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Abstract

Attribute value extraction involves identifying
the value spans of predetermined attributes in
product texts. This area of research has tra-
ditionally operated under a closed-world as-
sumption, focusing on products from a static
set of categories and their associated attributes.
However, products in e-commerce stores are
ever-increasing and evolving, calling for life-
long learning. If continuously trained on the
fast-increasing products and attributes, most ex-
isting solutions not only struggle for parameter
efficiency but also endure foreseeable defects
due to data contamination, catastrophic forget-
ting, etc. As a remedy, we propose and study a
new task, which aims to effectively maintain a
strong single model for many domains in a life-
long learning fashion, without jeopardizing the
model performance and parameter efficiency.
We introduce factorization into the model and
make it domain-aware by decoupling the mod-
eling of product type and attribute, as a way
to promote de-contamination and parameter ef-
ficiency while scaling up. Tuning the model
with distillation prevents forgetting historical
knowledge and enables continuous learning
from emerging domains. Experiments on hun-
dreds of domains showed that our model at-
tains the near state-of-the-art performance with
affordable parameter size, the least historical
knowledge forgetting, and the greatest robust-
ness against noises, whilst adding only a few
parameters per domain when compared with
competitive baselines.

1 Introduction

Attribute Value Extraction (AVE) (Nadeau
and Sekine, 2007), similar to Named En-
tities Recognition (NER) (Chiticariu et al.,
2010), aims to extract surface-form names
(e.g. red/vanilla/plastic) of pre-defined product
attributes (e.g. Color/Scent/Material) from
product texts (e.g. product title/description).
More specifically, we define each domain as the

combination of one product category/type (PT,
e.g. Laundry_Detergent) and one attribute (Attr,
e.g. Scent) – extracting scent values from laundry
detergent products is an example of a domain.

Training one model per domain (One-for-Each)
means we need to maintain tens of thousands of
models, which is not scalable and does not fully
leverage the correlation between multiple domains
jointly. Therefore, training a single model for
all domains (All-in-One) attracts intensive studies
(Zheng et al., 2018; Xu et al., 2019; Karamanolakis
et al., 2020; Wang et al., 2020; Yan et al., 2021;
Yang et al., 2022). These works aim to train a
scalable all-in-one model that absorbs stacked data
from all domains in a closed-world fashion. They
achieve decent performance while assuming a fixed
list of pre-defined domains is available. However,
products in the real world keep evolving in an open-
world fashion. New attributes, new values, and
new product types necessitate effective knowledge
transfer and life-long adaptation, without the need
to retrain the entire model from scratch.

Effective parameter sharing and parameter ef-
ficiency serve critical roles in such knowledge
transfer and scalable adaptation across many do-
mains. Intuitively, similar PTs can share the
same attributes and values. For example, Laun-
dry_Detergent and Hand_Sanitizer may both have
cedarwood as the Scent value. The approach of
fully shared parameters does not always result in
the desired knowledge transfer and can sometimes
negatively impact performance, especially when
dealing with complex and evolving data. For ex-
ample, different PTs possess drastically different
values on the same attribute: Size for Shoes can
be 7/7.5/8 and Size for Shirt takes values such as
XS/S/M/L/XL. Also, the same value can be adopted
by different domains: Orange can be a typical Fla-
vor value for Drink products, while the same value
is usually mentioned in Umbrella products as a
Color. Although existing works (Xu et al., 2019;
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Yan et al., 2021; Yang et al., 2022) started to adopt
various techniques to add additional inputs to make
the model better aware of the domain it is handling
and therefore alleviate domain contamination and
facilitate knowledge transfer, we argue that because
model parameters are essentially accessible to all
domains, such fine-grained, domain-specific knowl-
edge may find it hard to be stored organically in
the form of loosely organized model parameters,
exactly according to how the knowledge distributes
and evolves.

For the first time, we study the open-world life-
long AVE task that requires model capability on
both parameter efficiency for scale-up extraction
and life-long extraction of evolving new data. We
developed a unified solution, DALLA - Domain-
Aware Life-Long Adapter. To alleviate the domain
contamination without sacrificing parameter effi-
ciency, we propose a factorized adapter to decou-
ple the product type and the attribute by assigning
them with smaller sub-matrices after performing
low-rank decomposition on model weight matrices.
Factorization not only facilitates parameter sav-
ings but, more importantly, decouples the PT/Attr
aspects, allowing them to operate independently
while maintaining the model’s awareness of the
entire domain. Weight reconstruction only utilizes
specific product type and attribute sub-matrices.
This enables parameter sharing on a fine-grained
(PT/Attr) level instead of shared across all domains,
and strengthens domain-relevant knowledge trans-
fers. Furthermore, we introduce a life-long distil-
lation scheme based on the factorized adapter, to
effectively boost underperforming or totally new
domains while avoiding catastrophic forgetting of
existing well-performing domains.

Our main contributions are summarized as:
• To our knowledge, DALLA is the first work to

study the open-world life-long AVE task and the
first time to introduce model parameter saving for
scale-up and life-long attribute value extraction.

• We propose the domain-aware factorized adapter
module, along with its distillation strategy, to en-
able an Attribute Value Extraction (AVE) model
that is scalable on vast and expanding data. The
proposed model is robust against catastrophic for-
getting, domain contamination, and noisy data,
while also achieving performance on continually
unseen data.

• We conduct extensive experiments to show our
superiority in parameter efficiency and state-
of-the-art robustness performance on the open-

world AVE task compared with prevalent and
latest baselines.

