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Abstract. In this paper, inspired by a classical connections between partitions and divisors, we investigate some
congruence identities involving sums of the odd divisor function σodd(n) which is defined by σodd(n) = ∑ d|n

d odd
d. In

this context, we conjectured that the congruence

∞

∑
k=−∞

σodd
(
n− k(3k−1)/2

)
≡

{
n (mod m), if n = j(3 j−1)/2, j ∈ Z,
0 (mod m), otherwise.

is valid for any positive integer n if and only if m ∈ {2,3,6}.
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1. INTRODUCTION

The object of our investigations is the divisor function σodd(n) which is defined as the sum of the odd
positive divisors of n, i.e.,

σodd(n) := ∑
d|n

d odd

d.

Throughout this paper, we consider σodd(n) = 0 for n 6 0. Recall that the function σodd(n) is the coefficient of
qn in the following Lambert series expansion

σodd(n) = [qn]
∞

∑
n=1

(2n−1)q2n−1

1−q2n−1 , |q|< 1. (1)

On the other hand, the function σodd(n) appears naturally as the coefficients of a modular form. It is related to
the eta η-Dedekind function and Eisenstein series E2,2.

Recall [2, Chap. 3] that the Dedekind eta function η(τ) is given by

η(τ) := q1/24
∞

∏
n=1

(1−qn), (2)

where q = e2πiτ and Im(τ)> 0. It is well known that the η-function is a modular form of weight 1/2 and level
1 for a certain character of order 24 of the metaplectic double cover of the modular group. The eta quotient
η(τ)/η(2τ) is equal to

η(τ)

η(2τ)
= q−1/24

∞

∏
n=1

(1−q2n−1). (3)
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By the logarithmic derivative of this formula, we get the Eisenstein series

E2,2(τ) =−
1
24

+q
∞

∑
n=1

−(2n−1)q2n−2

q2n−1 =− 1
24
−

∞

∑
n=1

σodd(n)qn. (4)

It is known that E2,2(τ) is a modular form for the congruence subgroup Γ0(2) [5, pp. 18-19].
In [4, Chap. 3, Section 3.3], the odd divisor function σodd(n) is related to the topic of sums of four squares.

More details about arithmetic properties of σodd(n) can be found in [3].
A partition of a positive integer n is a sequence of positive integers whose sum is n. The order of the

summands is unimportant when writing the partitions of n, but for consistency, a partition of n will be written
with the summands in a nonincreasing order [1]. The Euler partition function p(n) gives the number of ways
of writing the nonnegative integer n as a sum of positive integers, where the order of addends is not considered
significant. For example, the partitions of 5 are 5, 4+1, 3+2, 3+1+1, 2+2+1, 2+1+1+1 and 1+1+
1+1+1. Thus, p(5) = 7. The generating function of p(n) is given by

∞

∑
n=0

p(n)qn =
1

(q;q)∞

and the expansion starts as

1
(q;q)∞

= 1+q+2q2 +3q3 +5q4 +7q5 +11q6 +15q7 +22q8 +30q9 + · · · .

Here and throughout this paper, we use the following customary q-series notation:

(a;q)n =

{
1, for n = 0,
(1−a)(1−aq) · · ·(1−aqn−1), for n > 0;

(a;q)∞ = lim
n→∞

(a;q)n.

Because the infinite product (a;q)∞ diverges when a 6= 0 and |q| > 1, whenever (a;q)∞ appears in a formula,
we shall assume |q|< 1.

The divisors of numbers have been studied from the point of view of partitions of integers for a long time.
It is well know that Euler’s partition function p(n) and the sum of divisors function

σ(n) := ∑
d|n

d

satisfy common recursive relations with only p(0) different from σ(0):
∞

∑
k=−∞

(−1)k p
(
n−P5(k)

)
= δ0,n, with p(0) = 1

and
∞

∑
k=−∞

(−1)k
σ
(
n−P5(k)

)
= 0, with σ(0) replaced by n, (5)

where δi, j is the Kronecker delta and

Pm(n) :=
(m

2
−1
)

n2−
(m

2
−2
)

n

is the nth generalized m-gonal number. It is clear that the divisors functions σ(n) and σodd(n) have the same
parity, i.e.,

σ(n)≡ σodd(n) (mod 2).
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By identity (5), we easily deduce the following parity results.

