of our DB-LLM, we measure
the perplexity for the language generation tasks
(i.e., WikiText2 (Merity et al., 2016) and C4 (Raf-
fel et al., 2020), and accuracy for the zero-shot
tasks (i.e., PIQA (Bisk et al., 2020), ARC (Clark
et al., 2018), HellaSwag (Zellers et al., 2019) and
WinoGrande (Sakaguchi et al., 2021).

Baselines We mainly compare DB-LLM with
the state-of-the-art weight-only quantization meth-
ods, including RTN (round-to-nearest quantiza-
tion), GPTQ (Frantar et al., 2022), AWQ (Lin et al.,
2023), QuIP (Chee et al., 2023), OmniQuant (Shao
et al., 2023) and the partially binarized strategy
PB-LLM (Shang et al., 2023). To unify the model
weights to a 2-bit representation, we set the ratio
of salient weights (8-bit representation) in the PB-
LLM to 1

7 (17 × 8 + 6
7 × 1 = 2bits).

Implementations Following LLM-QAT (Liu
et al., 2023b), we construct the data-free calibra-
tion set which comprises 20k samples. Note that
the quantization parameters are optimized for only
1 epoch with a batch size of 2. The γ and λ in
Deviation-Aware Distillation is set to 0.1 equally.
We adopt the AdamW (Loshchilov and Hutter,
2018) as an optimizer and the learning rate is set to
1e−5.

4.1 Main results
We conduct extensive experiments on LLaMA fam-
ilies across different model sizes (7B∼70B) and
evaluation tasks (the detailed results of LLaMA-2
can be found in Appendix A.2). Note that we focus
on the performance of extremely low-bit settings
(i.e., W2A16).

For the language generation tasks, as seen in Ta-
ble 1 and Table 2, some previous methods, such as
AWQ, suffer from non-trivial performance degra-
dation (Perplexity at the level of e5). Fortunately,
our DB-LLM consistently achieves lower perplex-
ity for all the datasets. For instance, DB-LLM
averages a 1.68 improvement in perplexity over
OmniQuant on LLaMA-1-7B. When the model be-
comes larger, DB-LLM still obtains approximately
0.80 reduction in perplexity, which showcases the
effectiveness and versatility. Notably, we found
that our scheme even surpasses the RTN, and AWQ
under W3A16, which further indicates the strong
performance of DB-LLM. To the best of our knowl-
edge, our 2-bit LLaMA-1-30B outperforms the full-
precision LLaMA-1-7B with 3.7× storage savings.
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#Bits Method
LLaMA-1-7B LLaMA-1-13B LLaMA-1-30B LLaMA-1-65B

WikiText2 C4 WikiText2 C4 WikiText2 C4 WikiText2 C4

W16A16 - 5.68 7.08 5.09 6.61 4.10 5.98 3.53 5.62

W2A16† RTN 188.32 151.43 101.87 76.00 19.20 30.07 9.39 11.34

W3A16 RTN 25.73 28.26 11.39 13.22 14.95 28.66 10.68 12.79

W2A16† AWQ 2.5e5 2.8e5 2.7e5 2.2e5 2.3e5 2.3e5 7.4e4 7.4e4

W3A16 AWQ 11.88 13.26 7.45 9.13 10.07 12.67 5.21 7.11

W2A16† GPTQ 22.10 17.71 10.06 11.70 8.54 9.92 8.31 10.07

W2A16† QuIP 13.19 24.84 8.60 13.23 7.18 10.57 5.98 8.55

W2A16† OmniQuant 8.91 11.79 7.35 9.75 6.60 8.66 5.65 7.60

W2A16† PB-LLM 20.61 47.09 10.73 25.40 9.65 16.28 6.50 11.13

W2A16† DB-LLM 7.59 9.74 6.35 8.42 5.52 7.46 4.84 6.83

Table 1: Performance comparisons of different methods for weight-only quantization on LLaMA-1 for
language generation tasks. † represents the group size is 64.

