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Abstract

Although large language models (LLMs) have
demonstrated remarkable performance, the lack
of transparency in their inference logic raises
concerns about their trustworthiness. To gain
a better understanding of LLMs, we conduct
a detailed analysis of the operations of atten-
tion heads and aim to better understand the
in-context learning of LLMs. Specifically, we
investigate whether attention heads encode two
types of relationships between tokens in natu-
ral languages: the syntactic dependency parsed
from sentences and the relation within knowl-
edge graphs. We find that certain attention
heads exhibit a pattern where, when attending
to head tokens, they recall tail tokens and in-
crease the output logits of those tail tokens.
More crucially, the formulation of such seman-
tic induction heads has a close correlation with
the emergence of the in-context learning abil-
ity of language models. The study of semantic
attention heads advances our understanding of
the intricate operations of attention heads in
transformers, and further provides new insights
into the in-context learning of LLMs.

1 Introduction

In recent years, the transformer-based large lan-
guage models (LLMs) (Kaplan et al., 2020; Brown
et al., 2020; Touvron et al., 2023; Bubeck et al.,
2023) have rapidly emerged as one of the main-
streams in the field of natural language process-
ing (NLP). While these models demonstrate emer-
gent abilities as they scale (Brown et al., 2020;
Wei et al., 2022), they become less interpretable
due to the vast number of parameters and com-
plex architectures, which emphasizes LLMs’ safety
and trustworthiness (Carlini et al., 2021; Manakul
et al., 2023; Ren et al., 2024). Thus, beyond classi-
cal gradient-based explanations (Simonyan et al.,
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2013; Li et al., 2015), and perturbation-based ex-
planations (Ribeiro et al., 2016; Lundberg and Lee,
2017; Sundararajan et al., 2017), recent studies
in mechanistic interpretability (Cammarata et al.,
2020; Elhage et al., 2021) attempt to reverse engi-
neer the computations in transformers (particularly
attention layers).

The mechanistic interpretability on transformer
language models was first performed by Elhage
et al. (2021). They disentangle two circuits from
the operation of each attention head in transform-
ers: Query-Key circuit (determines which token
the head prefers to attend to) and Output-Value cir-
cuit (determines how the head affects the output
logits of the next token). Then, Elhage et al. (2021)
discover that some attention heads prefer to search
for a previous occurrence of the current token in
context and copy the next token associated with
that occurrence, as shown in Figure 1. The atten-
tion heads performing such operations are termed
induction heads. Taking a step further, Olsson et al.
(2022); Bansal et al. (2023) have discovered that
the presence of induction heads has a close corre-
lation with the in-context learning (ICL) ability of
LLMs. This finding highlights the importance of
understanding the behavior of attention heads to
the overall learning capabilities of LLMs.

On the other hand, semantic relationships have
a vital importance on natural language understand-
ing and processing. However, Elhage et al. (2021)
only focus on whether the attention heads copy the
attended token, without studying semantic relation-
ships between tokens. Another major limitation of
previous studies is that Olsson et al. (2022) does
not explain the popular few-shot in-context learn-
ing schema. Instead, they study the loss decreasing
along with the increase of token indices. This set-
ting does not fully capture the complete ability of
LLMs to learn from the context.

In this work, beyond simple copying, we delve
deeper into high-level relationships encoded in at-
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Induction head for copying

Semantic induction head for syntactic dependency
Triplet: (pen, mod, nice)

Semantic induction head for semantic relationship
Triplet: (pen, Used-for, writing)

I have a nice pen for writing . He also wants a nice

prefix matching

copying

I have a nice pen for writing . The pen is nice

attend to the head token

raise the tail token following the dependency relationship

I have a nice pen for writing . I can use it

raise the tail token following the semantic relationship

to write

attend to the head token

Figure 1: Induction heads and semantic induction heads. For the sequence “... a nice ... a”, an induction head finds a
place where the current token “a” occurred, attends to its next token “nice” (prefix matching), and then copies “nice”
to the output (copying). In contrast, the semantic induction head raises the output logits of tail tokens (“nice” in the
mod dependency and “writing” in the Used-for relation) when attending to the head token “pen”.

tention heads. We focus on two types of relation-
ships: (1) syntactic dependencies in the sentence
and (2) semantic relationships between entities.
Please refer to Figure 1 for examples. Each rela-
tion is represented as a triplet: (head, relation, tail).
We find that when attending to head tokens, some
attention heads prefer to raise the output logits of
tail tokens associated with specific relations. Such
attention heads encoding semantic relationships are
termed semantic induction heads. Unlike conven-
tional induction heads, semantic induction heads
learn and leverage the semantic relationships be-
tween words to infer the output, thereby providing
a better understanding of the behavior of networks.