THEOREM 1. For n > 0,
∞

∑
k=−∞

σodd
(
n−P5(k)

)
≡ 1 (mod 2)

if and only if n is an odd generalized pentagonal number.

It is well known that σodd(n) is odd if and only if n is a square or a twice square. Thus we deduce the
following parity result.

COROLLARY 1. Let n be a positive integer. The number of representations of n as the sum of a generalized
pentagonal number and a square or a twice square is odd if and only if n is an odd generalized pentagonal
number.

The first generalized pentagonal numbers are

0,1,2,5,7,12,15,22,26,35,40,51, . . .

As we can see, 51 is an odd generalized pentagonal number that can be represented as a sum of a generalized
pentagonal number and a square or twice square in five different ways:

51 = 1+2 ·52 = 2+72 = 15+62 = 26+52 = 35+42.

In this article, we investigate the positive integers m for which the following congruence identities are valid
for any positive integer n:

∞

∑
k=−∞

σodd
(
n−Pm(k)

)
≡

{
n (mod 2), if n = Pm( j), j ∈ Z,
0 (mod 2), otherwise,

(6)

∞

∑
k=−∞

σodd
(
n−P5(k)

)
≡

{
n (mod m), n = P5( j), j ∈ Z,
0 (mod m), otherwise,

(7)

∞

∑
k=−∞

(−1)P3(−k)
σodd

(
n−P5(k)

)
≡

{
(−1)P3(− j) ·n (mod m), if n = P5( j), j ∈ Z,
0 (mod m), otherwise.

(8)

It is clear that the case m = 5 of (6) is the case m = 2 of (7) and (8). Note that generalized 3-gonal numbers
are triangular numbers and generalized 4-gonal numbers are squares of integers. It is known that generalized
hexagonal numbers are identical with triangular numbers. We have the following equivalent form of the con-
gruence (6): The number of representation of n as the sum of a generalized m-gonal number and a square or a
twice square is odd if and only if n is an odd generalized m-gonal number.

There is a substantial amount of numerical evidence to conjecture the following assertions.

CONJECTURE 1. The congruence (6) is valid for any positive integer n if and only if m ∈ {5,6}.

CONJECTURE 2. The congruence (7) is valid for any positive integer n if and only if m ∈ {2,3,6}.

CONJECTURE 3. The congruence (8) is valid for any positive integer n if and only if m ∈ {2,4}.

In Section 2, we prove one implication of Conjecture 1, i.e., if m ∈ {5,6}, then (6) holds for any positive
integer n. We remark that, the case m = 6 of this implication reads as follows.

THEOREM 2. For n > 0,
∞

∑
k=0

σodd
(
n−P3(k)

)
≡ 1 (mod 2)

if and only if n is an odd triangular number.
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The other implication has been verified for all integers m with m < 100000. In Section 3, we prove one
implication of Conjecture 2, i.e., if m ∈ {2,3,6}, then (7) holds for any positive integer n. In Section 4, we
prove one implication of Conjecture 3, i.e., if m ∈ {2,4}, then (8) holds for any positive integer n.

2. PROOFS OF THEOREMS 1 AND 2

As usual, we denote by Q(n) the number of integer partitions of n into odd parts. For example, Q(7) = 5
because the five partitions of 7 odd parts are 7, 5+1+1, 3+3+1, 3+1+1+1+1, 1+1+1+1+1+1+1.
We remark that the generating function of Q(n) is given by

∞

∑
n=0

Q(n)qn =
1

(q;q2)∞

= (−q;q)∞.

The logarithmic differentiation of the generating function for Q(n) gives:

d
dq

1
(q;q2)∞

=− 1
(q;q2)2

∞

d
dq

(q;q2)∞ =
1

(q;q2)∞

∞

∑
n=1

(2n−1)q2n−2

1−q2n−1 .