2 Domain-Aware Life-long Adapter

Problem formulation: We address the attribute
value extraction (AVE) problem by regarding it as
a sequential tagging problem, as a popular choice.
Based on the BIO schema , AVE assigns a sequence
of labels Y = [y1, ..., yNtoken

] to a given product
profile sentence X = [x1, ..., xNtoken

] with Ntoken

tokens, given a product type (PT) and an attribute
(Attr). We take the combination of a product type
and an attribute as a domain (PT,Attr). Given
the domain, an AVE model should mark out all the
entities in the product profile as attribute values.
An entity is a span of tokens e = [xi, ...xj ](1 ≤
i ≤ j ≤ Ntoken). Specifically, the first token of
an entity mentioned in the sentence is labeled as
B, the other tokens inside that entity mention are
labeled as I , and the non-entity tokens are labeled
as O.
Open-World Life-Long AVE Task: Previous
works (Wang et al., 2020; Yan et al., 2021; Yang
et al., 2022) show remarkable performances on
closed-world data but fail to address the concern
of life-long learning capabilities on the open-world
data, which keeps evolving on either attribute value
or domain set. Similar to most previous works,
directly retraining with open-world data leads to
catastrophic forgetting.

Unlike closed-world settings, for open-world
life-long AVE task, we are inspired by (Ke and
Liu, 2022) and seek to incrementally learn a model
f with T sequential domains D = {Di}Ti=1: f :
X ×D → Y , namely a sequential learning process
(f(X,D1) → Y D1 , ..., f(X,DT ) → Y DT ). Each
domain is regarded as a unit dataset absorbed by f
for training and testing.

An ideal solution for the open-world, life-long
AVE task requires: (1) Scalability: the model can
provide cost-effective training on large-sized and
number-increasing domains. We seek parameter
efficiency by a domain-aware factorized adapter,
depicted in Section 2.1. (2) Robustness: the model
can overcome catastrophic forgetting and domain
contamination during evolving training. We de-
couple sub-matrices for PTs and Attr for condi-
tional parameter sharing and allow each PT/Attr
sub-matrix to update independently to avoid con-
tamination and propagation, detailed in Section
2.1. Furthermore, we distill knowledge through
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the factorized sub-matrices for knowledge forget-
ting prevention and similar PTs/Attrs association,
presented in Section 2.2. (3) Generalizability: the
model is applicable to unseen data. We will use
domain-aware sub-matrices to enable unseen do-
main extraction in Section 2.2.

2.1 Parameter Efficiency via Domain-Aware
Factorized Adapter

ALBERT (Lan et al., 2019) is a compressed BERT
(Devlin et al., 2018). ALBERT employs com-
pression techniques, including (1) vocabulary em-
bedding layer factorization; and (2) training one
transformer encoder layer, and subsequently shar-
ing the encoder parameters among the remaining
layers. To compensate for the performance sac-
rifice of ALBERT after compression, we choose
ALBERTxlarge as the basic model, wedged the
proposed domain-aware factorized adapter, shown
in the right part of Figure 2. Therefore, DALLA
can retain ALBERT’s compression strategy as well
as enjoy expressive contextual embedding com-
patible with BERT. Furthermore, to alleviate the
model training burden, we follow the adapter tun-
ing (Houlsby et al., 2019; Mahabadi et al., 2021)
by freezing the original model while only tuning
the adapter module.

Figure 1: Adapter layer factorization and reconstruction.

Factorization for Parameter Saving: Weight fac-
torization plays an important role in model com-
pression (Panahi et al., 2021; Chen et al., 2021),
which uses singular value decomposition (SVD) to
compress the learned model weights. With SVD,
the learned matrix is factorized into three matri-
ces (U, S, V ), where S is usually a non-trainable
identity matrix and absent during training. The mul-
tiplication of these smaller matrices will approxi-
mate the original one with fewer total parameters
to achieve the model parameter saving. Given a
matrix W ∈ RHi×Ho , we use the low-rank approx-
imation via SVD: W ≈ UV ⊤, where U ∈ RHi×r,

Figure 2: Factorized adapter layer integration.

V ∈ Rr×Ho , and r is the rank of matrix W , Hi

and Ho are the input hidden embedding size and
output hidden embedding size. The reduced size
will be HiHo − (Hir + Hor). For all domains
included in the model training dataset, we con-
struct sub-matrices for all mentioned PT and Attr
as UPT = {UPTi}Ni=1 and VAttr = {VAttrj}Mj=1,
where N and M are the numbers of PTs and At-
trs. For a single domain (PTi, Attrj), the recon-
struction of W (shown in Figure 1), denoted as
W ′ = UPTiV

⊤
Attrj

, plays the same role with W in
the original network.

If the model is facing scale-up domains, we can
maintain existing sub-matrices for well-performing
domains or add new sub-matrices corresponding
to the new domains. The creation of multiple PTs
and Attrs is shown in Figure 1. We first construct
and randomly initialize sub-matrices for all PTs
(e.g. sofa, shoes, mugs) and Attrs (e.g. mate-
rials, size, color). When taking in the sample
{“sofa”, “color”, profile}, the model only learns
sub-matrix Usofa and Vcolor rather than the origi-
nal parameter layer W . Moreover, the sub-matrices
of the other PTs and Attrs are kept untouched until
the model deals with samples associated with them.
Factorized Adapter Integration: To strike a bal-
ance between the efforts invested in model training
and the need for rapid adaptation to various tasks,
researchers (Houlsby et al., 2019; Mahabadi et al.,
2021) have proposed the integration of small mod-
ules, known as adapter layers, into a pre-trained
model. These adapter layers serve as a middle
ground between full fine-tuning and keeping the
pre-trained weights fixed. The weights of the origi-
nal network are untouched, whilst the new adapter
layers are initialized at random. In adapter-tuning,
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Figure 3: Illustration of the two-stage pipeline training. In the closed-world training, the model is trained on
seen-domain samples and only updates the domain-relevant sub-matrices (highlighted in the yellow box), along
with their corresponding layer norm. The remaining sub-matrices are kept unchanged. In the open-world life-long
training, the model deals with new data. A sub-matrix update scheme for four types of new domain cases is
employed to demonstrate how the model maintains historical knowledge while continuously learning from the
new data. Newly created sub-matrices are marked in red, while the existing sub-matrices from seen domains are
indicated in yellow. The grayed sub-matrices are irrelevant PTs and Attrs, so they are not activated under each
setting.