#Bits Method 2-7B 2-13B 2-70B

W16A16 - 5.47 4.88 3.31

W2A16† RTN 431.97 26.22 10.31

W3A16 RTN 539.48 10.68 7.52

W2A16† AWQ 2.1e5 1.2e5 -

W3A16 AWQ 24.00 10.45 -

W2A16† GPTQ 20.85 22.44 NAN

W2A16† OmniQuant 9.64 7.55 6.11

W2A16† PB-LLM 20.37 43.38 NAN

W2A16† DB-LLM 7.23 6.19 4.64

Table 2: Weight-only quantization method compar-
isons on LLaMA-2 with WikiText2 perplexity results.

Method WikiText2 C4 Ppl Avg. Acc Avg.

W16A16 5.68 7.08 6.38 62.22
2-bit Baseline 18.32 30.42 24.37 40.14
Baseline + Fine-tuning 8.42 10.10 9.26 53.45
Baseline + FDB 7.77 9.84 8.81 54.09
Baseline + FDB + DAD 7.59 9.74 8.67 54.44

Table 3: Effect of DAD and FDB components.

γ 0 0.1 0.3 0.5 0.7 0.9 1.0

WikiText2 7.61 7.59 7.62 7.71 7.86 8.00 8.09

Table 4: Ablation study of key hyper-parameter γ.

Moreover, our method is also demonstrated ad-
vantages in zero-shot tasks in Table 5. DB-LLM
still outperforms other state-of-the-art strategies
by a large margin. For instance, our approach im-
proves the accuracy of LLaMA-1-7B by 6.39% and
5.45% on HellaSwag and Winogrande, respectively.
Meanwhile, for LLaMA-1-65B, DB-LLM is close
to FP results (less than 4% accuracy degradation).

4.2 Ablation Studies
To better understand the effectiveness of our
method, we provide detailed ablation studies to
show the effect of each component and the pro-
posed deviation-aware loss.

Ablation for each component: Table 3 shows
the effect of each component. When removing the
DAD component, the perplexity slightly increases
by about 0.1%-0.2% since the quantized model
struggles to predict ambiguous samples. Further-
more, the FDB component is critical as the per-
formance decreases significantly (7.77 to 18.32)
without a fine-tuning procedure. Our well-designed
FDB flexibly enhances the representation capabil-
ity and promotes efficient computation.

Ablation for Deviation-Aware Loss: To inves-
tigate the impact of key hyper-parameter γ, we
conduct the ablation experiments in Table 4. We
find that simply introducing the student entropy
(γ = 0) or teacher entropy (γ = 1) adversely af-
fects the performance, and the teacher model is
more convincing. Hence, by validation, we set γ
to 0.1 in all our experiments, which is a sweet spot
that unites the teacher-student entropy to guide the
quantized model.

Ablation for dataset sizes: We conduct experi-
ments on different dataset sizes and compare the
training overhead with OmniQuant in Table 7. For
a 7B model, OmniQuant (Shao et al., 2023) trained
for 20 epochs using 128 samples, which, accord-
ing to the paper, takes about 1.1 hours on a single
A100 GPU. Our method only requires training for
a single epoch. By reducing the amount of data
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Model #Bits Method
Accuracy (%) ↑

PIQA ARC-e ARC-c HellaSwag Winogrande Avg.

