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Abstract

Generation of plausible yet incorrect factual in-
formation, termed hallucination, is an unsolved
issue in large language models. We study the
ability of language models to deliberate on the
responses they give in order to correct their mis-
takes. We develop the Chain-of-Verification
(COVE) method whereby the model first (i)
drafts an initial response; then (ii) plans veri-
fication questions to fact-check its draft; (iii)
answers those questions independently so the
answers are not biased by other responses; and
(iv) generates its final verified response. In ex-
periments, we show COVE decreases hallucina-
tions across a variety of tasks, from list-based
questions from Wikidata, closed book Multi-
SpanQA and longform text generation.

1 Introduction

Large Language Models (LLMs) are trained on
huge corpora of text documents with billions of
tokens of text. It has been shown that as the num-
ber of model parameters is increased, performance
at tasks such as closed book QA improve in accu-
racy, and larger models can generate more correct
factual statements (Radford et al., 2019; Petroni
et al., 2019). However, even the largest models
can still fail, particularly on lesser known torso and
tail distribution facts (Sun et al., 2023a), i.e. those
that occur relatively rarely in the training corpora.
In those cases where the model is incorrect, they
instead generate an alternative response which is
typically plausible looking (e.g., a similar entity,
but an incorrect one). These factually incorrect gen-
erations are referred to as hallucinations (Maynez
et al., 2020). Further, in longform tasks consist-
ing of generating multiple sentences or paragraphs,
the hallucination problem can be exacerbated due
to the issue of exposure bias (Wang and Sennrich,
2020).

The current wave of language modeling research
goes beyond next word prediction, and has focused

on their ability to reason. Improved performance
in reasoning tasks can be gained by encouraging
language models to first generate internal thoughts
or reasoning chains before responding (Wei et al.,
2022; Adolphs et al., 2021; Wang et al., 2022; Lan-
chantin et al., 2023), as well as updating their initial
response through self-critique (Press et al., 2022;
Madaan et al., 2023). In this work we follow this
line of research to study how and when language-
model-based reasoning can be used to reduce hal-
lucinations. We develop an approach, called Chain-
of-Verification (CoVe) which, given an initial draft
response, first plans verification questions to check
its work, and then systematically answers those
questions in order to finally produce an improved
revised response. We find that independent veri-
fication questions tend to provide more accurate
facts than those in the original longform answer,
and hence improve the correctness of the overall
response. We study variations on this recipe across
a range of tasks: from list-based questions, closed
booked QA and longform text generation. We first
propose a joint approach for generating the entire
verification chain left-to-right, which improves per-
formance and decreases hallucinations compared
to the baseline language model. However, models
that attend to existing hallucinations in the con-
text from their own generations tend to repeat the
hallucinations. Hence we also introduce further im-
provements with factored variants which separate
out the verification chain steps, in terms of which
context is attended to. We show how these factored
variants give further performance gains across all
three tasks considered.

2 Related Work
Hallucination is a general problem in language
model generations that appears across many tasks,
from summarization (Maynez et al., 2020) to open-
domain dialogue (Roller et al., 2020), and has not
been resolved by simply scaling up training data or
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model size (Zhang et al., 2023). For a survey of the
hallucination issue, see Ji et al. (2023) and Ye et al.
(2023). A majority of the methods for reducing
hallucination can be divided into roughly three cat-
egories: training-time correction, generation-time
correction and via augmentation (tool-use).

In training-time correction methods, an attempt
is made to improve the raw left-to-right generations
of an encoder-decoder or decoder-only language
model by either training or otherwise adjusting
the model weights to decrease the probability of
hallucinated generations. This includes using re-
inforcement learning (Roit et al., 2023; Wu et al.,
2023), constrastive learning (Chern et al., 2023b;
Sun et al., 2023b) and other methods (Li et al.,
2023; Narayan et al., 2023).