Inspired by the study of induction heads and in-
context learning, we further explore the correlation
between semantic induction heads and in-context
learning. We first categorize the in-context learning
ability into three basic levels: loss reduction, for-
mat compliance, and pattern discovery. These three
levels progressively increase in difficulty, with each
subsequent level building upon the achievements
of the previous one. The experimental results are
consistent with our hypothesis, demonstrating the
emergence of three levels of ICL in a sequential
manner. Specifically, we observe the emergence of
loss reduction from the beginning of the training,
followed by the emergence of format compliance at
around 1.6B tokens, and finally, the emergence of
pattern discovery after training on approximately
4B tokens. Moreover, we find semantic induction
heads mainly emerge around the same time as pat-
tern discovery. Based on this finding, we infer that
the emergence of semantic induction heads plays a

crucial role in facilitating the ICL of LLMs.
Our contributions can be summarized as follows.
• We unveil the existence of semantic induction

heads in LLMs that extract semantic relationships
within the context. This discovery deepens the
study of mechanistic interpretability and enhances
our understanding of transformer-based models.

• To study the ICL in LLMs, we categorize it
into three different levels and observe the gradual
emergence of different levels of ICL during the
early training stage of LLMs.

• Through a meticulous analysis of early check-
points in the training of LLMs, we establish a close
correlation between semantic induction heads and
the occurrence of ICL.

2 Related Works

In this section, we provide an overview of recent
advancements in the interpretability of neural net-
works, particularly mechanistic interpretability. On
the other hand, previous studies (Petroni et al.,
2019; Zhang et al., 2022) have also explored the
topic of semantic relationships in models. How-
ever, our study distinguishes itself by focusing on
mechanistic interpretability.

Previous studies in interpretability can be
roughly categorized into the following four types:
estimating the attribution of input features to the
network output (Ribeiro et al., 2016; Sundarara-
jan et al., 2017; Lundberg and Lee, 2017; Yang
et al., 2023; Modarressi et al., 2023), discovering
interaction patterns between input features (Ren
et al., 2021, 2023; Liu et al., 2024; Zhou et al.,
2024), extracting concepts from intermediate-layer
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features (Kim et al., 2018; Thomas et al., 2023;
Qian et al., 2024), and designing self-explainable
architectures (Li et al., 2018; Das et al., 2022). As
transformer-based models become mainstream, re-
cent works focus on understanding the attention
mechanism. The most direct approach is to visual-
ize the attention using bipartite graphs (Vig, 2019;
Yeh et al., 2024) or heatmaps (Park et al., 2019).
Another line of research aims to reverse engineer
the operation of attention heads, called mechanistic
interpretability (Cammarata et al., 2020; Elhage
et al., 2021).

Elhage et al. (2021) proposed the circuit analysis
(introduced in Section 3) to examine the operation
of attention heads, and they found induction heads
in attention-only models. Olsson et al. (2022) fur-
ther investigated the correlation between the for-
mation of induction heads and ICL. Bansal et al.
(2023) observed an overlap between the set of in-
duction heads and the set of important attention
heads for ICL. Using circuit analysis, Wang et al.
(2023) also found some attention heads perform-
ing the function of identifying/removing names in
the indirect object identification task. Other stud-
ies (Lieberum et al., 2023; Geva et al., 2023; Mo-
hebbi et al., 2023) intervened the attention or FFN
layers to study their functions. In this paper, we
leverage the circuit analysis to investigate semantic
relationships in attention heads.

3 Semantic Induction Head

Preliminary. Elhage et al. (2021) rewrite the op-
eration of a multi-head attention (MHA) layer con-
taining h attention heads as follows.
∑H

h=1
softmax

(
xW h

q (xW
h
k )

T /
√
dh

)
xW h

v W
h
o

=
∑H

h=1
softmax

(
xW h

QKxT /
√
dh

)
xW h

OV

(1)
where x = [xT1 , x

T
2 , . . . , x

T
N ]T ∈ RN×d denotes

the embedding sequence, and xi = tiWe ∈ R1×d

is the embedding of the i-th input token ti. We ∈
R|V|×d denotes the embedding layer over a vocab-
ulary V . W h

q ,W
h
k ,W

h
v ∈ Rd×dh denote the query,

key, and value transformations in the h-th attention
head. The output transformation Wo can be de-
composed as Wo=[(W 1

o )
T (W 2

o )
T . . . (WH

o )T ]T ,
where W h

o ∈ Rdh×d.
In Equation (1), W h

QK = W h
q (W

h
k )

T , termed
the Query-Key (QK) circuit, is responsible for com-
puting the attention pattern of the head, thus deter-
mining the head prefers to attend to which token.