On the other hand, we have

d
dq

1
(q;q2)∞

=
d
dq

∞

∑
n=0

Q(n)qn =
∞

∑
n=1

nQ(n)qn−1.

Thus we deduce that

∞

∑
n=1

nQ(n)qn = (−q;q)∞

∞

∑
n=1

(2n−1)q2n−1

1−q2n−1 = (−q;q)∞

∞

∑
n=1

σodd(n)qn. (9)

The following theta identity is often attributed to Gauss [1, p.23, eqs. (2.2.13)]:

1+2
∞

∑
n=1

(−1)nqn2
=

(q;q)∞

(−q;q)∞

. (10)

By (9) and (10), we obtain

nQ(n)+2
∞

∑
k=1

(−1)k(n− k2)Q(n− k2) = [qn]

(
(q;q)∞

(−q;q)∞

· (−q;q)∞

∞

∑
n=1

σodd(n)qn

)
=

=
∞

∑
k=−∞

(−1)k
σodd

(
n− k(3k−1)/2

)
,

where we have invoked Euler’s pentagonal number theorem

(q;q)∞ =
∞

∑
n=−∞

(−1)nqn(3n−1)/2. (11)

In this way, we deduce that

nQ(n) and
∞

∑
k=−∞

(−1)k
σodd

(
n− k(3k−1)/2

)
have the same parity. According to [6, Corollary 4.7], Q(n) is odd if and only if n is a generalized pentagonal
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number. This concludes the proof of Theorem 1.
In order to prove Theorem 2, we consider another theta series identity of Gauss: [1, p.23, eqs. (2.2.13)]

(q2;q2)∞

(q;q2)∞

=
∞

∑
n=0

qn(n+1)/2. (12)

Considering this identity, we can write

∞

∑
k=−∞

(−1)kQ
(
n− k(3k−1)

)
= [qn]

(
(q2;q2)∞ ·

1
(q;q2)∞

)
=

= [qn]
∞

∑
n=0

qn(n+1)/2 =

=

{
1, if n is a triangular number,
0, otherwise.

Thus we deduce that

n
∞

∑
k=−∞

Q
(
n− k(3k−1)

)
≡ 1 (mod 2) (13)

if and only if n is an odd triangular number.
On the other hand, taking into account (9), we can write

∞

∑
k=−∞

(−1)k(n− k(3k−1)
)
Q
(
n− k(3k−1)

)
= [qn]

(
(q2;q2)∞

∞

∑
n=1

nQ(n)qn

)
=

= [qn]

(
(q2;q2)∞

(q;q2)∞

∞

∑
n=1

σodd(n)qn

)
=

=
∞

∑
k=0

σodd
(
n− k(k+1)/2

)
.

By this identity, taking into account that k(3k−1) is even, we deduce that

∞

∑
k=0

σodd
(
n− k(k+1)/2

)
≡ n

∞

∑
k=−∞

Q
(
n− k(3k−1)

)
(mod 2).

The proof of Theorem 2 follows easily considering (13).

3. CONGRUENCES MODULO 2, 3 AND 6

The congruence provided by Theorem 1 motivates us to look for other similar results involving the divisor
function σodd and generalized pentagonal numbers. We experimentally found that the coefficient of qn in the
series

(−q;q)∞

(q3;q3)∞

(−q3;q3)∞

∞

∑
n=1

(2n−1)q2n−1

1−q2n−1 = (14)

= q+2q2 +6q3 +6q4 +11q5 +12q6 +19q7 +18q8 +24q9 +30q10 +36q11 +36q12

+36q13 +48q14 +57q15 +60q16 +60q17 +66q18 +72q19 +84q20 +84q21 +106q22 + · · ·
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is congruent to 0 modulo 6 if and only if n is not a generalized pentagonal number or n is a generalized pentag-
onal number congruent to 0 modulo 6. For 0 < r < 6 we notice that the coefficient of qn in (14) is congruent
to r modulo 6 if and only if n is a generalized pentagonal number congruent to r modulo 6. Considering the
Jacobi triple product identity

(q;q)∞(z;q)∞(q/z;q)∞ =
∞

∑
n=−∞

(−1)nznqn(n−1)/2, |q|< 1, z 6= 0,

we deduce that

(−q;q)∞

(q3;q3)∞

(−q3;q3)∞

= (−q;q3)∞(−q2;q3)∞(q3;q3)∞ =
∞

∑
n=−∞

qn(3n−1)/2.

