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ABSTRACT

A vertically resolved linear model for large-scale motions in an equatorial non-rotating atmosphere is presented. Precip-

itation is forced by tropospheric precipitable water, cloud–radiation interactions (CRI), and wind-induced surface heat

exchange (WISHE). The dynamics of the model are based on the assumption that the vertical heating profile has the

shape of the first baroclinic mode. The vertical profiles of vertical velocity, temperature perturbation, etc. are calculated

using an upward radiation boundary condition.

The modelled modes are of three types: fast gravity waves that resemble adiabatic modes with the vertical wavelength

twice the depth of the troposphere; convectively coupled gravity modes that are damped and move with a phase speed

of ≈17 m s−1; and the unstable moisture mode.

The value of the model is that under a single dynamical assumption it yields the observed phase speed for the

convectively coupled gravity waves that map to Kelvin waves in the equatorial beta plane case while still producing

the unstable moisture mode. However, the model lacks the precipitation physics needed to produce the observed

destabilization of the gravity mode.

1. Introduction

Many hypotheses about the interaction of deep convection and

large-scale flows in the tropics have been tested first in sim-

plified linear models. Such models are good test beds because

convective interactions are more transparent than in complex

weather prediction models. In addition, tropical, convectively

coupled wave modes provide an excellent test of linearized mod-

els (Wheeler and Kiladis, 1999). To provide context for the work

in this paper, we first present a discussion of existing conceptual

models of the interaction between convection and the large-scale

flow.

1.1. Ekman pumping

Charney and Eliassen (1964) and Charney (1971) hypothesized

that Ekman pumping caused boundary layer air to rise to the

level of free convection, thus forcing deep convection in tropical

storms and in the intertropical convergence zone (ITCZ). This

idea has been very robust, being expressed in the Kelvin-Rossby

wave theory of Wang and Rui (1990; see also Moskowitz and

Bretherton, 2000) and in models such as those of Lindzen and

Nigam (1987) and Battisti et al. (1999). This theory has some
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skill in predicting at least the time-averaged position of the ITCZ

(Tomas et al., 1999; McGauley et al., 2004). However, Raymond

et al. (2006) present evidence that Ekman pumping is a poor

guide to the day-to-day location of deep convection in the tropics.

1.2. Wave-CISK

Hayashi (1970), Lindzen (1974), Davies (1979) and many others

developed a theory of large-scale tropical waves based on the hy-

pothesis that wave-induced lifting rather than Ekman pumping

forces convection. Convective heating in turn forces the wave.

This theory became generally known as wave-conditional insta-

bility of the second kind (wave-CISK; Lindzen, 1974). Wave-

CISK models tend to produce instabilities which have maximum

growth rates at the shortest wavelengths.

Ooyama (1982) concluded that wave-CISK is nothing more

than an aliased form of ordinary convective instability. Never-

theless, it tends to predict wave speeds which are commensu-

rate with the observed speeds of tropical, convectively coupled

Kelvin waves (Wheeler and Kiladis, 1999). The moisture con-

vergence theory of Kuo (1965, 1974) is generally considered to

be related closely to wave-CISK.

1.3. CAPE forcing

Theories of convective forcing based on control by convective

available potential energy (CAPE) were developed about the

344 Tellus 59A (2007), 3



VERTICALLY RESOLVED MODEL OF TROPICAL DISTURBANCES 345

same time as wave-CISK. These include the convective adjust-

ment theory of Manabe et al. (1965) and the convective quasi-

equilibrium theory of Arakawa and Schubert (1974). In both

of these theories convection is assumed to respond nearly in-

stantly to a tendency in CAPE (or a closely related quantity) so

as to return this variable to the equilibrium value specific to the

theory.

Cumulus parametrizations based on these ideas were devel-

oped, though the complexity of these models generally precludes

their use in simplified linear contexts. One exception is the lin-

earized Arakawa–Schubert model of Stark (1976), who found

that tropical wave modes tended to be neutral rather than un-

stable for realistic conditions. Another is the theory of Neelin

and Yu (1994), which uses a simplified version of the Betts and

Miller (1986) convective adjustment scheme. This theory also

produces only damped modes unless some independent destabi-

lizing mechanism is introduced.