On the other hand, the matrix W h
OV = W h

v W
h
o ,

termed the Output-Value (OV) circuit, computes
the independent output of each head at the cur-
rent token regardless of the attention pattern. The
output of the OV circuit can be projected back to
the vocabulary as xW h

OV Wu by the unembedding
transformation Wu ∈ Rd×|V|. The projected vector
represents the influence of the attention head on
the output. Importantly, according to (Elhage et al.,
2021), both the QK circuit and OV circuit are di-
rectly performed on input embeddings, facilitating
the understanding of operations in attention heads.

Based on the above decomposition, Elhage et al.
(2021) identify a specific behavior in attention
heads, which they refer to as induction heads. They
observe this behavior in attention heads when pre-
sented with sequences like “[A] [B] · · · [A]”. In
these induction heads, the QK circuit causes the
attention head to attend to the token [B], which ap-
pears next to the previous occurrence of the current
token [A]. This behavior is termed prefix match-
ing. Then, the OV circuit increases the output logit
of the attended token [B], termed copying. This
mechanism is shown in Figure 1.

Main experimental setup. We use the open-
sourced InternLM2-1.8B1, which contains 24
layers and each layer consists of 16 attention
heads. We use the Abstract GENeration DAtaset
(AGENDA)2 (Koncel-Kedziorski et al., 2019) for
testing because it contains well-annotated relations
between entities. The test set of the AGENDA
dataset has a total of 1,000 samples, each consist-
ing of a knowledge graph and a corresponding
paragraph that describes relations in the knowl-
edge graph. For syntactic dependencies, we split
paragraphs in the AGENDA dataset into individual
sentences, and use spaCy (Honnibal et al., 2020) to
extract dependencies between tokens.

3.1 Syntactic Dependency in Attention Heads

In this section, we explore whether attention heads
encode more complex knowledge beyond copying.
We first study a basic pairwise relation inherent in
natural language, syntactic dependency, represent-
ing the grammatical structure of a sentence.

We focus on three frequent types of syntactic
dependencies: subject-predicate (subj), predicate-
object (obj), and modifier-noun/verb (mod). Each
relation is represented as a triplet: T =

1https://huggingface.co/internlm
2https://github.com/rikdz/GraphWriter
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Figure 2: Heatmaps of the average relation index of attention heads for syntactic dependency between tokens and
the heatmap of the average copying score (Bansal et al., 2023) of attention heads.

(ts, relation, to), relation ∈ {subj, obj, mod}. ts
denotes the token in the head node, termed the
head token, where s denotes its index in the input
sequence. to represents the token in the child node,
termed the tail token, where o represents its index
in the sequence.

To examine whether attention heads encode de-
pendency relationships between tokens, we use
the OV circuit to analyze the influence of atten-
tion heads on output logits of tail tokens when
attending to head tokens. Given an input sequence
[t1, . . . , tn] and the triplet T = (ts, relation, to),
we measure how much each head h raises the tail
token to when attending to the head token ts.

First, we look for attention heads that attend to
the head token via the QK circuit. Given the current
token tj , let Ah

j = softmax(xjW h
QKxT ) denote

the attention probability of the h-th attention head
over all tokens. If the head h attends from tj to
the head token ts with a high probability, i.e., s =
argmax1≤k≤j A

h
j,k and Ah

j,s/maxk ̸=s{Ah
j,k} > τ ,

we consider this head as a potential candidate for
representing the triplet associated with the head
token ts. Otherwise, we skip this head on this
triplet. We set τ = 2.2 in experiments3.

Second, we examine whether these heads raise
the tail token to by computing the projection of the
OV output on the vocabulary, xjW h

OV Wu ∈ R|V|.
Similar to (Bansal et al., 2023), we first com-
pute the output probabilities of tokens as ph,j =
softmax(xjW h

OV Wu) ∈ R|V|. Then, we extract the
probability ph,jtk

(k ≤ j) of each token tk before the
token tj . Here we suppose all tokens tk before
tj are unique for simplification, and if several po-
sitions share the same token (e.g., tk1 = tk2), we
only consider it once. These probabilities are fur-
ther transformed by subtracting their mean value
and ruling out values smaller than zero, as follows.

qh,jtk
= max(0, ph,jtk

− E1≤k′≤j [p
h,j
tk′

]) (2)

3Please refer to Appendix A for discussions about the
setting of τ .

This transformation helps to focus on tokens whose
output probabilities are raised. Then, we compute
the following ratio ah,jT to measure the significance
of raising the tail token to relative to all tokens
before tj .

ah,jT = qh,jto /
∑j

k=1
qh,jtk

(3)

Finally, for each head h, we average the relation in-
dex ah,jT across all current tokens tj and across
all triplets T . Note that we only consider cur-
rent tokens after the head and tail tokens, i.e.,
j ≥ max(s, o).