the parameters of the original network are frozen
and therefore shared. This means that the total
model size grows relatively slowly when more do-
mains are added. As shown in the left part of Fig-
ure 2, the trainable parameters are illustrated in
yellow. When faced with a given sample, only the
factorized adapter consisting of the corresponding
sub-matrix and layer norm of its PT and Attr is
trainable.

As shown in Figure 2, we conduct SVD on the
single adapter layer, W , and replace it with domain-
aware sub-matrices, (UPT ,VAttr) for domain-
aware W ′ restoration. UPT , and VAttr are a set
of weights to squeeze domain-aware information
through a small-size intermediate layer. As dis-
cussed in the previous works (Choi et al., 2020;
Liu et al., 2021), layer norms in the pre-trained
model store the mean and variance of the layer
input, which can be utilized as a proxy to asso-
ciate historical knowledge for life-long learning.
To capture fine-grained association, we introduce
the factorized norm layer sets NPT = {NPTi}Ni=1

and NAttr = {NAttrj}Mj=1 for UPT , and VAttr, re-
spectively. NPTi is stacked right after UPTi to
record the PTi’s input statistics, so as to NAttrj

and VAttrj .

2.2 Life-Long Learning via Adaptive
Distillation

We cast DALLA’s training strategy on open-world
life-long AVE into a two-stage process, as shown

in Figure 3: (1) closed-world training stage, where
we first feed the domain-aware factorized adapter
with a number of seen domains that are pre-defined
in a closed-world fashion; (2) open-world life-long
training stage, where we conduct the adaptive dis-
tillation on unseen domains in an open-world fash-
ion to mimic the evolving domains. To avoid
catastrophic forgetting and benefit from similar
PTs/Attrs associations, we adopt knowledge distil-
lation based on the corresponding PTs/Attrs sub-
matrix, which can further alleviate the cold start
issue faced with new domains. The distillation
allows parameter sharing conditioned on specific
PT/Attr which prevents the domain contamination
by only allowing relevant sub-matrix updates while
leaving the remaining sub-matrices untouched.

We denote fθ̂ as the model learned in closed-
world training stage by

Lt(D, X, Y ) = Entropy(Y, fθ̂(UPT ,VAttr)
(X)),

(1)
where D = (PT,Attr). θ̂(UPT , VAttr) means
parameter updates on PT and Attr sub-matrices
related to the domain (PT,Attr). For the open-
world life-long training stage, we initialize the
teacher and the student model as fθtea = fθstu =
fθ̂ = argminθ̂ Lt.

To better understand the association and distinc-
tion on both coarse-grained (domain) level and
fine-grained (PT/Attr) level, the distillation loss
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contains two parts: (1) domain feature transfer:

Lfea(X) =
1

N

N∑

n=1

−fθtea,n(X) log fθstu,n(X),

(2)
where X ∈ X , containing N entities. f·,n(X) =
f·(UPT ,VAttr)

,n(X) means the output of entity n

given a domain (PT,Attr); (2) factorized norm
layer transfer:

Lnorm(Σx,Σ
′
x) =

(µx − µ′
x)

2 + σ2
x

2σ′2
x

− log
σx
σ′
x

− 1

2
,

(3)
which is the Kullback-Leibler (KL) divergence of
two Gaussian distributions to match the statistics
Σ′ = (µ′, σ′) stored in the norm layers of the
teacher and the statistics Σ = (µ, σ) computed for
the student output at the same norm layers of the
teacher, where x ∈ {NPT

⋃NAttr}. The updated
student model is θ̂stu = argminθstu αLt+β1Lfea+
β2Lnorm, where α, β1, and β2 are coefficients.

When considering the new data for life-long
learning, we first distinguish four different cases
of unseen domains, as shown in the right part of
Figure 3. We adopt different distillation schemes
adaptively for each case:
(1) (PTold, Attrold), a seen domain with new val-
ues of existing domains or a new combination of
existing PT/Attr. Distillation associates the histori-
cal knowledge with new values, or help the model
adapt to this new combination, through losses de-
noted in Eq. 2 and 3.
(2) (PTnew, Attrnew), an unseen domain with a
new PT and a new Attr. New PT and Attr sub-
matrices are created and updated without overrid-
ing any already learned knowledge using the objec-
tive in Eq. 1.
(3) (PTnew, Attrold), an unseen domain with a
new PT and an existing Attr. Since we should
create a new sub-matrix for the PT, we cannot di-
rectly distill the knowledge from the teacher but
train the student with the objective denoted in Eq.
1. However, sharing the Attr sub-matrix can alle-
viate cold start problem even though we randomly
initialize the new PT sub-matrix.
(4) (PTold, Attrnew), an unseen domain with a
new Attr and an existing PT. Similar to the case
above, we employ parameter sharing conditioned
on PT to expedite model optimization. The model
only needs to put effort into learning the new Attr
plus subtle updates on the PT sub-matrix.

