@inproceedings{shirai-etal-2023-towards,
title = "Towards Flow Graph Prediction of Open-Domain Procedural Texts",
author = "Shirai, Keisuke and
Kameko, Hirotaka and
Mori, Shinsuke",
editor = "Can, Burcu and
Mozes, Maximilian and
Cahyawijaya, Samuel and
Saphra, Naomi and
Kassner, Nora and
Ravfogel, Shauli and
Ravichander, Abhilasha and
Zhao, Chen and
Augenstein, Isabelle and
Rogers, Anna and
Cho, Kyunghyun and
Grefenstette, Edward and
Voita, Lena",
booktitle = "Proceedings of the 8th Workshop on Representation Learning for NLP (RepL4NLP 2023)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.repl4nlp-1.8/",
doi = "10.18653/v1/2023.repl4nlp-1.8",
pages = "87--96",
abstract = "Machine comprehension of procedural texts is essential for reasoning about the steps and automating the procedures. However, this requires identifying entities within a text and resolving the relationships between the entities. Previous work focused on the cooking domain and proposed a framework to convert a recipe text into a flow graph (FG) representation. In this work, we propose a framework based on the recipe FG for flow graph prediction of open-domain procedural texts. To investigate flow graph prediction performance in non-cooking domains, we introduce the wikiHow-FG corpus from articles on wikiHow, a website of how-to instruction articles. In experiments, we consider using the existing recipe corpus and performing domain adaptation from the cooking to the target domain. Experimental results show that the domain adaptation models achieve higher performance than those trained only on the cooking or target domain data."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shirai-etal-2023-towards">
<titleInfo>
<title>Towards Flow Graph Prediction of Open-Domain Procedural Texts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Keisuke</namePart>
<namePart type="family">Shirai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hirotaka</namePart>
<namePart type="family">Kameko</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shinsuke</namePart>
<namePart type="family">Mori</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 8th Workshop on Representation Learning for NLP (RepL4NLP 2023)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Burcu</namePart>
<namePart type="family">Can</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maximilian</namePart>
<namePart type="family">Mozes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Samuel</namePart>
<namePart type="family">Cahyawijaya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naomi</namePart>
<namePart type="family">Saphra</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nora</namePart>
<namePart type="family">Kassner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shauli</namePart>
<namePart type="family">Ravfogel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abhilasha</namePart>
<namePart type="family">Ravichander</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chen</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Isabelle</namePart>
<namePart type="family">Augenstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kyunghyun</namePart>
<namePart type="family">Cho</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Edward</namePart>
<namePart type="family">Grefenstette</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lena</namePart>
<namePart type="family">Voita</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Machine comprehension of procedural texts is essential for reasoning about the steps and automating the procedures. However, this requires identifying entities within a text and resolving the relationships between the entities. Previous work focused on the cooking domain and proposed a framework to convert a recipe text into a flow graph (FG) representation. In this work, we propose a framework based on the recipe FG for flow graph prediction of open-domain procedural texts. To investigate flow graph prediction performance in non-cooking domains, we introduce the wikiHow-FG corpus from articles on wikiHow, a website of how-to instruction articles. In experiments, we consider using the existing recipe corpus and performing domain adaptation from the cooking to the target domain. Experimental results show that the domain adaptation models achieve higher performance than those trained only on the cooking or target domain data.</abstract>
<identifier type="citekey">shirai-etal-2023-towards</identifier>
<identifier type="doi">10.18653/v1/2023.repl4nlp-1.8</identifier>
<location>
<url>https://aclanthology.org/2023.repl4nlp-1.8/</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>87</start>
<end>96</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Towards Flow Graph Prediction of Open-Domain Procedural Texts
%A Shirai, Keisuke
%A Kameko, Hirotaka
%A Mori, Shinsuke
%Y Can, Burcu
%Y Mozes, Maximilian
%Y Cahyawijaya, Samuel
%Y Saphra, Naomi
%Y Kassner, Nora
%Y Ravfogel, Shauli
%Y Ravichander, Abhilasha
%Y Zhao, Chen
%Y Augenstein, Isabelle
%Y Rogers, Anna
%Y Cho, Kyunghyun
%Y Grefenstette, Edward
%Y Voita, Lena
%S Proceedings of the 8th Workshop on Representation Learning for NLP (RepL4NLP 2023)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F shirai-etal-2023-towards
%X Machine comprehension of procedural texts is essential for reasoning about the steps and automating the procedures. However, this requires identifying entities within a text and resolving the relationships between the entities. Previous work focused on the cooking domain and proposed a framework to convert a recipe text into a flow graph (FG) representation. In this work, we propose a framework based on the recipe FG for flow graph prediction of open-domain procedural texts. To investigate flow graph prediction performance in non-cooking domains, we introduce the wikiHow-FG corpus from articles on wikiHow, a website of how-to instruction articles. In experiments, we consider using the existing recipe corpus and performing domain adaptation from the cooking to the target domain. Experimental results show that the domain adaptation models achieve higher performance than those trained only on the cooking or target domain data.
%R 10.18653/v1/2023.repl4nlp-1.8
%U https://aclanthology.org/2023.repl4nlp-1.8/
%U https://doi.org/10.18653/v1/2023.repl4nlp-1.8
%P 87-96
Markdown (Informal)
[Towards Flow Graph Prediction of Open-Domain Procedural Texts](https://aclanthology.org/2023.repl4nlp-1.8/) (Shirai et al., RepL4NLP 2023)
ACL