Model’s ability in understanding dependencies.
Before examining whether attention heads encode
dependencies between tokens, we first test the
model’s overall proficiency in learning and un-
derstanding dependency relationships. We fol-
low Clark et al. (2019) to train an attention-and-
words probing classifier, which takes the word em-
beddings and the attention weights extracted from
InternLM2-1.8B as input and fits the probability
of each token being the syntactic head of another
token. We train the classifier on 200 sequences
from the AGENDA dataset, each with a length of
less than 32. Then, we evaluate the accuracy of the
predicted head positions on another 100 sequences.
For 52% tokens in the input sequence, the classifier
can identify the position of their head tokens based
on attention weights extracted from InternLM2-
1.8B. This accuracy is significantly higher than the
random guess, indicating that InternLM2-1.8B can
well understand syntactic dependencies. Therefore,
we are motivated to further study dependencies in
its attention heads.

The subj and obj dependencies are encoded in
attention heads. Figure 2 shows heatmaps of the
relation index of each attention head w.r.t. three
types of dependency relationships. As a baseline,
we also compute the relation index when setting tail
tokens in all triplets to the 10th token. Such triplets
do not represent any relationships, and the relation

6919



We present a CRF model for Event Detection

We present a B for C

Used-for

Used-for

Figure 3: We replace the entities in the sentence (the
first row) with capital English letters (the second row).

indexes of attention heads are lower than 0.1. In
comparison, for the subj and obj dependencies, the
attention heads exhibit relation indexes close to 0.3,
and the relation index w.r.t. the mod dependency is
a bit lower. This suggests the model may have bet-
ter learned the subj and obj dependencies than mod.
In Section 4.1, it is also observed that the model
exhibits better performance on the justification of
the subj and obj dependencies than the mod depen-
dency, coinciding with this discovery. Furthermore,
relation indexes for the obj dependency are more
sparsely distributed than those for subj dependency.
There are about ten attention heads that exhibit
salient values for the obj dependency. This indi-
cates that the model may store the obj dependency
using a few attention heads, while the subj depen-
dency is widely encoded in more attention heads.
These observations highlight the varying degrees
of the model’s understanding and representation of
different dependency relationships.

3.2 Semantic Relationship in Attention Heads
In addition to syntactic dependencies, we also study
semantic relationships between entities in knowl-
edge graphs. There are seven types of relations
between entities in the AGENDA dataset: Part-
of, Compare, Used-for, Feature-of, Hyponym-of,
Evaluate-for, and Conjunction.

Similar to dependencies in Section 3.1, we also
expect to represent each relation between entities
as a triplet T = (ts, relation, to). Because the enti-
ties in sentences often consist of multiple tokens,
we replace them with capital English letters4 as
shown in Figure 3. By representing each entity
with a single letter, we can directly adopt the met-
ric in Equation (3). Besides, we remove the most
frequent function words annotated by spaCy in the
sentence. This step helps to reduce noise and focus
on the more informative content words.

Various semantic relationships are encoded in
attention heads. Figure 4 illustrates relation in-

4We exclude special letters like A,I,N,S,W, and E, which
often appear alone and are meaningful alone.

dexes of attention heads w.r.t. seven types of seman-
tic relationships. In contrast to syntactic dependen-
cies, semantic relationships exhibit clearer patterns
within attention heads. Each type of relationship is
represented by a range of 5 to 15 attention heads.
Interestingly, certain relationships, such as "Used-
for," "Hyponym-of," and "Conjunction," appear to
be more clustered in specific attention heads. These
findings suggest that the model possesses a capacity
to represent various semantic relationships in atten-
tion heads. Furthermore, considering these seman-
tic relationships are bidirectional, we also analyze
the reverse relation triplet (T̃ = (to, relation, ts))
in attention heads in Appendix B. Results in Fig-
ure 16 show that some attention heads store both
directions of the relationship, reflecting the model’s
ability to understand the reciprocal nature of these
semantic relationships.

4 In-Context Learning and Semantic
Induction Heads

In this section, we investigate the correlation be-
tween in-context learning and semantic induction
heads. We first categorize the ICL ability into three
levels and observe the gradual emergence of dif-
ferent levels of ICL. Then, we investigate the for-
mation of semantic induction heads in the training
process to understand the emergence of ICL.

4.1 In-Context Learning of Different Levels

In-context learning refers to the ability to learn
from the context to perform an unseen task. How-
ever, there is no standard measurement for the ICL
ability of LLMs. Kaplan et al. (2020); Olsson et al.
(2022) consider ICL as the ability to better pre-
dict later tokens in the context than earlier tokens.
Another more widely adopted definition of ICL fol-
lows a few-shot setting. In this setting, language
models are provided with a few examples within
the context of the prompt, and the model can better
perform the task with more examples given. This
definition emphasizes the model’s ability to extract
and generalize the information in the context.