1.4. Strict quasi-equilibrium

Emanuel (1987) introduced a model of intraseasonal oscilla-

tions based on the simple idea of strict quasi-equilibrium. In this

theory convection is assumed to drive the atmosphere instantly

to a moist adiabat consistent with the equivalent potential tem-

perature of the boundary layer. The latter is determined by the

interaction of surface fluxes, radiation, and vertical motion. In a

mean easterly flow, the enhancement of surface fluxes associated

with stronger than normal easterlies results in the development

of unstable eastward-propagating large-scale waves by the so-

called wind induced surface heat exchange (WISHE) process.

These waves are highly dispersive, with 30 m s−1 phase speeds

for long wavelengths, decreasing significantly for shorter wave-

lengths.

Various elaborations of this theory have been proposed, for

example, Yano and Emanuel (1991), Emanuel (1993), Emanuel

et al. (1994) and Neelin and Yu (1994), but all retain the same

general characteristics. In particular, the vertical wave struc-

ture in all of these cases is that of the first baroclinic mode,

with a vertical half-wavelength equal to the depth of the tropo-

sphere. Phase speeds are reduced from free gravity wave val-

ues by virtue of an effective static stability in which condensa-

tional heating partially compensates cooling due to dry adiabatic

lifting.

Given the rapid propagation speeds, it is hard to see how these

modes can be related to intraseasonal oscillations such as the

Madden–Julian oscillation (Madden and Julian, 1994). Various

tests of the strict quasi-equilibrium hypothesis are not encour-

aging. Brown and Bretherton (1997) found that the increase in

the mean temperature of the troposphere associated with an in-

crease in the boundary layer equivalent potential temperature is

only a third to a half of what might be expected from strict

quasi-equilibrium. Even worse, the observed response of the

atmosphere to intense convection is universally cooling in the

lower troposphere and warming in the upper troposphere (Reed

and Recker, 1971; Thompson et al., 1979; Cho and Jenkins,

1987; McBride and Frank, 1999). This change in thermal struc-

ture is related geostrophically to the development of mid-level

cyclonic vorticity, which indicates that the convective tendency

to produce a moist adiabat is not strong enough to overcome

geostrophic adjustment.

Tropical wave disturbances have been shown also to have ver-

tical profiles of temperature, heating, and vertical velocity which

are more complex than hypothesized for strict quasi-equilibrium.

Furthermore, this structure appears to be essential to the dy-

namics of these disturbances (Straub and Kiladis, 2002; Kiladis

et al., 2005).

1.5. Two-component vertical structure

Recently a number of theories have attempted to take into ac-

count the observed vertical structure of tropical waves. Mapes

(2000) developed a linearized model truncated at the first two

vertical modes of Fulton and Schubert (1985). The first mode ap-

proximates the fundamental baroclinic mode of the tropical tro-

posphere while the second (the stratiform mode) has roughly half

the vertical wavelength. Convective heating in the first mode is

controlled by a combination of CAPE and the ratio of convective

inhibition to boundary layer turbulent kinetic energy (CIN/K),

while heating in the second mode is a lagged and scaled version of

fundamental mode heating designed to approximate the effects

of stratiform precipitation. When control by CIN/K is turned

off, the model is stable and no wave disturbance develops. Such

development occurs only when CIN/K is enabled, resulting in

waves propagating at the speed of observed convectively coupled

Kelvin waves.

Majda and Shefter (2001) and Majda et al. (2004) developed

what appears to be a similar model, but without the dependence of

convective heating on CIN/K. Curiously, these models produce

instability even though they are forced only by CAPE.

1.6. Moisture mode

A variety of recent work has shown that tropical precipitation

is very sensitive to the precipitable water in the troposphere

(Sherwood, 1999; Lucas et al., 2000; Bretherton et al., 2004;

Derbyshire et al., 2004; Sobel et al., 2004; Raymond & Zeng,

2005). Fuchs and Raymond (2002, 2005) developed a linear shal-

low water equation model in which precipitation is assumed to be

proportional to precipitable water. WISHE and cloud–radiation

interactions (CRI) are included. A single unstable mode devel-

ops in this model when either WISHE or CRI is turned on.