Models %Para Macro-F1 (P|R) Micro-F1 (P|R)

All-in-One

ALBERT 0.10× 64.1(66.0|62.2) 64.3(65.7|62.9)
ALBERTxlarge 0.55× 70.0(72.1|68.0) 71.2(73.8|68.7)
BERT 1.00× 71.0(73.0|69.1) 71.0(73.5|68.8)
ALBERTft♯ 4.25× 61.8(65.4|58.4) 61.7(64.5|59.2)
BERTft 0.68× 72.4(73.9|71.0) 73.8(75.1|72.7)
SUOpenTag 2.01× 71.1(74.2|68.1) 72.1(75.2|69.2)
DALLA 0.74× 74.0(75.6|72.5) 75.1(76.4|73.8)

One-for-Each

BERTAda 42.72× 76.5(78.9|74.2) 76.9(78.9|75.0)
ALBERTAda 19.09× 75.4(77.2|73.6) 77.5(79.1|76.0)

Table 1: Performance of all models. %Para indicates
the percentage of trainable parameters. We take BERT
(110M) as 1.0. The bolded text indicates the best score,
while the underline is used by the second-best model.

3 Experimental Settings

Dataset and Baselines Details about dataset are
interpreted in Appendix A. We compare our model
with two groups of baselines, including the All-in-
One and the One-for-Each. All baselines and the
implementation details are presented in Appendix
C and Appendix B. We additionally discuss the pa-
rameter saving estimation after implementing SVD
on the different model components in Appendix D.

4 Evaluation of Parameter Efficiency

Model Effectiveness and Efficiency We evaluate
the model parameter efficiency in Table 1 via dis-
cussion on three comparisons: (1) Different back-
bone model (ALBERT, BERT, ALBERTxlarge)
comparison necessitates the trade-off between
parameter saving and decent performance; (2)
Whether and where to wedge the factorized layer
(BERT vs. BERTft and ALBERT vs. ALBERTft♯ ,
BERTft vs. ALBERTft♯) raise the concern that
the position for SVD indeed affects the param-
eter efficiency because single factorized adapter
layer in BERTft surpasses BERT, ALBERT and
ALBERTft♯ ; (3) Scale-up techniques comparison
(Adapter in BERTft vs. Attention in SUOpenTag)
reveals the superiority of factorized adapter. From
all of the above comparisons, we observe that tech-
niques employed in DALLA(ALBERTxlarge back-
bone model with single factorized adapter layer)
address both the trade-off concern and scale-up
advantage effectively.

From Table 1, DALLA attains almost the best on
most of the evaluation metrics, especially for the
Marcro-F1 and Micro-F1 with great margin against
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the second best to be 1.6% and 1.3%. Apart from
showing superiority among the All-in-One group,
our model exhibits competitive performances to the
two methods from the One-for-Each group, which
are regarded as the upper bounds. Compared with
BERT and ALBERTxlarge, better achievements in
DALLA and the BERTft indicate the benefits
from factorization to decouple PT and Attr allow-
ing conditional parameter sharing. Therefore, the
association and distinction among domains can be
well captured and uncovered through the update
or distillation of the PT-specific/Attr-specific sub-
matrices. The observed increase in parameters of
ALBERTft♯ is an intentional outcome, as excessive
use of factorization can indeed lead to issues. As
depicted in Table 6, when factorization is applied to
Query, Key, Value, Dense, and FFN components in
the transformer encoder, the parameter size actually
expands rather than contracts.

Figure 4 reflects the trade-off between parameter
efficiency (performance over per trainable parame-
ter) and performance achievements across different
model variations. All models in One-for-Each are
located in the bottom-right corner, which implies
they are good at achieving decent performance
since model training is tailored for each domain.
In the group of All-in-One, ALBERT seems to
have a great advantage over the others in parameter
efficiency due to its model compression strategy.
However, it sacrifices too much performance (the
worst F1 in Table 1). DALLA and BERTft are
the first and the second best models obtaining the
trade-off between performance and parameter ef-
ficiency in Figure 4. They all are qualified to be
scale-up models. But under the setting of open-
world life-long AVE, evolving data challenges the
stability of most models in the All-in-One, because
of a series of issues including weight overriding,
catastrophic forgetting, and domain contamination
when a single model is shared by all domains.

5 Evaluation of Life-Long Adaptation

Alleviating Catastrophic Forgetting We first
study DALLA’s capability of overcoming catas-
trophic forgetting and domain contamination. To
evaluate catastrophic forgetting alleviation, we split
the domains into seen and unseen domains. Ini-
tially, we train the model on the seen domains dur-
ing the closed-world training stage. Subsequently,
we proceed with open-world training by conduct-
ing n=3 consecutive training sessions on expanding

sets of disjoint unseen domains. We then record the
performance drops on seen domains after each set
of open-world training sessions. There are two set-
tings in the open-world training, one is when no ad-
ditional seen domain data is available (NR = 0%,
no additional seen samples; unseen data only). We
aim to use this setting to test the direct knowledge
transfer capability to unseen domains. The other
setting also includes new values from seen domains
(NR = 10%, 10% additional seen samples). We
aim to use this setting to test if the model can be as-
sertive in learning new knowledge while not forget-
ting the knowledge on the existing seen domains.