We rethink the ICL ability from the perspective
of what the model has learned from the context.
The loss reduction considered in (Olsson et al.,
2022) only demonstrates that the context does help
models make predictions, but it is unclear what the
model has learned. Chomsky (1957) has proposed
that when humans learn new languages, they ini-
tially grasp the surface structure of the language
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Figure 4: Heatmaps of the average relation index of attention heads for semantic relationships in knowledge graphs.

Task Entity set Template

Binary classification (fruit, month), (furniture, profession) <E1, E2>: 0; <E2, E1>: 1

Four-class classification (fruit, month) <E1, E1>: 0; <E1, E2>: 1; <E2, E1>: 2; <E2, E2>: 3

Nine-class classification (fruit, animal, month) <E1, E1>: 0; <E1, E2>: 1; <E1, E3>: 2; <E2, E1>: 3; · · ·
Relation justification (subj, verb), (verb, obj), (mod, obj), (part, whole) <E1, E2>: true ; <animal, month>: false

Table 1: We construct toy tasks for evaluating the ICL ability of models. E1, E2, and E3 in the template refer to
instances belonging to the 1st, 2nd, and 3rd categories in each pair of entity sets. For example, binary classification
contains inputs like “apple, January: 0” and “April, orange:1”.

before delving into the deep structure. Inspired by
this, we hypothesize that LLMs also first learn the
surface format of the context, and then gradually
comprehend the deep patterns or rules within the
context. Based on this hypothesis, we categorize
the ICL ability into three levels:

• Loss reduction: This level of ICL is charac-
terized by a reduction in the loss of tokens as the
model predicts later tokens in the context. Olsson
et al. (2022) demonstrates ICL at this initial level.

• Format compliance (few-shot): At this level,
the model learns the format of examples in the
prompt (e.g., numbers and symbols), and generates
outputs following the same format. Although the
outputs have the correct format, the predictions
may be incorrect.

• Pattern discovery (few-shot): This level ex-
pects the model to recognize and comprehend the
underlying pattern within the examples, and apply
it consistently to generate the correct prediction.

By categorizing ICL into these levels, we can
systematically assess the progression and develop-
ment of the model’s ICL abilities.

Model. To study the ICL ability of the model
during the training process, we train a model
from scratch using the InternLM framework (Team,
2023). The model contains 20 transformer layers,
and each layer consists of H=16 attention heads.

Avg loss @50~100 
– Avg loss @0~50

Avg loss @450~500 
– Avg loss @0~50

Figure 5: The average difference in loss between later
tokens and early tokens decreases from the very begin-
ning of the training.

The hidden size of the model is d = 2048, thus
each head has a dimension of dh = 128. The model
is trained using the SlimPajama dataset (Soboleva
et al., 2023) on 32 GPUs, and the batch size on
each GPU is 128K tokens. We train the model for
40k steps, with checkpoints saved every 200 steps
to monitor the model’s progress in relationship rep-
resenting and ICL during training.

Measurements and results. We assess the ICL
ability at each level using the following methods.

For loss reduction, we follow Olsson et al. (2022)
but with a minor modification that improves the sta-
tistical stability. Specifically, we adjust the formula
from the loss at the j-th token minus the loss at the
i-th token (i ≤ j), to the averaged loss over the
interval from the j ∼ (i+ j)-th tokens minus the
averaged loss over the 0 ∼ i-th tokens.

We sample 100 sentences from the SlimPajama

6921



20
0

40
0

60
0

80
0

1.
0K

1.
2K

1.
4K

1.
6K

1.
8K

2.
0K

2.
2K

2.
4K

2.
6K

2.
8K

3.
0K

4.
0K

checkpoints

0.0

0.2

0.4

0.6

0.8

1.0
binary: (fruit, month)

shot number
10
5
4
3
2
1
0

20
0

40
0

60
0

80
0

1.
0K

1.
2K

1.
4K

1.
6K

1.
8K

2.
0K

2.
2K

2.
4K

2.
6K

2.
8K

3.
0K

4.
0K

checkpoints

0.0

0.2

0.4

0.6

0.8

1.0
binary: (furniture, profession)

shot number
10
5
4
3
2
1
0

20
0

40
0

60
0

80
0

1.
0K

1.
2K

1.
4K

1.
6K

1.
8K

2.
0K

2.
2K

2.
4K

2.
6K

2.
8K

3.
0K

4.
0K

checkpoints

0.0

0.2

0.4

0.6

0.8

1.0
four-class

shot number
10
5
4
3
2
1
0

20
0

40
0

60
0

80
0

1.
0K

1.
2K

1.
4K

1.
6K

1.
8K

2.
0K

2.
2K

2.
4K

2.
6K

2.
8K

3.
0K

4.
0K

checkpoints

0.0

0.2

0.4

0.6

0.8

1.0
nine-class

shot number
10
5
4
3
2
1
0

Figure 6: Format accuracy of different tasks at different checkpoints. Each line represents the format accuracy with
different numbers of shots (examples) in the prompt.
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Figure 7: Prediction accuracy of different tasks at different checkpoints. Each line represents the prediction accuracy
with different numbers of shots (examples) in the prompt. It is worth noting that these tasks cannot be simply
considered as binary classification tasks, which is discussed in Appendix D.