Without WISHE (i.e. without surface heat flux variability re-

sulting from zonal wind variability in the presence of mean east-

erlies), the mode is stationary; the effect of WISHE is to destabi-

lize disturbances with small zonal wavenumber and make them

propagate to the east. CRI results in instability insensitive to
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wavenumber. Since the precipitation in these modes depends on

the existence of large moisture anomalies, we call them moisture
modes.

Sobel and Horinouchi (2000) and Sobel et al. (2001) devel-

oped a theory of unstable, slowly propagating modes in an en-

vironment with a meridional moisture gradient which have the

character of moisture modes. The gross moist stability (GMS;

Neelin and Held, 1987) is assumed to be positive in their theory.

When the GMS is greater than zero, instability vanishes for zero

moisture gradient. However, examination of the theory reveals

that instability persists in this case if the GMS is allowed to be

negative.

Sobel and Bretherton (2003) showed that damped moisture

modes exist in numerical model simulations of a homogeneous,

non-rotating environment with parametrized convection. How-

ever, Grabowski (2003) found that the interaction of moisture

fluctuations with deep convection was essential to the simulated

development of the large-scale structure of tropical disturbances

in a calculation in which convection was parametrized with a

cumulus ensemble model in each grid box.

Given the apparent role of negative GMS in destabilizing

moisture modes, we need to determine whether negative GMS

actually occurs in the tropical environment. The observational

results of López Carrillo and Raymond (2005) suggest that neg-

ative GMS occurs commonly over the west Pacific warm pool

during relatively dry conditions in which convective systems

exhibit little stratiform precipitation development, whereas pos-

itive GMS develops in moist situations with widespread deep

convection and large stratiform rain areas.

1.7. Present work

The present paper continues our quest to find the minimal set of

assumptions needed to explain the observed spectrum of tropical

oceanic convection. It builds on the work of Fuchs and Raymond

(2002) by expanding the shallow water dynamics of this model to

full vertical resolution while retaining its cloud and precipitation

physics. The primary goal is to clarify how the moisture instabil-

ity of the earlier model presents itself in the vertically resolved

case. In addition, we are able to cast some light on the dynami-

cal nature of travelling convective modes such as the equatorial

Kelvin mode, even though these modes do not amplify in the

current context.

The model equations are described in Section 2 and the dis-

persion relation for the disturbances is developed in Section 3.

Results are presented and discussed in Section 4, and conclusions

are drawn in Section 5.

2. Model

We first present our linearized governing equations for large-

scale motions in a non-rotating atmosphere. Then we explain

the thermodynamic forcing of the model, concentrating on its

vertical structure.

2.1. Governing equations

Our two-dimensional, Boussinesq, linearized system of govern-

ing equations includes the horizontal momentum equation

∂u

∂t
+ ∂�

∂x
= 0, (1)

where u is the horizontal wind and � is the mean potential tem-

perature times the Exner function perturbation; the hydrostatic

equation

∂�

∂z
− b = 0, (2)

where b is the buoyancy perturbation (defined below); the con-

tinuity equation

∂u

∂x
+ ∂w

∂z
= 0, (3)

with w the vertical velocity; the buoyancy equation

∂b

∂t
+ �Bw = SB (4)

with � B = (g/Cp) ds d0/dz and SB = (g/Cp) dsd/dt , where g
equals the acceleration due to gravity, Cp is the specific heat of

air at constant pressure, and where the dry entropy is split into

mean and perturbation parts sd = s d0(z) + s ′
d with b = gs ′

d/Cp;

the moisture equation

∂q

∂t
+ �Qw = SQ (5)

with � Q = (gL/CpTR) dr 0/dz and SQ = (gL/CpTR) dr/dt , where

the mixing ratio r = r 0(z) + r ′, L is the latent heat of conden-

sation, TR = 300 K is a constant reference temperature, and q =
(gL/CpTR)r ′; and finally the moist entropy equation

∂e

∂t
+ �E w = SE (6)

with � E = (g/Cp) ds 0/dz and SE = (g/Cp)ds/dt , where the

moist entropy s = s 0(z) + s ′ and e = (g/Cp)s ′.
The last three equations are not independent. Note that e =

b + q and � E = � B + � Q . We assume that �B is constant. The

vertical structure of �E is discussed later.