Figure 4: Model parameter efficiency. The top-right
corner is the ideal area. The scale/color of each circle
is calculated using the multiplication of each model’s
performance rank (x-axis) and parameter efficiency rank
(y-axis).

From the left part of Table 2, DALLA shows its
superiority in controlling the forgetting score after
several runs on unseen domains with the lowest
scores in average forgetting. Although BERTft

shows comparable performance with DALLA in
terms of parameter efficiency, BERTft along with
other baselines suffer from severe catastrophic for-
getting because a great portion of parameters is
shared. When we increasingly add new domains,
DALLA still maintains decent performance on seen
domains, which shows its advantage in overcoming
domain contamination, compared with the others.
When comparing the performance of models with
NR = 0% and NR = 10%, it is important to note
that for the latter, all models tackle the forgetting
issue by retrieving their knowledge from seen do-
main samples. However, DALLA surpasses the
other models and achieves the best performance in
terms of preserving performance.
Handling Various Unseen Cases We evaluate the
model’s life-long adaptation ability on unseen do-
mains, as shown in the right part of Table 2. Based
on the four types of unseen domains, discussed
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NR Macro-F1 on all seen domains & average forgetting ↓ ∆ Macro-F1 on four types of unseen domains

Stage
# domains

Closed-World
(400)

Open-World-1
(100 unseen)

Open-World-2
(200 unseen)

Open-World-3
(300 unseen)

(PTold, Attrold)

(10 unseen)
(PTnew, Attrnew)

(10 unseen)
(PTnew, Attrold)

(10 unseen)
(PTold, Attrnew)

(10 unseen)

BERT 0% 77.21 74.38 ↓ ∆2.83 71.19 ↓ ∆6.02 68.54 ↓ ∆8.67 76.83 82.69 70.74 76.02
BERTft 0% 79.06 77.09 ↓ ∆1.97 75.07 ↓ ∆3.99 72.86 ↓ ∆6.20 80.93 84.44 75.22 78.03

SUOpenTag 0% 78.32 76.15 ↓ ∆2.17 74.31 ↓ ∆4.01 71.28 ↓ ∆7.04 78.57 83.94 73.84 77.11
MAVEQA 0% 92.36 90.83 ↓ ∆1.53 88.27 ↓ ∆4.09 86.00 ↓ ∆6.36 97.24 91.20 80.49 88.71
DALLA 0% 79.15 77.48 ↓ ∆1.67 75.85 ↓ ∆3.30 74.35 ↓ ∆4.80 81.36 85.07 76.49 79.27

BERT 10% 77.21 75.43 ↓ ∆1.87 72.14 ↓ ∆5.07 70.99 ↓ ∆6.22 75.44 ↓ ∆1.39 82.14 ↓ ∆0.55 69.36 ↓ ∆1.38 76.05 ↑ ∆0.03
BERTft 10% 79.06 78.39 ↓ ∆0.67 76.72 ↓ ∆2.34 75.51 ↓ ∆3.55 80.75 ↓ ∆0.18 85.02 ↑ ∆0.58 75.39 ↑ ∆0.17 78.76 ↑ ∆0.73

SUOpenTag 10% 78.32 77.02 ↓ ∆1.30 75.03 ↓ ∆3.29 73.47 ↓ ∆4.85 77.02 ↓ ∆1.55 84.62 ↑ ∆0.68 73.65 ↓ ∆0.19 77.35 ↑ ∆0.24
MAVEQA 10% 92.36 90.99 ↓ ∆1.37 89.33 ↓ ∆3.03 86.85 ↓ ∆5.51 97.33 ↑ ∆0.09 91.07 ↓ ∆0.13 81.14 ↑ ∆0.65 87.62 ↓ ∆1.09
DALLA 10% 79.15 78.27 ↓ ∆0.88 77.28 ↓ ∆1.87 76.57 ↓ ∆2.58 82.84 ↑ ∆1.48 85.93 ↑ ∆0.86 76.88 ↑ ∆0.39 80.25 ↑ ∆0.98

Table 2: Average macro F1 and average forgetting on all seen domains (left) and life-long learning on four different
types of unseen domains (right). Left: for each model, we conduct closed-world training on 400 seen domains
and we continue the model training by progressively introducing accumulating unseen domains. This process is
repeated three times, with each iteration adding 100 additional distinct domains. NR is the portion of reserved
samples in each seen domain. ↓ ∆ denotes the performance drop on seen domains. Right: we train the models on
100 seen domains and retrain on 10 unseen domains for each case as described in 2.2. ↓ means performance drop
from NR = 0% to 10% on each model, while ↑ indicates the performance gain.

in Figure 3, we present two groups of the results:
direct transfer to the unseen (NR = 0%) and trans-
fer on both unseen domains and new values of
seen domains (NR = 10%). For the first group re-
sults, DALLA shows the second-best performance
among other baselines, because MAVEQA, orig-
inated from where the dataset comes, achieves
nearly 99% on all attributes as reported in the pa-
per (Yang et al., 2022). We discussed more details
about MAVEQA in the Appendix C.