In generation-time correction, a common theme
is to make reasoning decisions “on top of” the base
LLM in order to make them more reliable. For
example, by considering the probabilities of the
generated tokens (Mielke et al., 2022; Kadavath
et al., 2022). In Manakul et al. (2023) multiple
samples are drawn from the model to detect hallu-
cinations. In Varshney et al. (2023) hallucinations
are identified using low confidence scores, and their
correctness is checked through a validation proce-
dure, mitigated, and then the generation is contin-
ued. An alternative to using the confidence scores
is to leverage inconsistencies in the LLMs output
to detect hallucination. Cohen et al. (2023) show
that using inconsistencies for QA tasks can out-
perform using confidence scores for hallucination
detection. Cohen et al. (2023) simulate an interac-
tive multi-agent LM vs. LM debate setup to detect
hallucinations for factoid QA, Agrawal et al. (2023)
check for hallucinated references, while Mündler
et al. (2023) extract relational triples from genera-
tions and verify them against another LLM. COVE

also uses a related self-consistency approach but we
show our approach can correct hallucinated facts
in longform generations by generating and answer-
ing verification questions by solely using the same
LLM.

A third approach is to use external tools to help
mitigate hallucinations, rather than relying solely
on the abilities of the language model itself. For
example, retrieval-augmented generation can de-
crease hallucinations by using factual documents
for grounding (Shuster et al., 2021; Jiang et al.,
2023b; Yu et al., 2023) or chain-of-thought verifica-
tion (Zhao et al., 2023). Other approaches include

using tools for fact-checking (Chern et al., 2023a;
Galitsky, 2023; Peng et al., 2023), or linking to
external documents with attribution (Menick et al.,
2022; Rashkin et al., 2023; Gao et al., 2023).

There are also a number of related works in im-
proving reasoning for logical and mathematical
tasks, even if they do not address reducing hallu-
cination explicitly. Several approaches have been
shown to improve results with extended reasoning
steps by the system, such as chain-of-thought (Wei
et al., 2022), deductive verification (Ling et al.,
2023), and self-verification (Miao et al., 2023;
Jiang et al., 2023a; Weng et al., 2022). The lat-
ter tries to predict the (masked) question given the
answer for math problems, and use that as evidence
that this is the correct solution.

3 Chain-of-Verification

Our approach assumes access to a base LLM that
– despite potentially being prone to hallucination –
is capable of being prompted with general instruc-
tions in either a few-shot or zero-shot fashion. A
key assumption of our method is that this language
model, when suitably prompted, can both generate
and execute a plan of how to verify itself in order
to check its own work, and finally incorporate this
analysis into an improved response.

Our overall process, which we call Chain-of-
Verification (CoVe), thus performs four core steps:

1. Generate Baseline Response: Given a query,
generate the response using the LLM.

2. Plan Verifications: Given both query and base-
line response, generate a list of verification
questions that could help to self-analyze if
there are any mistakes in the original response.

3. Execute Verifications: Answer each verifica-
tion question in turn, and hence check the
answer against the original response to check
for inconsistencies or mistakes.

4. Generate Final Verified Response: Given the
discovered inconsistencies (if any), generate a
revised response incorporating the verification
results.

Each of these steps is performed by prompting the
same LLM in different ways to obtain the desired
response. While steps (1), (2) and (4) all can be
invoked with a single prompt, we investigate varia-
tions of step (3) including joint, 2-step and factored
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Query

       1. Baseline Response

       4. Final Verified Response

        2. Plan Verifications

Here are some politicians who were born in NY, New York:
1. Hillary Clinton - former secretary of state and former Democratic presidential nominee
2. Donald Trump - former president of the United States
3. Michael Bloomberg - former Mayor of New York City and former Democratic presidential candidate 
  … <list continues..>

Name some politicians who were born in NY, New York. 

  - Where was Hillary Clinton born?  

  - Where was Donald Trump born?   

  - Where was Michael Bloomberg born?

  … <questions continue..>

Here are some politicians who were born in NY, New York:
1. Donald Trump - former president of the United States
2. Alexandria Ocasio-Cortez - Democratic member of the U.S. House of Representatives
  … <list continues..>

Hillary Clinton was born in Chicago, Illinois, United   
States on October 26, 1947.

Donald Trump was born on June 14, 1946, in Queens, 
New York City, New York, United States

…

Michael Bloomberg was born on February 14, 1942, in 
Boston, Massachusetts, United States.