Thus we can state the following result.

THEOREM 3. For n > 0, m ∈ {2,3,6},

∞

∑
k=−∞

σodd
(
n−P5(k)

)
≡

{
n (mod m), if n = P5( j), j ∈ Z,
0 (mod m), otherwise.

Proof. The proof of this theorem is quite similar to the proof of Theorem 2. We have

∞

∑
k=−∞

σodd
(
n− k(3k−1)/2

)
= [qn]

(( ∞

∑
n=−∞

qn(3n−1)/2
)(

∑
n=1

σodd(n)qn
))

=

= [qn]

(
(−q;q)∞

(q3;q3)∞

(−q3;q3)∞

∞

∑
n=1

(2n−1)q2n−1

1−q2n−1

)
=

= nQ(n)+2
∞

∑
k=1

(−1)k(n−3k2)Q(n−3k2) =

= n

(
Q(n)+2

∞

∑
k=1

(−1)kQ(n−3k2)

)
−6

∞

∑
k=1

(−1)kk2Q(n−3k2)

and

Q(n)+2
∞

∑
k=1

(−1)kQ(n−3k2) = [qn]

(
(−q;q)∞

(q3;q3)∞

(−q3;q3)∞

)
=

= [qn]
∞

∑
n=−∞

qn(3n−1)/2 =

=

{
1, if n is a generalized pentagonal number,
0, otherwise.

For m ∈ {2,3,6}, we deduce that

∞

∑
k=−∞

σodd
(
n− k(3k−1)/2

)
≡

{
n (mod m), if n is a generalized pentagonal number,
0 (mod m), otherwise.

This concludes the proof.
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4. CONGRUENCES MODULO 2 AND 4

In this section, we prove the following congruence identity.

THEOREM 4. For n > 0, m ∈ {2,4},

∞

∑
k=−∞

(−1)P3(−k)
σodd

(
n−P5(k)

)
≡

{
(−1)P3(− j) ·n (mod m), if n = P5( j), j ∈ Z.
0 (mod m), otherwise.

Proof. The proof of this theorem is quite similar to the proof of Theorem 3. Considering Euler’s pentagonal
number theorem (11), we deduce that

(−q;q)∞

(q2;q2)∞

(−q2;q2)∞

= (−q;q2)∞(q2;q2)∞ =
∞

∑
n=−∞

(−1)n(n−1)/2qn(3n−1)/2.

We can write

Q(n)+2
∞

∑
k=1

(−1)kQ(n−2k2) = [qn]

(
(−q;q)∞

(q2;q2)∞

(−q2;q2)∞

)

=

{
(−1) j( j−1)/2, if n = j(3 j−1)/2, j ∈ Z,
0, otherwise

and

∞

∑
k=−∞

(−1)k(k−1)/2
σodd

(
n− k(3k−1)/2

)
= [qn]

(( ∞

∑
n=−∞

(−1)n(n−1)/2qn(3n−1)/2
)(

∑
n=1

σodd(n)qn
))

= [qn]

(
(−q;q)∞

(q2;q2)∞

(−q2;q2)∞

∞

∑
n=1

(2n−1)q2n−1

1−q2n−1

)

= nQ(n)+2
∞

∑
k=1

(−1)k(n−2k2)Q(n−2k2)

= n

(
Q(n)+2

∞

∑
k=1

(−1)kQ(n−2k2)

)
−4

∞

∑
k=1

(−1)kk2Q(n−2k2).

The proof follows easily.
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