The second group exhibits not only the macro-
f1 scores but also the performance changes con-
sidering the effect of adding in a small portion
of seen domain examples. DALLA improves
the performance while the other baselines suf-
fer from decreased performance in the case of
(PTold, Attrold). This suggests that the other base-
lines suffer from contamination from the seen
domain samples, attempting to maintain perfor-
mance, let alone strengthen desired knowledge
transfer to enhance the performance of the do-
mains that consist of existing PTs and Attrs. We
see BERT and MAVEQA loss score in the case
of (PTnew, Attrnew). The others use their pro-
posed domain-aware component to build specific
knowledge for the totally new domains, while
they directly concatenate PT and Attr with the
model input is insufficient to capture the cur-
rent domain well. Compared with BERTft and
SUOpenTag, DALLA still shows the superiority of
domain-aware ability due to independent updates
on PT/Attr sub-matrices. In the remaining two
cases, (PTnew, Attrold), and (PTold, Attrnew),
we find learning on new PTs with existing Attrs is

harder than new Attrs with existing PTs according
to smaller gains and performance drop shown in
the case of (PTnew, Attrold). In fact, the value
form for the same Attr among different PTs can be
dramatically different. e.g. Size for Shoes should
be numerical like 7/7.5/8, while Size for Shirt takes
values in characters such as XS/S/M/L/XL. More-
over, we observe from the data that many attributes
can be shared by tens to hundreds of product types
but much sparser for product types to attributes,
which implies learning well on Attr sub-matrices
is harder than that on PT sub-matrices. If the Attr
sub-matrix is underfitting, directly adopting it as
initialization still requires huge efforts in model
training instead of providing a beneficial warm-up.

6 Analysis

Robustness to Noises We further study a problem
on model robustness to noisy training values in
Table 3. We conduct noise manipulation on the
dataset, including randomly removing values and
sliding BIOE tags (with a window size of 1) on
both 10% seen and 10% unseen data. Compared
with SUOpenTag on both seen, unseen, and overall
domains, DALLA shows 0.9% - 1.91% lower per-
formance drop, even double efforts in minimizing
the error propagation.
Sub-Matrix Visualization We visualize PT/Attr
sub-matrices to uncover the associations among
PTs/Attrs. Note that those sub-matrices start with
randomly initialized parameters and are learned in
a purely data-driven fashion, rather than being as-
signed manually or under any assistance of their
PT/Attr name semantics. From Figure 5(top), the
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Models Overall Seen Unseen

SUOpenTag 66.88|70.04 71.29|73.04 63.94|67.99
w. Noise -4.04|-4.41 -6.03|-6.19 -2.19|-3.44

DALLA 69.03|75.38 74.38|77.39 66.48|72.51
w. Noise -2.13|-3.20 -4.29|-4.89 -2.10|-3.34

Table 3: Robustness to the noise data. Results are
performance drops after adding in noise data under seen,
unseen, and overall domains with their Macro-F1|Micro-
F1 scores. The less is the better for error robustness.

Figure 5: Visualization of Attribute (top) and Product
Type (bottom) sub-matrices. Desired clusters are circled
in green, while the red one is an abnormal cluster.

clusters marked in the green circle indicate well-
learned attribute type semantics (e.g. "Materials",
"Pan Materials", and "Core Materials"), via learn-
ing to extract their values. In Figure 5(bottom), we
find that similar PTs are in proximity to each other
(e.g. a cluster of food PTs in the lower right cor-
ner), which is very encouraging given no explicit
prior knowledge of PT name semantics. We also
observe that some irrelevant PTs in the red circle
are close to each other (e.g. "Baby and Toddler Out-
fits" and "Drawing and Painting Kits"), mostly due
to random initialization and lack of proper train-
ing on those PTs when very few data points are
available. We expect more discriminative PT em-
beddings could be obtained with more incoming
data, given our life-long learning setting.

6.1 Ablation study on adaptive distillation

In this section, we discuss the importance of dis-
tillation and what should be distilled by ablation
study. As shown in Table 4, we test the distilla-
tion ability by measuring forgetting that occurs on
average in the seen domains after we distill differ-

ent parts (norm layer, sentence feature embedding,
encoder logits, and the weight sub-matrices) to dis-
till. The impact of distilled knowledge from feature
embedding and norm layer on the performance is
outstanding among all alternatives, which indicates
their importance in incremental open-world AVE.
Therefore, we test the effectiveness of their combi-
nation and report the best score in the last row of
Table 4.

Average forgetting (%)

Stage
# domains

Open-World-1
(100 unseen)

Open-World-2
(200 unseen)

Open-World-3
(300 unseen)

w.o. Ld -3.02 -5.31 -6.55
w. Lnorm -2.25 -3.87 -5.34
w. Lfea -1.83 -3.36 -4.93
w. Llogit -2.66 -4.08 -5.78
w. Lw -3.00 -4.91 -6.93

w. Lnorm+fea -1.67 -3.30 -4.80

Table 4: Average forgetting under different distillation
methods. w.o. Ld is without the usage of any distillation
loss. w. L∗ means employing different parts (norm
layer, sentence feature embedding, encoder logits, and
the weight sub-matrices) in the model to calculate the
distillation loss.

6.2 Error Analysis

After ranking all domains’ performance, we ob-
serve two major error types. First, since training
samples are imbalanced among domains, some do-
mains consist of a limited number of samples, re-
sulting in their relevant PT and Attr sub-matrices
being inadequately learned. These domains usu-
ally suffer overwriting by other predominant do-
mains. Second, attribute complexity affects the
performance, because some attributes participate in
multiple domains, such as "size" and "type". Since
we maintain a uniform sub-matrix size for each at-
tribute, those attributes with diverse surface names
across different PTs present challenges. Learning
a versatile Attr sub-matrix capable of accommo-
dating all variations of surface names proves to be
difficult, particularly for attributes like "size" and
"type".