        3. Execute Verifications

Figure 1: Chain-of-Verification (CoVe) method. Given a user query, a large language model generates a baseline
response that may contain inaccuracies, e.g. factual hallucinations. We show a query here which failed for ChatGPT
(see section 10 for more details). To improve this, CoVe first generates a plan of a set of verification questions to
ask, and then executes that plan by answering them and hence checking for agreement. We find that individual
verification questions are typically answered with higher accuracy than the original accuracy of the facts in the
original longform generation. Finally, the revised response takes into account the verifications. The factored version
of CoVe answers verification questions such that they cannot condition on the original response, avoiding repetition
and improving performance.

versions. These variants either involve a single
prompt, two prompts or else independent prompts
per question, where more sophisticated decomposi-
tion can yield improved results.

We describe these steps in more detail below. An
overview of the approach is illustrated in Figure 1,
and in the Appendix in Figure 3.

3.1 Baseline Response
Given a query, we generate left-to-right as usual
using the LLM, with no special tricks. While this
is the first step in the CoVe pipeline, it also serves
as the baseline we wish to improve in our experi-
ments (i.e., we will directly compare this baseline
response with the final verified response from our
overall method).

Given such baseline generations are typically
prone to hallucination, CoVe attempts to identify
these hallucinations, and correct them, in the fol-
lowing steps.

3.2 Plan Verifications

Conditioned on the original query and the base-
line response, the model is prompted to generate
a series of verification questions that test the fac-
tual claims in the original baseline response. For
example if part of a longform model response con-
tains the statement “The Mexican–American War
was an armed conflict between the United States
and Mexico from 1846 to 1848”, then one possi-
ble verification question to check those dates could
be “When did the Mexican American war start and
end?”. We note that verification questions are not
templated and the language model is free to phrase
these in any form it wants, and they also do not
have to closely match the phrasing of the original
text.

3.3 Execute Verifications

Given the planned verification questions, the next
step is to answer them in order to assess if any hallu-
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cinations exist. While techniques such as retrieval-
augmentation could be used in this process, such
as verification via search engine, in this work we
do not explore tool-use. Instead, we consider only
using the LLM itself in all steps of CoVe, hence
the model is used to check its own work. We in-
vestigate several variants of verification execution,
called joint, 2-Step, factored and factor+revise.

Joint In the joint method, the planning and exe-
cution (steps 2 and 3) are accomplished by using a
single LLM prompt, whereby the few-shot demon-
strations include both verification questions and
their answers immediately after the questions. In
this approach separate prompts are not needed.

2-Step A potential disadvantage of the joint
method is that because the verification questions
must condition on the baseline response in the LLM
context, and the method is joint, the verification
answers have to condition on the initial response as
well. This may increase the likelihood of repetition,
another known issue of modern LLMs (Holtzman
et al., 2019). This means the verification questions
might hallucinate similarly to the original baseline
response, which defeats the purpose. We hence
instead separate the planning and execution into
separate steps, both with their own LLM prompt.
The planning prompt conditions on the baseline
response in the first step. The verification ques-
tions generated from planning are answered in the
second step, where crucially the context given to
the LLM prompt only contains the questions, and
not the original baseline response and hence cannot
repeat those answers directly.

Factored Another, more sophisticated approach,
is to answer all questions independently as sepa-
rate prompts. Again, crucially, those prompts do
not contain the original baseline response and are
hence not prone to simply copying or repeating it.
The factored approach has the further advantage
of removing any potential interference not only
from the baseline response, but also between an-
swer contexts, and is somewhat related to the recent
(concurrent) work of Radhakrishnan et al. (2023)
for subquestion answering by factored decompo-
sition, hence we adopt their naming. It can also
potentially handle more verification questions by
virtue of them not all having to fit with the same
single context. While this is potentially more com-
putationally expensive, requiring the execution of
many more LLM prompts, they can be run in par-

allel, and hence be batched. In order to do this,
we first have to take the set of generated questions
from subsection 3.2 and parse them into separate
questions, which is a relatively easy task as the
few-shot demonstrations we provide indicate they
should be generated as a comma-separated list. We
can then split them out into separate LLM prompts.