dataset and we set (i, j) ∈ {(50, 50), (50, 450)}
to measure the loss reduction at different training
checkpoints. Figure 5 shows that the loss difference
between later and early tokens decreases quickly
from the very beginning of the training. This sug-
gests that from the beginning of the training, the
model progressively improves its ability to leverage
longer contexts for better predictions.

For format compliance, we construct classifica-
tion tasks in Table 1. We adopt the few-shot setting
of ICL, and the prompt is designed to include sev-
eral examples followed by a query. Here we ensure
that when the number of examples exceeds the
number of classes, there is at least one example of
each class in the prompt. To test the format com-
pliance ability of the model, we force the model
to generate only one token. If the generated token
is also a number, matching the format presented
in the examples, we consider it to have a correct
format. We compute the accuracy of the format to
measure the format compliance ability of models.

Figure 6 reports the format accuracy given dif-
ferent numbers of shots at different training check-
points. For two binary classification tasks, we ob-
serve that the model’s format accuracy progres-

sively improves as the number of shots increases,
starting from the 400th step. This suggests that the
model’s format compliance ability emerges at the
early training stage, and it is independent of the
entities involved in the task. For the four-class and
nine-class classifications, the model gains improve-
ment with an increasing number of shots at later
stages of training (the 600th step and the 800th step,
respectively). This indicates that the format compli-
ance to more difficult tasks tends to appear at later
training stages. Despite that, the model consistently
achieves around 100% format accuracy when us-
ing 20 shots at the 1k-th step, and achieves a high
accuracy with only one shot after 3k steps. We
also measure the format compliance ability from
the perspective of the minimum number of shots
required to achieve a format accuracy of over 80%.
Please refer to Appendix C for details.

For pattern discovery, we still use the above
classification tasks, but the difference is that we
compute the accuracy of the predicted label. If
the model can generate correct labels, we consider
it to have successfully discovered and applied the
underlying pattern in the prompt. Besides, we also
construct four relation justification tasks in Table 1,
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Figure 8: The change curve of average relation indexes of attention heads for syntactic dependency. Each line in the
figure represents the relation index of an attention head over training time, and lines are colored according to the
value at the 15k-th step.
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Figure 9: The change curve of copying scores of atten-
tion heads. Each line in the figure represents the copying
score of an attention head over training time, and lines
are colored according to the value at the 10k-th step.

which are related to the syntactic dependency and
semantic relationship studied in this paper.

Figure 7 reports the prediction accuracy of the
model at different checkpoints. For classification
tasks in the first row, the model achieves consider-
able accuracy with 20 shots at around 1400 steps,
indicating that the pattern discovery ability is mas-
tered later than the format compliance. Further-
more, simple binary classification tasks are learned
earlier than complex four-class and nine-class clas-
sification tasks. The relation justification tasks in
the second row, which are more difficult than clas-
sification tasks, are learned at later stages, typically
starting from around the 2k-th step. After approxi-
mately 10k steps, the prediction accuracy tends to
saturate. Figure 13 in Appendix E shows that till
the end of the training, even with 100 examples, the
model cannot fully learn the pattern in the prompt.

Progressive learning of ICL of different levels.
From the above results, we can observe a progres-
sive learning process for the different levels of ICL.
The loss reduction happens from the beginning of
the training, followed by the emergence of format
compliance (after 400 steps), and pattern discovery
is mastered in the last (after 1k or 2k steps). This
discovery aligns with our hypothesis that three lev-
els of ICL have increasing difficulties. Moreover,
within the format compliance and pattern discovery,
we observe that the model typically learns more

challenging tasks at later training stages.

4.2 Correlation Between Semantic Induction
Heads and ICL

In this section, we investigate the formation of se-
mantic induction heads during the training process
and discover their correlation with ICL. We com-
pute the average relation index of attention heads
over all triplets for each syntactic dependency and
each semantic relationship in different checkpoints.
Here we only ensure s = argmax1≤k≤N Ah

j,k, and
do not require Ah

j,s/maxk ̸=s{Ah
j,k} > τ any more,

because in the early stage of the training, it is too
challenging to find attention heads having an ex-
tremely high attention probability on head tokens.