LLaMA-1-7B

W16A16 - 77.37 52.53 41.38 72.99 66.85 62.22

W2A16 GPTQ 59.36 32.11 25.09 35.14 49.01 40.14

W2A16 AWQ 50.05 25.76 29.44 25.93 49.96 36.23

W2A16 QuIP 62.57 38.26 28.33 43.41 53.99 45.31

W2A16 OmniQuant 68.66 44.49 29.69 54.32 55.56 50.54

W2A16 PB-LLM 55.39 34.22 24.23 31.99 52.88 39.74

W2A16 DB-LLM 72.14 44.70 33.62 60.71 61.01 54.44

LLaMA-1-13B

W16A16 - 79.05 59.85 44.62 76.22 70.09 65.97

W2A16 GPTQ 71.44 49.58 36.01 63.34 62.43 56.56

W2A16 AWQ 50.76 27.19 28.92 26.29 47.91 36.21

W2A16 QuIP 69.97 40.40 31.06 54.60 56.91 50.59

W2A16 OmniQuant 73.01 49.54 33.70 62.10 61.96 56.06

W2A16 PB-LLM 62.89 40.99 28.33 40.77 58.09 46.21

W2A16 DB-LLM 74.16 51.18 37.54 68.29 64.72 59.18

LLaMA-1-30B

W16A16 - 80.09 58.92 45.39 79.21 72.77 67.28

W2A16 GPTQ 72.91 49.49 36.69 66.89 65.27 58.25

W2A16 AWQ 48.91 26.22 29.44 25.91 47.12 35.52

W2A16 QuIP 70.67 44.95 33.96 61.39 61.17 54.43

W2A16 OmniQuant 75.57 52.06 38.48 68.34 65.11 59.91

W2A16 PB-LLM 66.87 43.06 30.97 50.47 62.75 50.82

W2A16 DB-LLM 77.58 52.57 40.53 72.75 69.46 62.58

LLaMA-1-65B

W16A16 - 80.85 58.75 46.25 80.73 77.11 68.73

W2A16 GPTQ 77.58 52.61 40.19 72.05 71.82 62.85

W2A16 QuIP 74.92 50.25 39.08 68.44 65.98 59.73

W2A16 OmniQuant 78.51 52.65 40.36 72.37 68.82 62.54

W2A16 PB-LLM 74.16 52.15 37.80 65.00 71.27 60.08

W2A16 DB-LLM 79.87 53.66 42.58 76.13 71.82 64.81

Table 5: Performance comparisons of different methods for weight-only quantization for zero-shot tasks.

Method Model Size Sparsity FLOPs

FP-16 12.6G - 423.4G
3-bit quantization 2.8G - 88.2G
2-bit quantization 2.2G 48.3% 37.3G
binarization 1.4G 0%* 36.4G
Ours 2.3G 62.8% 29.8G

Table 6: Model size, sparsity, and computational com-
plexity of LLaMA-1-7B with different compression
methods, where the model processes a 32-token sen-
tence. *Binarization does not map the weights to 0, we
treat its sparsity as 0.

used by our DB-LLM, such as adopting a dataset
of only 2.5K in size, it only takes approximately
1.1 GPU hours as well. However, our approach still
outperforms OmniQuant, with a perplexity reduc-

Method Dataset Size Ppl Avg. Acc Avg. GPU hours

FP - 6.38 62.22 -
OmniQuant 128 10.35 50.54 1.1
DB-LLM 2.5k 9.92 52.18 1.1

5k 9.54 52.75 2.3
10k 9.12 53.37 4.4
20k 8.67 54.44 8.2

Table 7: Effect of different dataset sizes.

tion of about 0.4 and 1.6% accuracy improvement
on downstream tasks. Furthermore, our DB-LLM’s
accuracy continues to improve as the size of the
dataset increases.

Ablation for group sizes: We add experimental
results for our DB-LLM under different group sizes
(64, 128) in Table 8, which are widely used. As
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Method Group Size WikiText2 C4 Ppl Avg. Acc Avg.

W16A16 - 5.68 7.08 6.38 62.22
DB-LLM 64 7.59 9.74 8.67 54.44
DB-LLM 128 8.63 10.81 9.72 51.76
OmniQuant 64 8.90 11.79 10.35 50.54

Table 8: Effect of different group sizes.

the group size increases, we observe a decline in
model performance. Notably, our DB-LLM at a
group size of 128 surpasses OmniQuant at a group
size of 64 (8.63 vs 8.90 on WikiText2 and 10.81 vs
11.79 on C4).

4.3 Storage Saving and Speedup

As shown in Table 6, we specifically calculate the
model size, sparsity, and computational complexity
of several compression methods of the LLaMA-
1-7B model. In terms of model size, we have in-
troduced a negligible amount of quantization pa-
rameters. However, as analyzed in the previous
Section 3.2, higher sparsity can lead to a lower
average number of bits per weight. This suggests
that there is further potential for model size reduc-
tion. Despite this, the overall model size is almost
identical to that of 2-bit quantization. More im-
portantly, our model exhibits significantly higher
sparsity, which substantially reduces the compu-
tational complexity during model inference. We
measure computational complexity by the number
of floating-point operations (FLOPs) required for a
single inference (Sun et al., 2023; Ma et al., 2023;
Liu et al., 2018). The FLOPs decreases from 423.4
billion to 29.8 billion, indicating a reduction of
approximately 14.2 times.