Factor+Revise After answering the verification
questions, the overall CoVe pipeline then has to
either implicitly or explicitly cross-check whether
those answers indicate an inconsistency with the
original responses. In the factor+revise approach,
we execute this as a deliberate step via an extra
LLM prompt, which may make it easier for the
final system to reason about this step explicitly.
Differently to answering the verification questions,
the cross-checking phase needs to condition on
both the baseline response and the verification ques-
tion and answer. We thus execute this as separate
LLM prompts, one “cross-check” prompt for each
question, with again a set of few-shot demonstra-
tions showing the desired output. For example if
the original baseline response contained the phrase

“It followed in the wake of the 1845 U.S. annexa-
tion of Texas. . . ” and CoVe generated a verifica-
tion question When did Texas secede from Mexico?
which was answered with 1836 then an inconsis-
tency should be detected by this step.

3.4 Final Verified Response

Finally, the improved response that takes verifica-
tion into account is generated. This is executed
by a final few-shot prompt where the context takes
into account all of the previous reasoning steps,
the baseline response and verification question an-
swer pairs, so that the corrections can take place.
If the Factor+Revise approach is used from subsec-
tion 3.3 then the output of the cross-check incon-
sistency detection is provided as well.

4 Experiments

We use various experimental benchmarks to mea-
sure the efficacy of CoVe in reducing hallucination,
comparing against a number of baselines.

4.1 Tasks

The benchmarks we use range from list-based ques-
tions where the required answer is a set of entities,
to where the answer is a longform generation of
multiple freeform sentences.
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4.1.1 Wikidata
We start by testing CoVe on a set of automatically
generated questions using the Wikidata API1. We
create list questions of the form: “Who are some
[Profession]s who were born in [City]?”.
For example, “Who are some politicians who
were born in Boston?”. The answer to these
questions is a set of entities, where the gold list is
obtained from the Wikidata knowledge base. This
results in a dataset of 56 test questions, each typ-
ically containing ∼600 known gold entities, but
typically an LLM will produce a much shorter list.
We then use the precision metric (micro-averaged)
to measure performance, in addition to reporting
the averaged number of positive and negative enti-
ties produced.

4.1.2 Wiki-Category List
We then proceed to a harder set-generation task.
We use the QUEST (Malaviya et al., 2023) dataset
that was created using Wikipedia Category lists.
We convert these category names to questions by
simply prepending a “Name some”. Owing to the
varied questions such as Name some Mexican ani-
mated horror films or Name some Endemic orchids
of Vietnam we believe this task can pose a greater
challenge. We collate all examples in the dataset
that do not require logical operations to create a set
of 55 test questions each having 8̃ answers. Similar
to the Wikidata task, we measure precision (micro-
averaged) to measure performance, in addition to
reporting the averaged number of positive and neg-
ative entities produced.

4.1.3 MultiSpanQA
We next test our approach on an reading compre-
hension benchmark, MultiSpanQA (Li et al., 2022).
MultiSpanQA comprises of questions that have
multiple independent answers (derived from a se-
ries of multiple discontiguous spans in the text,
with questions originally from the Natural Ques-
tions dataset). We consider a closed-book setting,
where we do not provide supporting documents,
and hence consider a subset of questions which
are factoid-based, so that our base LLM is more
likely to be able to answer them. We thus use a test
set of 418 questions with shorter answers per span
(up to 3 tokens per item). For example, Q: Who
invented the first printing press and in
what year?, A: Johannes Gutenberg, 1450.

1https://query.wikidata.org/

4.1.4 Longform generation of Biographies
We next validate the performance of CoVe on long-
form text generation. In this setting, we evaluate
our method on generating biographies, adopting
the benchmark proposed in by Min et al. (2023).
Here the model is simply prompted to generate a
biography of a selected entity using the prompt:
“Tell me a bio of <entity>”. We evaluate the
efficacy of our approach using the FACTSCORE

metric (Min et al., 2023) developed in that work,
which uses a retrieval-augmented language model
to fact-check the response (Instruct-Llama, “Llama
+ Retrieval + NP”), which they showed correlates
well with human judgments.