We conduct experiments to show even suffer-
ing errors DALLA still can control them compared
with other baselines, as shown in Table 5 and Ta-
ble 6, DALLA exhibit its superiority with lowest
performance drop when handling rare or complex
domains on open-world scenarios.
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Average forgetting (%)

Stage
# domains

Close-world
(rare domains)

Open-World-1
(20 unseen)

Open-World-2
(30 unseen)

Open-World-3
(40 unseen)

DALLA 57.39 -3.28 -4.22 -6.07
MAVEQA 64.39 -3.92 -5.44 -8.25

SUOpenTag 53.29 -4.02 -5.97 -9.01

Table 5: Error Control on rare domains. Rare domains
are those with #sample ∈ [100, 150]

Average forgetting (%)

Stage
# domains

Close-world
(complex domains)

Open-World-1
(20 unseen)

Open-World-2
(30 unseen)

Open-World-3
(40 unseen)

DALLA 64.39 -2.19 -3.48 -5.24
MAVEQA 67.85 -3.11 -4.27 -6.66

SUOpenTag 59.36 -3.92 -6.08 -8.95

Table 6: Error control on complex domains. Complex
domains comprise attributes with a high diversity of
distinct values, typically ranking within the top 10 in
terms of variety.

7 Related Work

Attribute Value Extraction Sequence tagging is
one of the popular choices for attribute value ex-
traction, where existing works are mostly improv-
ing scalability and effectiveness when faced with
large-volume data. SUOpenTag (Xu et al., 2019)
employs BERT as the encoder to capture profile
embedding and attributes. TXtract (Karamanolakis
et al., 2020) encodes the hierarchical embedding
of product type for pt-specific extraction. AdaTag
(Yan et al., 2021) proposes a mixture of expert and
hypernetwork to capture the attribute-aware fea-
tures. AVEQA (Wang et al., 2020) regards AVE
as a question-answering task extracting the answer
span. MAVE (Yang et al., 2022) devises the global-
local connection to enable the model to be aware
of different parts of the profile. Shinzato (Shinzato
et al., 2022) designs to expand queries for effec-
tively improving rare attributes’ performance. Even
though these models can handle huge data, it is still
underneath the iceberg to maintain model stability
and avoid catastrophic forgetting when faced with
incremental data in an open-world fashion.
Adapter for Parameter Efficiency Incorporating
adapter layers into neural networks (Houlsby et al.,
2019; Mahabadi et al., 2021; Hu et al., 2021) has
garnered significant attention, particularly in the
era of large language models (Touvron et al., 2023;
Chowdhery et al., 2023; Ye et al., 2023). As the
size of model parameters experiences exponential
growth with the evolution of language models, em-
ploying an over-parameterized neural network for
downstream tasks necessitates leveraging advanta-
geous low-rank properties during the training pro-

cess to facilitate rapid adaptation. The low-rank
factorized adapter can save trainable parameter size
to speed up model training. We further adjust the
usage of the low-rank matrix by implementing task-
specific semantic associations (PTs and Attrs) to
scale up model capacity and foster life-long adapt-
ability.

8 Conclusion

In this paper, we study the open-world life-long at-
tribute value extraction task and devise a factorized
life-long adapter module to enable model scalabil-
ity and robustness. Factorized adapter decouples
product type and attribute, allowing domain inter-
action on either PT-level or Attr-level. Therefore,
the extraction model is domain-aware but updated
independently for de-contamination. Moreover, we
endow the model with life-long adaptation ability
by distilling the decoupled information to avoid
catastrophic forgetting. DALLA can achieve de-
cent performance on the benchmark with the ability
to control forgetting and error propagation and only
consume affordable parameters.

9 Limitations

After decoupling PT and Attr, we can obtain do-
main associations through parameter sharing con-
ditioned on PT/Attr to warm up model training on
unseen domains that have associated PTs/Attrs. To
learn solid associations, we expect each sub-matrix
to be well learned by sufficient data points. Other-
wise, the knowledge transfer and performance on
unseen domains with associated PTs/Attrs towards
worse.

Furthermore, even if the model is unaware of the
specific names of PTs (Product Types) and Attrs
(Attributes), DALLA is capable of capturing the
relationships inside PTs and Attrs. To alleviate
the learning burden on the model, in future work,
we investigate a hypernetwork approach consistent
with lifelong learning. This approach encodes the
semantic meaning of PTs and Attrs into the creation
of sub-matrices, enabling the model to leverage this
encoded information during open-world life-long
training.
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A Datasets

We evaluate our model on the public Multi-source
Attribute Value Extraction (MAVE) dataset (Yang
et al., 2022), which is created from raw values from
Amazon Review pages (Ni et al., 2019). MAVE
contains over 2.2 million products distributed into
1257 different product categories, with 3 million
attribute-value annotations. We further filter do-
mains with a frequency above 100, resulting in a
dataset of 997 domains encompassing 448 PTs and
365 Attrs.

B Implementation Details

We split the dataset by separating samples under
each domain into train:eval:test = 8:1:1,(The ra-
tio is referred from MAVE (Yang et al., 2022))
We conduct experiments with two-stage trainers:
closed-world training on only seen domains and
open-world training on either only unseen domains
or unseen+seen domains. For Table 1, we split
the data into 500/400 seen/unseen domains. We
make a split on 500 seen domain data with a ra-
tio 9:1. 90% samples are used for closed-world
training while 10% samples are used in open-world
training as the new value cases of the domain type,
(PTold, Attrold). 400 unseen domains comprise
the training samples of the other three new domain
types. The evaluation is performaned on all test
samples of each domain.