2.2. Thermal assumptions of the model

As in Fuchs and Raymond (2002, 2005) we assume that the

vertically integrated dry entropy source term SB depends on the

precipitation rate minus the radiative cooling rate, the integrated

moisture source term SQ depends on evaporation rate minus the

precipitation rate, and the integrated moist entropy source term

SE on evaporation rate minus the radiative cooling rate,

B =
∫ h

0

SB(z) dz = P − R (7)
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Q =
∫ h

0

SQ(z) dz = E − P (8)

� =
∫ h

0

SE (z) dz = E − R, (9)

where h is the depth of the troposphere and P, E and R are scaled

perturbations in the precipitation rate, the surface evaporation

rate, and the vertically integrated radiative cooling rate. Note

that � = B + Q.

The fundamental assumptions of the model are that the per-

turbation precipitation rate is proportional to the perturbation

precipitable water

P = α

∫ h

0

q(z) dz, (10)

where α = 1 d−1 is moisture relaxation rate; that the perturbation

radiative cooling rate decreases as the perturbation precipitation

rate increases due to the blocking of outgoing long-wave radia-

tion by the associated clouds

R = −αε

∫ h

0

q(z) dz, (11)

where ε is the cloud-radiative feedback parameter taken as

ε ≈ 0.2 (see Fuchs and Raymond, 2002); and where the sur-

face perturbation evaporation rate is given by

E = C�qUus

(U 2 + W 2)1/2
, (12)

where C is the transfer coefficient, �q is the scaled difference

between the saturation mixing ratio at the sea surface temperature

and the subcloud mixing ratio, U is the ambient zonal wind at

the surface, W ≈ 3 m s−1 is a constant needed to account for

gustiness, and us is the perturbation surface zonal wind. For

strong ambient easterly winds in this linearized parametrization

of WISHE, U/(U2 + W2)1/2 ≈ −1. The surface sensible heat

fluxes are ignored as they are small compared to the latent heat

fluxes over the tropical oceans.

Equations (7)–(12) are general in the sense that no assump-

tions have been made yet about the vertical structure of the fields.

At this point Fuchs and Raymond (2002, 2005) imposed a first

baroclinic mode vertical structure on all variables. We believe

that the first baroclinic mode approximation is the weakest part of

the previous model. In this paper we calculate the vertical profiles

of all the variables on the assumption that only the vertical heat-

ing profile is fixed. Thus we exclude the separate vertical heating

profiles for cumulus congestus, deep convection, and stratiform

conditions assumed by Mapes (2000), Majda and Shefter (2001)

and Majda et al. (2004).

2.3. Vertical velocity

We assume that all the variables are proportional to

exp[i(kx − ωt)], where k is the zonal wavenumber and ω is the

frequency. From the governing system of eqs. (1)–(4), we derive

the inhomogeneous differential equation for the vertical velocity

perturbation:

d2w(z)

dz2
+ m2w(z) = k2

ω2
SB(z), (13)

where m = k�
1/2
B /ω. To solve (13) we assume that the heating

has a fixed vertical profile: SB(z) = Bη(z), where η(z) is non-zero

only in the troposphere 0 < z < h, and where∫ h

0

η(z) dz = 1. (14)

Note from eq. (13) that we do not need to know the vertical

profiles of SQ(z) and SE(z) .

From Raymond (1975)

w(z) = [I2(z) − I1(0)] w1H (z) + I1(z)w2H (z), (15)

where the homogeneous solutions to (13) are w 1H =
exp(−imz) and w 2H = exp(imz), and where I1(z) and I2(z) are

given by:

I1(z) = ik2

2mω2
B

∫ h

z
w

1H (z′)η(z′) dz′ (16)

I2(z) = ik2

2mω2
B

∫ z

0

w
2H (z′)η(z′) dz′. (17)

This solution has w = 0 at the surface and upward radiation

boundary conditions built into it.