4.2 Baselines

We use Llama 65B, a strong open model as our
base LLM (Touvron et al., 2023a), and use greedy
decoding for all models. As Llama 65B is not in-
struction fine-tuned, we employ few-shot examples
particular to each task for measuring performance
on each of our benchmarks. This serves as our
main baseline which CoVe tries to improve upon.
CoVe uses the same Llama 65B base, but includes,
for the same few-shot examples, demonstrations of
verification questions and final verified responses,
following Figure 1 and section 3. Thus, we mea-
sure the ability to improve over the original base-
line response for the same LLM. For CoVe, we
compare different variants, particularly the joint
and factored versions on all tasks.

We also compare to Llama instruction fine-tuned
models, for which we use Llama 2 (Touvron et al.,
2023b). We measure both zero-shot performance
on the task, or zero-shot with chain-of-thought by
adding “Let’s think step by step” to the zero-shot
prompt. We find that the instruction fine-tuned
models tend to generate extraneous content when
queried. This can especially be a problem for the
list-based tasks. To deal with this we add an extra
line to our prompt: “List only the answers
separated by a comma”. We also add another
layer of post-processing to extract the answers by
using an off-the-shelf NER model to further avoid
this issue as this helped. However, we still expect
few-shot to improve over this, especially for tasks
like Multi-Span-QA where the answers are not all
named entities, and the few-shot examples effec-
tively show the domain of the task.

For the longform generation of biographies we
also compare to several existing model results re-
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Wikidata
(Easier)

Wiki-Category list
(Harder)

LLM Method Prec. (↑) Pos. Neg. Prec. (↑) Pos. Neg.

Llama 2 70B Chat Zero-shot 0.12 0.55 3.93 0.05 0.35 6.85
Llama 2 70B Chat CoT 0.08 0.75 8.92 0.03 0.30 11.1
Llama 65B Few-shot 0.17 0.59 2.95 0.12 0.55 4.05

Llama 65B CoVe (joint) 0.29 0.41 0.98 0.15 0.30 1.69
Llama 65B CoVe (two-step) 0.36 0.38 0.68 0.21 0.50 0.52
Llama 65B CoVe (factored) 0.32 0.38 0.79 0.22 0.52 1.52

Table 1: Test Precision and average number of positive and negative (hallucination) entities for list-based questions
on the Wikidata and Wiki-Category list tasks.

LLM Method F1 (↑) Prec. Rec.

Llama 2 70B Chat Zero-shot 0.20 0.13 0.40
Llama 2 70B Chat CoT 0.17 0.11 0.37
Llama 65B Few-shot 0.39 0.40 0.38

Llama 65B CoVe (joint) 0.46 0.50 0.42
Llama 65B CoVe (factored) 0.48 0.50 0.46

Table 2: Closed book MultiSpanQA test performance,
comparing CoVe with various baselines.

ported in Min et al. (2023), in particular Instruct-
GPT (Ouyang et al., 2022), ChatGPT 2 and Per-
plexityAI 3.

4.3 Results
We are interested in empirically answering the fol-
lowing research questions:

RQ1 Can COVE effectively reduce the rate of hal-
lucinatory content produced by the LLM?

RQ2 Can COVE be used to fix or remove incorrect
generations without decreasing the amount of
correct content?

Our main results across the four benchmark tasks
are given in Table 1, Table 2 and Table 3, and our
main findings are as follows.

CoVe improves precision on list-based answer
tasks We find that CoVe provides large gains in
precision on the list-based tasks, e.g. more than
doubles the precision from the Llama 65B few-shot
baseline for the Wikidata task (from 0.17 to 0.36).
We find from the positive and negative breakdown
that there is a large reduction in the number of hal-
lucinated answers (negatives: 2.95 → 0.68) while

2https://openai.com/blog/chatgpt
3www.perplexity.ai

only a relatively small reduction in the number of
non-hallucinations (positives: 0.59 → 0.38).
CoVe improves performance on closed book QA
We also find that CoVe brings improvements in gen-
eral QA problems, as measured on MultiSpanQA.
We observe a 23% improvement in F1 over the
few-shot baseline (0.39 → 0.48), where the im-
provements come from gains in both precision and
recall.