We find that the relation index of some atten-
tion heads increases during the same stage as the
emergence of the ICL ability. Specifically, Figure 8
shows the change in the relation index for syntac-
tic dependencies of attention heads. We sampled
attention heads with an increasing relation index
for visualization. It can be observed that relation
indexes of some attention heads begin increasing
from the beginning of the training, aligning with
the emergence of loss reduction. On the other hand,
relation indexes of other attention heads begin to
increase after around 1k or 2k steps, which coin-
cides with the emergence of the pattern discovery
ability. Thus, we infer that the formation of se-
mantic induction heads plays a crucial role in the
development of the ICL ability. These semantic
induction heads likely contribute to capturing and
representing relationships between tokens, which
are essential for the ICL ability.

On the other hand, Figure 9 shows the change in
copying scores (Olsson et al., 2022; Bansal et al.,
2023) of attention heads. Copying scores of some
attention heads start increasing from 200 steps, so
we infer the copying mechanism is responsible for
the loss reduction and the format compliance. It
is reasonable because the task used for evaluating
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the format compliance can be simply achieved by
copying the token (“0” or “1”) after the colon in
the preceding context to the output. More inter-
estingly, copying scores of other heads begin to
drop from the 1K step, where the pattern discov-
ery ability emerges. Therefore, we hypothesize
that the copying behavior is not always good for
ICL, because sometimes direct copying may cause
incorrect predictions.

5 More Discussions about Relationships
Encoded in Attention Heads

A notable distinction between copying and rela-
tionship is that the relationship between tokens
depends on the input context, while copying is
context-agnostic. Therefore, different inputs may
utilize different attention heads. Thus, we propose
to find a common group of attention heads that
represent specific relationships in different inputs.
For each triplet T , we identify the attention head
that has the largest value of Ej [a

h,j
T ] (larger than

0). Then, we count the occurrence of each head
having the largest value among all triplets T for
each dependency relationship.

Figure 10 shows the number of occurrences of
each attention head having the largest relation in-
dex for syntactic dependencies. Please refer to Ap-
pendix G for results on semantic relationships. We
find that for each type of dependency/relationship,
there are around 5∼15 attention heads frequently
activated by different inputs. Besides, different re-
lationships tend to share some common attention
heads (e.g., layer2, head4 for syntactic dependen-
cies). This may indicate that these human-defined
relationships are not mutually exclusive from the
LLMs’ point of view. In other words, there exists
a many-to-many mapping between human-defined
relationships and attention heads in LLMs.

6 Conclusion

Previous studies (Elhage et al., 2021; Olsson et al.,
2022) in mechanistic interpretability only studied
the simple functions in very specific tasks (Wang
et al., 2023; Lieberum et al., 2023). In this
study, we extended the conventional induction

heads to analyze high-level relationships between
words/entities in natural languages. Our experi-
ments revealed that specific attention heads encode
syntactic dependencies and semantic relationships
in natural languages. Furthermore, we identified
three levels of the in-context learning ability of
LLMs, and experimental results showed they are
progressively learned during the training process.
Finally, we observed a close correlation between
the formation of semantic induction heads and in-
context learning ability, strengthening our under-
standing of in-context learning.

Limitations

Limitations of this paper lie in the following three
perspectives. (1) While the proposed relation index
has the potential to be adapted to different relation-
ships in various languages, this paper only focuses
on syntactic dependency and semantic relations in
English. We think it is a promising direction to
examine the representation of relationships in dif-
ferent languages and leave it to future work. (2)
Although we have extended the simple copying op-
eration to complex semantic relationships, the pro-
posed method is limited to relationships between
two tokens/entities. (3) Due to limitations in com-
putational resources, we only conduct experiments
on ∼1B models.
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A Setting of τ in the relation index.

The setting of the threshold τ = 2.2 for the value

of
Ah

j,s

maxk ̸=s{Ah
j,k}

is based on our observation in

the distribution of values of
Ah

j,s

maxk ̸=s{Ah
j,k}

. Us-

ing input sentences and corresponding triplets in
the AGENDA test set, we computed the value of

Ah
j,s

maxk ̸=s{Ah
j,k}

at all heads h and all current tokens tj

that satisfy s = argmaxk{Ah
j,k}. The distribution

of this value is shown in Figure 11. The frequency
of values larger than 2.2 dropped significantly to
less than 5%. Thus, we empirically set the thresh-
old τ = 2.2 to only focus on attention heads that
exclusively attended to the head token.
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Figure 11: Distribution of
Ah

j,s

maxk ̸=s{Ah
j,k}

in InternLM2-

1.8B. For better visualization, we just show the distribu-

tion of
Ah

j,s

maxk ̸=s{Ah
j,k}

within the range of 0 10.

Moreover, we also conduct ablation experiments
with different values of τ . Specifically, we compute
the relation index for syntactic dependencies on
InternLM2-1.8B with a smaller value τ = 2.0 and
a larger value τ = 2.5, respectively. Heatmaps
in Figure 15 show that the setting of τ does not
significantly affect the distribution of the relation
index. Different settings of τ yield a similar set of
semantic induction heads that have a high relation
index.