We assume here a simple heating profile that satisfies (14)

η(z) = (m 0/2) sin (m 0z) for z ≤ h, where m 0 = π/h. The

resulting vertical velocity profile in the troposphere is

w(z) = m0 B

2�B(1 − �2)

× [sin(m0z) + � exp(−iπ/�) sin(mz)] z ≤ h,

(18)

where

� = m0

m
= π

mh
= πω

hk�
1/2
B

= 

κ
(19)

is the dimensionless phase speed. We scale the frequency with the

moisture relaxation constant α so that =ω/α is the dimension-

less frequency. Similarly we define a dimensionless wavenum-

ber κ = h�
1/2
B k/(πα). Velocities scale with the phase speed

of free gravity waves with fundamental baroclinic mode vertical

structure, h�
1/2
B /π . The inhomogeneous solution sin(m0z) in (18)

is driven by the deep convective heating component while the

homogeneous solution exp(−iπ /�)sin(mz) represents the free

gravity wave which is needed to satisfy the radiation bound-

ary condition at z = h. The vertical velocity perturbation in the

stratosphere is:

w(z) = m0 B�

2�B(1 − �2)
sin(π/�) exp(−imz) z > h. (20)
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3. Calculating the dispersion relation

The polarization relations for our system of equations are

u(z) = i

k

∂w(z)

∂z
(21)

�(z) = iω

k2

∂w(z)

∂z
(22)

b(z) = i

ω
[SB(z) − �Bw(z)] (23)

q(z) = i

ω
[SQ(z) − �Q(z)w(z)] (24)

e(z) = i

ω
[SE (z) − �E (z)w(z)]. (25)

We now calculate the dispersion relation. Combining (7), (10)

and (11), we find that

B =
∫ h

0

SB(z) dz = P − R = α(1 + ε)

∫ h

0

q(z) dz (26)

Recalling that e = b + q we can further write:

B = α(1 + ε)

(∫ h

0

e(z) dz −
∫ h

0

b(z) dz

)
. (27)

It is straightforward to calculate the vertical integral of the scaled

entropy perturbation b from the polarization relation (23):∫ h

0

b(z) dz = i

ω

[∫ h

0

SB(z) dz −
∫ h

0

�Bw(z) dz

]
. (28)

From (18) we find that∫ h

0

�Bw(z) dz = B F(�)

1 − �2
, (29)

where

F(�) = 1 + �2

2
exp

(
−i

π

�

) [
1 − cos

( π

�

)]
. (30)

The vertical integral of the moist entropy perturbation is ob-

tained from (6):

−iω
∫ h

0

e(z) dz +
∫ h

0

�E (z)w(z) dz = E − R. (31)

Recalling the expressions (11) and (12) for radiative cooling rate

and the surface evaporation rate we obtain∫ h

0

e(z) dz = 1

αε + iω

[ ∫ h

0

�E (z)w(z) dz + αε

∫ h

0

b(z) dz

−CUus�q/(U 2 + W 2)1/2

]
. (32)

We are now ready to write the equation for B from which the

dispersion relation is calculated. We substitute (32) and (28) into

(27), arriving at

(iκ� − 1)B = (1 + ε)

[ ∫ h

0

�E (z)w(z) dz −
∫ h

0

�Bw(z) dz

−CUus�q/(U 2 + W 2)1/2

]
(33)

From (21) we find that

us = i

κ

(
∂w

∂z

)
z=0

= i
m2

0 BG(�)

2k�B(1 − �2)
, (34)

where

G(�) = 1 + exp(−iπ/�), (35)

which allows us to compute the surface perturbation evaporation

rate CUus�q/(U2 + W2)1/2 defined in (12), the term that we call

also the WISHE term.

3.1. The gross moist stability

The first term on the right side of (32) requires some additional

assumptions about the form of the ambient moist entropy profile.

We write a non-dimensionalized gross moist stability (GMS) �M

as

�M =
∫ h

0
�E (z)w(z) dz∫ h

0
�Bw(z) dz

, (36)

where the denominator is given by (29) and where

�E (z) = g

Cp

ds0(z)

dz
≡ de0(z)

dz
. (37)

The quantity s0 is the mean moist entropy profile and e0 is the

scaled moist entropy profile. (This differs somewhat from Neelin

and Held’s (1987) GMS; integrating the numerator by parts,

replacing the denominator by the mass flow through the system,

and assuming w = 0 at the tropopause yields something closer

to their original definition. The use of moist entropy rather than

moist static energy as the thermodynamic variable constitutes an

insignificant difference in this case.)