CoVe improves precision on longform genera-
tion These results also extend to longform gener-
ation, where we actually see larger gains than in the
QA setting. FACTSCORE increases 28% (55.9 →
71.4) from the few-shot baseline, with again only
a relatively small reduction in average number of
facts provided (16.6 → 12.3). We also show the
breakdown of improvements across facts in Fig-
ure 2, where one can see CoVe improves results for
both rare and more frequent facts.

Instruction-tuning and CoT do not reduce hallu-
cinations We find that the few-shot baseline that
employs a pre-trained Llama model outperforms
Llama-2-Chat, an instruction tuned model, across
all the tasks. The few-shot examples lead the model
to give outputs in line with those expected for the
task, whereas general instruction tuning produces
more hallucinations or incorrect outputs. Zero-shot
chain-of-thought (CoT) prompting also fails to im-
prove the results for these tasks.

Factored and 2-step CoVe improve performance
We observe a consistent performance improvement
across all tasks from applying the factored CoVe
approach compared to joint CoVe. For example
improvement from 60.8 → 63.7 in FACTSCORE

in longform generation. Similarly, the 2-step ap-
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LLM Method FACTSCORE. (↑) Avg. # facts

InstructGPT∗ Zero-shot 41.1 26.3
ChatGPT∗ Zero-shot 58.7 34.7
PerplexityAI∗ Retrieval-based 61.6 40.8

Llama 2 70B Chat Zero-shot 41.3 64.9
Llama 2 70B Chat CoT 41.1 49.0
Llama 65B Few-shot 55.9 16.6

Llama 65B CoVe (joint) 60.8 12.8
Llama 65B CoVe (factored) 63.7 11.7
Llama 65B CoVe (factor+revise) 71.4 12.3

GPT-3 Few-shot 45.3 15.6
GPT-3 + ChatGPT ChatProtect (Mündler et al., 2023) 48.5 14.6
GPT-3 + InstructGPT SCG-LL (Manakul et al., 2023) 60.6 6.0
GPT-3 + DeBERTA SCG-NLI (Manakul et al., 2023) 61.7 6.3
GPT-3 + InstructGPT CoVe (factor+revise) 68.6 9.0

Table 3: Longform generation of biographies with metrics defined from (Min et al., 2023). Models marked with ∗
are reported from previous work. FACTSCORE automatically computed using “Instruct-Llama” ( Retrieve → LM +
NP), the best open-access model.
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Figure 2: FACTSCORE performance distribution across head, torso and tail facts for CoVe variants and various
baselines on longform generation of biographies.

proach also outperforms the joint approach, as
tested on the Wikidata and Wiki-Category list tasks,
with 2-step giving the best results for Wikidata,
and factored the best for Wiki-Category. All these
results support our hypothesis that verifying ques-
tions should not attend to the original baseline re-
sponse as they may be prone to repeating it (as the
joint method can do).

Further explicit reasoning helps remove hallu-
cinations In the longform generation task we
also explore more sophisticated reasoning steps
in the CoVe “factor+revise” method, which explic-
itly cross-checks whether verification answers in-
dicate an inconsistency. We see large gains in the
FACTSCORE metric from this further explicit rea-
soning from 63.7 (factored) → 71.4 (factor+revise).

This gives further indication that appropriate and
explicit reasoning in LLMs can bring improve-
ments in mitigating hallucinations.

CoVe-based Llama outperforms InstructGPT,
ChatGPT and PerplexityAI Applying CoVe to
Llama 65B lifts its performance above ChatGPT
and InstructGPT, as well as PerplexityAI. This is
particularly impressive compared to PerplexityAI
considering that is a model that can support its
facts with retrieval-augmentation, whereas CoVe
uses only the base language model itself with im-
proved reasoning via deliberation (verification).
However, Figure 2 shows PerplexityAI still out-
performs CoVe for very rare facts where retrieval
is essential, but CoVe outperforms PerplexityAI for
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frequent facts.