B Relation index for the reverse semantic
relationships

The semantic relationships in knowledge graphs
are bidirectional, thus we also compute the rela-
tion index of attention heads for the reverse seman-
tic relationships. Figure 16 shows the results in
InternLM2-1.8B. Comparing Figure 16 and Fig-
ure 4, we find that some attention heads represent
both directions of the relation.

C Format compliance ability

Besides the format accuracy in Figure 6, we also
measure the format compliance ability from an-
other perspective: the minimum number of shots
required to achieve a format accuracy of over 80%.
A lower minimum number of shots indicates a bet-
ter format compliance ability. We set a maximum
limit of 20 shots. If the model fails to achieve an
accuracy of 80% even with 20 shots, we record the
result as 20. Figure 12 consistently shows that the
model learns format compliance on simple tasks
earlier than on complex tasks, but all achieve a
good performance at 1000 steps.
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binary: (furniture, profession)
four-class
nine-class

Figure 12: The minimum number of shots (examples
in the prompt) required to achieve over 80% format
accuracy.

Moreover, considering that the format of gener-
ating "true" or "false" in relation justification tasks
is different from the simpler format in classifica-
tion tasks in Figure 6, we additionally examine the
format accuracy on relation justification tasks in
Figure 17. The format compliance in these tasks
emerges from about 2K steps, later than that in sim-
pler tasks in Figure 6, and achieves about 50%-70%
at 15K steps.

D Pattern discovery tasks are not binary
classification tasks

Unlike binary classification tasks, pattern discov-
ery tasks are actually more difficult for generative
models.

First, the model generates the next token as the
prediction, which is different from the classic bi-
nary task. When generating the next token, there
are a total of |V| = 92544 candidates in the vocab-
ulary V . If the model could perfectly comply with
the format, the problem is simplified as a binary
classification task. However, models in the early
stages of training do not have such ideal capabil-
ities yet. For example, Figure 17 shows that the
format compliance in relation justification tasks
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emerges from about 2K steps, later than that in sim-
pler tasks in Figure 6, and achieves about 50%-70%
at 15K steps. Thus, the exact prediction accuracy
of the model will be lower. Second, the model
might inherit certain biases from the training data.
Thus, the probability of generating either the token
“true” or “false” is not 0.5 vs 0.5.

E Pattern discovery ability of a
well-trained model

Although we have observed the development of the
pattern discovery ability in Figure 7, we find that it
is hard to be fully mastered by the model. Figure 13
reports the prediction accuracy of the well-trained
InternLM2-1.8B on classification tasks. Even with
100 examples in the prompt, the model still can-
not perfectly recognize and utilize the pattern in
the prompt. On the other hand, Figure 14 shows
that InternLM2-1.8B achieves higher accuracy on
relation justification tasks.

0 10 20 30 40 50 60 70 80 90 10
0

number of shots

0.0

0.2

0.4

0.6

0.8

1.0
prediction accuracy

binary: (fruit, month)
binary: (furniture, profession)
four-class
nine-class

Figure 13: Prediction accuracy of InternLM2-1.8B on
classification tasks.
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Figure 14: Prediction accuracy of InternLM2-1.8B on
relation justification tasks.

F Change of relation index for semantic
relationships over training time

This section provides results of the change of rela-
tion indexes of attention heads for semantic rela-
tionships in knowledge graphs. We consider both
directions of the semantic relationship, and results
are shown in Figure 18 and Figure 19.

G Grouping attention heads for relations

As discussed in Section 5, the semantic relation-
ships are dependent on the context, so they may be
stored in different attention heads given different
contexts. In this section, we perform the group-
ing analysis on semantic relations in knowledge
graphs.

Figure 20 and Figure 21 show the occurrence
times of each attention head having the largest
value of Ej [a

h,j
T ] for triplets in semantic relations

and the reverse triplets. We observe that some atten-
tion heads are commonly highlighted in different
types of relationships.
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𝜏 = 2.5

Figure 15: Heatmaps of relation indexes with different settings of τ . Different settings of τ yield a similar set of
semantic induction heads that have a high relation index.
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Figure 16: Heatmaps of the average relation index of attention heads for the reverse semantic relationships in
knowledge graphs.
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Figure 18: The change curve of relation indexes of attention heads for semantic relationships.
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Figure 19: The change curve of relation indexes of attention heads for reverse semantic relationships.
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Figure 20: Heatmaps of occurrence of attention heads having the largest value of Ej [a
h,j
T ] for each triplet in semantic

relations.
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Figure 21: Heatmaps of occurrence of attention heads having the largest value of Ej [a
h,j
T ] for each triplet in reverse

semantic relations.
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