To estimate the value of �M in our model we assume that the

scaled mean moist entropy e0 has the form shown in Fig. 1. We

assume also that the moist entropy takes the same value at the

top of the troposphere as at the surface. We can then write the

moist static stability

�E =
{

− � e0/d, 0 < z < d

�e0/(h − d), d < z < h
(38)

The integral in the numerator of (36) is∫ h

0

�E (z)w(z)dz = B�eJ (H , �)

2(1 − �2)H (1 − H )
, (39)
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e0

0

1

z
/h

H

Δe0

Fig. 1. The scaled mean moist entropy profile as a function of

non-dimensionalized height.

where �e = �e0/h� B is the non-dimensionalized scaled moist

entropy difference,

J (H , �) = 2H − 1 + cos(π H ) + �2 exp

(
− i

π

�

)
[

H − 1 − H cos

(
π

�

)
+ cos

(
π H

�

)]
, (40)

and where H = d/h is the non-dimensionalized height of mini-

mum entropy.

In this formulation the GMS is a function of �:

�M = �eJ (H , �)

2H (1 − H )F(�)
, (41)

where F(�) is defined in (30). However, in the limit in which

|�|2 	 1, the GMS takes the approximate form

�M ≈ �e[2H − 1 + cos(π H )]

2H (1 − H )
. (42)

3.2. Dispersion relation

We now substitute (29), (39) and (34) into (33) and use the

definition of GMS (36) to write the dispersion relation:

κ�3 + i�2 − κ� − i + i(1 + ε)(1 − �M )F(�) − �

κ
G(�)=0,

(43)

where F(�) is defined by (30), G(�) by (35), and where � =
m 0CU�q(1 + ε)/[2α�

1/2
B (U 2 + W 2)1/2] is the WISHE param-

eter that is the non-dimensionalized expression of the WISHE

term multiplied by (1 + ε). The parameters we vary are �e, H,

ε, and �.

4. Results and discussion

Figure 2 shows phase speeds and growth rates plotted against

planetary wavenumber l (wavelength divided by the circum-

ference of the earth, assumed to be 40 000 km) for all modes

-50
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e

(ω
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k
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m
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)

A - phase speed
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-1.5
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1

Im
(ω

) 
(1

/d
a

y
)

B - growth rate

Fig. 2. Dimensional dispersion curves as a function of the planetary

wavenumber l when ε = 0.2, � = −0.4, �e = 0.26, H = 0.5. Solid line

represents convectively coupled gravity modes, dashed lines represent

fast gravity modes and dotted line represents the moisture mode.

predicted by the dispersion relation (43). These include convec-

tively coupled gravity modes, fast gravity modes, and the mois-

ture mode. In this control case CRI and WISHE are turned on

with ε = 0.2 and � = −0.4. The entropy profile parameters take

the values H = 0.5 and �e = 0.26, which corresponds to a mean

moist entropy difference �s 0 = 40 J kg−1 K−1 and a minimum

in ambient moist entropy at half the height of the tropopause. In

this case the GMS �M ≈ 0.

In order better to understand these modes, we investigate the

vertical velocity and buoyancy perturbations for neutral modes in

an environment with a rigid lid. These variables take particularly

simple forms in this case, and insight garnered with these solu-

tions helps us understand the more complex case with growing

or decaying modes and an upward radiation boundary condition.

Assuming as before that SB = (m 0 B/2) sin (m 0z), where

m 0 = π/h with h being the depth of the troposphere, the general

solution to (13) satisfying rigid lid boundary conditions at z =
0, h is

w = m0 B

2�B(1 − �2)
sin(m0z) + A sin(mz), (44)

where m = m 0/�, A is an arbitrary constant multiplying the

homogeneous part of the solution to (13), and where the dimen-

sionless phase speed of the mode is � = 1/n for n = 2, 3, 4, . . ..