CoVe outperforms existing hallucination mit-
igation baselines We compare CoVe to three
recently released longform hallucination mitiga-
tion approaches — NLI and LLM, the two best-
performing variants of SelfCheckGPT (Manakul
et al., 2023) and ChatProtect (Mündler et al., 2023).
Our results in Table 3 show that COVE outperforms
all these baselines. More details on our implemen-
tations of the baselines can be found in section 8.
For SelfCheckGPT we experiment with different
thresholds (in Table 6) and choose a threshold that
results in a high FACTSCORE without removing
a lot of facts. We note that some models pro-
duce fewer overall facts than others, however, the
FACTSCORE metric is normalized and hence com-
parable across models. We verified this experi-
mentally by clipping Llama-2-70B chat’s output
to present fewer facts (as it contains the largest
number in its output out of all models), but this
did not change its FACTSCORE substantially, e.g.
clipping to 10 sentences increased its score from
41.3 → 42.7. We note the length of the genera-
tions of the few-shot-based models is essentially
governed by the few-shot examples, which in turn
are constrained by the context length.

Shortform verification questions are more ac-
curately answered than longform queries In a
longform response, LLMs are prone to generate a
number of hallucinations. However, it can often
be the case that the LLM itself would know these
hallucinations are wrong if queried specifically for
that individual fact, independent of the rest of the
longform generation, see Figure 1, Figure 3, and
section 10. This can be seen quantitatively on the
Wikidata task, where only ∼17% of the Llama
few-shot baseline answer entities are correct in list-
based questions. However, when querying each
individual entity via a verification question, we
find ∼70% are correctly answered.

Open LLM-based verification questions outper-
form yes/no-based and rule-based verification
questions In our method, CoVe, the verification
questions generated by the LLM expect answers
that are true facts. Another alternative type of veri-
fication questions would be templated verification
questions, which can be generated cheaply, and bi-
nary questions. We first compare to heuristically
constructed questions by replacing the LLM ques-
tions with templated yes/no questions of the form

“Does X answer the question” for list-based ques-
tions with elements X in the answer. Results on
the Wiki-Category task, given in Table 4, show a
reduced precision with rule-based verification ques-
tions (0.22 → 0.16 for CoVe (factored)). We then
move on to binary questions where we include the
fact as part of the verification question and ask it in
a yes/no answer format. We evaluate this difference
in Table 4, and find that yes/no type questions per-
form worse for the factored version of CoVe (0.22
→ 0.19). Some anecdotal examples are included in
Appendix section 10 for ChatGPT where we find
the model tends to agree with facts in a yes/no ques-
tion format whether they are right or wrong. We
believe this difference would be larger for longform
generation where the types of required verification
questions can be more diverse, and LLM-based
verification becomes even more necessary.

Inference overhead Approaches that detect hal-
lucinations via inconsistencies require repeated
prompts to the LLM. COVE essentially requires
1 LLM call for generating the baseline response, 1
LLM call for each sentence to plan the verifications,
1 LLM call to verify each fact and 1 LLM call for
each fact to generate the consistent response. We
also note that the LLM calls for verification for
each fact can be parallelized. We find that COVE is
comparable to other approaches for hallucination
mitigation. We provide a more in-depth analysis in
section 7.

5 Conclusion
We introduced Chain-of-Verification (CoVe), an ap-
proach to reduce hallucinations in a large language
model by deliberating on its own responses and
self-correcting them. In particular, we showed that
models are able to answer verification questions
with higher accuracy than when answering the orig-
inal query by breaking down the verification into a
set of simpler questions. Secondly, when answer-
ing the set of verification questions, we showed
that controlling the attention of the model so that
it cannot attend to its previous answers (factored
CoVe) helps alleviate copying the same hallucina-
tions. Overall, our method provides substantial per-
formance gains over the original language model
response just by asking the same model to deliber-
ate on (verify) its answer. An obvious extension to
our work is to equip CoVe with tool-use, e.g., to
use retrieval augmentation in the verification exe-
cution step which would likely bring further gains.
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Limitations
While our Chain-of-Verification (CoVe) method
seeks to reduce hallucinations, it does not remove
them completely from generations. This means
that CoVe can still generate incorrect or misleading
information for a given query, even if it improves
over the baseline. We also note that in our ex-
periments we have only addressed hallucinations
in the form of directly stated factual inaccuracies.
However, hallucinations could come in other forms,
such as during incorrect reasoning steps, as part of
opinions, etc. We also note that the generations
CoVe produces come with verifications which, if
viewed by the user, add more interpretability to its
decisions, but come at the cost of increased com-
putational expense due to generating more tokens
in the output, similar to other reasoning methods
such as Chain-of-Thought.