Slightly different in Table 2, we only have 400
seen domains to ensure sufficient unseen domains
participating in the three incremental trainings
(from 100 to 300 unseen domains) at the open-
world stage. And we also set apart 10% of seen
domains for NR = 10%. Another difference is the

testing set, containing only the seen domain testing
samples to evaluate forgetting scores.

We experimentally use the ALBERTxlarge as
the backbone. We optimize using SparseAdam
(Makhzani and Frey, 2013) to enable a single sub-
matrix update whose learning rate is increased lin-
early over the first 10% of the steps and then de-
cayed linearly to zero. All runs are conducted
on 4 V100s with a batch size of 32. For each
dataset and algorithm, we set the hyperparameters
(α = 0.6, β1 = 0.4, β2 = 0.3) according to the
best model according to Macro-F1 on the valida-
tion set. The sub-matrix hidden size is r = 32.
Because, after evaluating a list value of r, 32 is
the one that balances between efficient training and
SOTA performance achievements. All the results
are the average score after 5 runs.

C Baselines

We compare our model with two groups of base-
lines. If the model trains multiple times each time
targeting a single domain, we group these methods
into the One-for-Each group. Otherwise, if trained
on all domains at once, the models fall into the
All-in-One group.

The One-for-Each training strategy is applied to
the following: (1) BERTAda, an implementation of
the work in Houlsby et al. (2019). (2) ALBERTAda,
similar implementation of BERTAda with the mod-
ification that we wedge the adapter into the single
encoder for replication in ALBERT (Lan et al.,
2019).

The All-in-One group includes: (1) ALBERT: a
compressed BERT (Devlin et al., 2018) taking in
the concatenation of domain names and the product
text profile. (2) BERT: vanilla baselines varying in
model size, fed with the concatenation of domain
and profile. Empirically, we concatenate the last
two layers as the final features for classification.
(3) ALBERTft♯ : we apply the weight factorization
on all key components (Query, Key, Value, Dense,
Feed-forward layers) forming the transformer en-
coder. During the life-long training, we only em-
ploy Lt and Lfea and remove Lnorm considering
the model training expense. (4) BERTft: we con-
duct the factorization on the linear layer above
BERT and before the label classification layer. The
input to this linear layer is the concatenation of
the last two feature layers in BERT. This ensures
the same backbone setting with the baseline BERT
and provides a comparable size feature representa-

8641



Figure 6: An example to show parameter saving under three model training strategies: All-in-One, One-for-Each,
Domain-aware.

tion with DALLA, which utilizes ALBERTxlarge

with a hidden size of 2048. (5) SUOpenTag (Xu
et al., 2019): enable the model to be aware of the
attention of attributes to the profile. The model
shows its scalability on the large-volume dataset
with well-learned attention between attributes and
values’ context. (6) MAVE (Yang et al., 2022): a
multi-source attribute value extraction model via
question answering, modeling the products with
structure and long profiles. Compared with its pre-
liminary work AVEQA (Wang et al., 2020), it ad-
dresses mutual attention of the local separate parts
(product type, attribute, title, profile) in the long
text. However, MAVE dataset is constructed by
AVEQA and annotation rules. That is why the eval-
uations of AVEQA and MAVEQA on MAVE are in
high scores approaching 100% as reported, and we
only adopt it as a baseline when evaluating catas-
trophic forgetting rather than performance on the
extraction task.

Our model belongs to the All-in-One group. The
comparison with these two groups of baselines is to
verify the effectiveness of model de-contamination
when performances are approaching the One-for-
Each model, and model life-long learning ability
with high parameter efficiency when superiority is
exhibited among All-in-One models.

D Parameter Saving

We describe the parameter-saving computation de-
tails. Each adapter layer has two sets of projection
matrices. One is UPT ∈ RN×Hi×r, the other is
VAttr ∈ RM×r×Ho . N and M are the number of
PTs and Attrs included for training. 2r + 2Ho pa-
rameters are used for factorized norm layer NPT

and NAttr. The total number of parameters for
factorized Adapters across training domains is
N ·(Hi ·r+2r)+(r ·Ho+2Ho) ·M , which scales
linearly with the hidden layer size r times the num-
ber of PTs or Attrs. However during each run for a
specific domain, the trainable parameter of the fac-
torized adapter is 1·(Hi ·r+2r)+(r ·Ho+2Ho)·1.
The rest are unavailable for gradient modifica-
tion, which contributes to the training efficiency
of DALLA.

We provide an example of how to save model
size through factorization in Figure 6. We select 10
PTs and 10 Attrs, which can be combined to form
a minimum of 10 and a maximum of 100 domains.
We conduct SVD on different model components,
including the linear layer, transformer encoder, and
adapter. All of these components are integrated into
a backbone model based on cased BERT, which
consists of 12 layers and a hidden size of 768. After
integrating these components, we conduct model
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training using three different strategies: All-in-One,
One-for-Each, and Domain-aware. If we apply
SVD on a linear layer or a transformer encoder,
the domain-aware model, which implements the
parameter factorization, results in significant pa-
rameter reduction. This reduction in parameters is
considerably less than that observed in the One-for-
Each model and approaches the parameter count
of the All-in-One model. Excessive factorization
can have a detrimental impact on performance, as
evidenced by the degradation of parameter savings
when applying SVD to all key components in an
encoder, compared to applying it solely to a lin-
ear layer. Table 1 reveals that ALBERTft exhibits
the poorest performance, whereas BERTft ranks
as the second-best performer. Factorized Adapter
demonstrates a nearly equivalent parameter size to
that of the linear layer after implementing SVD.
However, it excels in overcoming the challenge of
catastrophic forgetting, as evidenced by the results
presented in Table 2.
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