1-bit matrix operations lack some underlying
support, but our method is also a weight-only quan-
tization method, which can benefit from deploying
packed weights without introducing additional op-
erations, compared to QuIP (Chee et al., 2023).

5 Conclusion

In this paper, we present DB-LLM, an accurate
Dual-Binarization approach for efficient Large Lan-
guage Models (LLMs). Through a detailed analysis
of extremely low-bit quantization and binarization,
we’ve outlined the advantages and disadvantages
of each method. Capitalizing on these insights, we
meticulously develop the Flexible Dual Binariza-
tion to represent weights efficiently. This method
transcends the constraints imposed by data formats.
Additionally, we examine the macro-level predic-
tion deviations in low-bit quantization and intro-
duce Deviation-Aware Distillation, which directs

the model to focus more on ambiguous samples.
Our experiments show that our method surpasses
the current state-of-the-art (SOTA) in 2-bit quanti-
zation accuracy and also greatly reduces computa-
tional demands compared to traditional techniques.

Limitations

While our DB-LLM demonstrates considerable ad-
vancements in ultra-low bit quantization, there are
still avenues for further exploration and improve-
ment. Firstly, the potential of full binarization for
even more extreme bit-width compression presents
an area that warrants additional investigation. This
approach could further reduce computational de-
mands but needs careful consideration to maintain
model accuracy. Secondly, our current methodol-
ogy primarily focuses on weight quantization, leav-
ing the quantization of activation and scale values
as a promising area for future research. Delving
into these aspects could yield additional gains in
efficiency and model performance, making LLMs
even more accessible for practical applications.
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A Example Appendix

A.1 Details about FDB
In the initialization phase, we use the GPTQ (Fran-
tar et al., 2022) to quickly obtain the 2-bit quantized
weights and integrate the zero points of asymmetric
quantization into the scales. The positive and nega-
tive values of the scales correspond to two different
zero points.

A.2 More experimental results
See Table 9 for more results. The Results show
a similar trend to that of LLaMA-1 in Table 1,
demonstrating the effectiveness and universality of
our proposed method.
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Model #Bits Method
PPL ↓ Accuracy (%) ↑

WikiText2 C4 PIQA ARC-e ARC-c HellaSwag Winogrande

LLaMA-2-7B

W16A16 - 5.47 6.97 76.99 53.58 40.53 72.96 67.25

W2A16 AWQ 2.06e5 1.54e5 50.00 26.52 26.79 26.14 49.64

W2A16 OmniQuant 9.64 12.73 68.72 39.77 30.89 53.44 56.12

W2A16 PB-LLM 20.37 44.88 55.22 29.88 22.01 30.49 50.36

W2A16 DB-LLM 7.23 9.62 73.18 45.20 33.53 61.98 61.72

LLaMA-2-13B

W16A16 - 4.88 6.47 79.05 57.95 44.28 76.62 69.61

W2A16 AWQ 1.25e5 9.74e4 50.49 26.73 29.61 25.74 51.07

W2A16 OmniQuant 7.55 10.05 71.06 47.69 34.73 61.15 57.77

W2A16 PB-LLM 43.38 68.59 55.01 31.27 23.12 30.23 52.33

W2A16 DB-LLM 6.19 8.38 75.14 51.64 38.14 68.04 64.09

LLaMA-2-70B

W16A16 - 3.32 5.52 80.85 59.72 47.95 80.85 76.95

W2A16 OmniQuant 6.11 7.89 76.28 55.18 41.04 71.74 67.09

W2A16 DB-LLM 4.64 6.77 79.27 55.93 44.45 76.16 73.32

Table 9: Performance comparisons of different methods on LLaMA-2 model family.
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