Our method seeks to make a large language
model produce improved responses by spending
more time deliberating to identify its own mistakes.
While we have shown this gives clear improve-
ments, the upper bound to the improvement is
clearly limited by the overall capabilities of the
model, e.g. in identifying and knowing what it
knows. In this regard, an orthogonal line of re-
search, as discussed in section 2 is the use of ex-
ternal tools by language models, to gain further
information beyond what is stored in its weights.
While we do not explore that avenue in this work
those techniques would likely be fruitful to com-
bine with the findings here.
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6 Rule-based vs Binary vs general questions

Table 4: Comparison of various COVE verification plan strategies (rows) and verification execution techniques
(columns) on the WikiCategory task.

Verification Execution
CoVe (joint) CoVe (factored)

Verification Plan Prec. Prec.

Rule-based questions 0.13 0.16
Generated by model:
yes/no questions 0.15 0.19
general questions 0.15 0.22

7 Inference Overhead

n := Number of text samples, 4 in our experiments

k := Number of repeated mitigations, 3 in our experiments

s := Number of sentences in the generated passage

f := Number of facts in the generated passage

Method # LLM prompts

Few-shot 1
ChatProtect (Mündler et al., 2023) 1 + s× k × (3)
SCG-LLM (Manakul et al., 2023) n+ 1 + s× n
CoVe (factor+revise) 1 + s+ 2× f

Table 5: Worst-case LLM prompts used by each hallucination mitigation approach in the worst case

Based on the current implementations we find the COVE induces a similar inference overhead to other
longform hallucination mitigation approaches.
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8 Implementation of baselines

We use the existing models provided by (Manakul et al., 2023) for the NLI model. For the LLM model
we prompt GPT-3.5-turbo-instruction with the following instruction (as described in (Manakul et al.,
2023).

Context: {}
Sentence: {}
Is the sentence supported by the context above?
Answer Yes or No:

NLI LLM
Threshold FS Facts FS Facts

High 76.5 3.0 61.7 6.3
Med 60.6 6.0 56.8 8.4
Low 53.0 8.0 53.0 10

Table 6: Different threshold results for SelfCheckGPT

9 CoVe - Further details

Query

       1. Baseline Response

       4. Final Verified Response

        2. Plan Verifications

The Mexican–American War was an armed conflict between the United States and Mexico from 1846 
to 1848. It followed in the wake of the 1845 U.S. annexation of Texas, which Mexico considered part of 
its territory in spite of its de facto secession in the 1835 Texas Revolution.

What was the primary cause of the Mexican-American war? 

  - When did the Mexican American war start and end?  

  - When did the US annex Texas?

  - When did Texas secede from Mexico?  

  … <questions continue..>

The Mexican–American War was an armed conflict between the United States and Mexico from 1846 
to 1848. It followed in the wake of the 1845 U.S. annexation of Texas.

1846-1848

1845

…

1836

        3. Execute Verifications

✅

❌
✅

Figure 3: For longform generation, the Chain-of-Verification (COVE) Factor + Revise method is the most effective
in our longform generation experiments. CoVe (factor+revise) has the model independently identify (cross-check)
which facts are consistent with its executed verifications (indicated by tickmark and crosses in the figure). With this
extra step we aim to disregard the inconsistent facts and use the consistent facts to regenerate the response.
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10 ChatGPT example screenshots

Figure 4: ChatGPT generates several hallucinations for this question, e.g. Hillary Clinton and Michael Bloomberg.
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Figure 5: Even when the longform answer is provided for a rewritten query (see query from Figure 4), while giving
a slightly different answer, ChatGPT still generates several hallucinations for this question, e.g. Hillary Clinton and
Michael Bloomberg.

Figure 6: Shortform questions (which could be verification questions) appear to be answered more factually than
the longform answers in Figure 4 and Figure 5.
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Figure 8: Examples where questions asking for a fact are answered correctly, but verifying via a yes/no question is
incorrect (the model tends to agree with the way the question is stated, even if it was stated incorrectly).
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