The constraint on �−1 to integer values comes from the upper
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rigid lid condition. We have omitted consideration of the possi-

bility that � = 1, which explains the absence of n = 1, since

an alternate treatment of the inhomogeneous part of the solu-

tion is required in this case. The corresponding solution for the

buoyancy perturbation (23) is

b = 1

iω

[
m0 B�2

2(1 − �2)
sin(m0z) − �B A sin(m0z/�)

]
. (45)

An alternate possibility is that A = 0, that is, the homogeneous

part of the solution vanishes. In this case there is no requirement

that the dimensionless propagation speed be quantized by the

rigid lid condition—it can take on arbitrary values, excluding

� = 1.

4.1. Convectively coupled gravity modes

The convectively coupled gravity modes move with phase speeds

ranging from 19 m s−1 for long wavelengths to 16.5 m s−1 for

short wavelengths in the control simulation of Fig. 2. As Fig. 3

shows, the characteristics of these modes are relatively insen-

sitive to changes in the vertical profile of moist entropy. In all

cases the phase speed is only a weak function of wavenumber,

indicating that the modes are only modestly dispersive.

As Fig. 4 shows, the buoyancy anomaly in this mode is posi-

tively correlated with the heating in the mid-troposphere where

the heating is the strongest, which means that available potential

energy is being added to the wave. In spite of this, the wave is

damped, as indicated by the increasing amplitude with height.

Also it does not have the characteristic ‘boomerang’ structure
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Fig. 3. Dimensional dispersion curves of the convectively coupled

gravity mode as a function of l for ε = 0.2, � = −0.4. The upper

panels show the phase speed, the lower ones show the growth rate. On

the left H is varied, while on the right we vary �e.

0 0.2 0.4 0.6 0.8 1

x/λ

0

0.5

1

1.5

2

z
/h

west east

Fig. 4. Heating and temperature for the convectively coupled gravity

mode in the z/h − x/λ plane for planetary wavenumber l = 10, where λ

is the horizontal wavelength. The heating has maximum where the

image is white and minimum for black. The buoyancy perturbation is

given as a contour plot where the thick solid line corresponds to zero

contour. Negative temperature perturbation contours are given as

dashed line, while positive contours are solid. The contour interval is

0.5 in arbitrary units.

in the vertical seen by Wheeler et al. (2000) and Straub and

Kiladis (2002). In spite of this, the wave is interesting because

it moves at the observed speed of convectively coupled equato-

rial Kelvin waves and it has the potential to be destabilized by

various mechanisms not included in the current model.

The propagation speed of this mode is similar to that seen

in Mapes (2000), Majda and Shefter (2001) and Majda et al.

(2004), as well as in a host of wave-CISK models. We be-

lieve that this is not a coincidence, but results from the quan-

tization of the vertical wavelength of the homogeneous part of

the vertical velocity. The presence of a homogeneous part with

n ≥ 2 and significant magnitude is required for the buoyancy

anomaly to change sign with height. This sign change is neces-

sary for the wave-CISK mechanism to work; the low-level lift-

ing which triggers convection in wave-CISK is associated with

a negative buoyancy anomaly at low levels. However, a positive

buoyancy anomaly collocated with the convection is needed at

upper levels to allow the production of the available potential

energy need for the disturbance to intensify. Similar considera-

tions apply to the mechanisms in the rest of the above-mentioned

models.

When the upper rigid lid is replaced by an upper radiation

condition, the quantization of the vertical wavelength still oc-

curs, but the actual quantized values are not as simply calcu-

lated. However, in general they do not differ radically from the
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Fig. 5. Vertical velocity perturbation as a function of height for the

convectively coupled gravity mode with planetary wavenumber l = 10,

� = −0.4, ε = 0.2, and �M ≈ 0. The upper panel represents the real

part of vertical velocity and the lower panel the imaginary part. The

solid line is for the total vertical velocity, the dashed line is for the

inhomogeneous component of the solution, and the dotted line is for

the homogeneous component.

values obtained in the rigid lid case. Thus the phase speeds com-

puted in the two cases should be similar. The waves computed

by Mapes (2000) and Majda and Shefter (2001) impose a quan-

tization value of n = 2 by hypothesis, that is, the homogeneous

mode is a first harmonic. Our results for the (damped) convec-

tively coupled gravity mode correspond more closely to a value

of n = 3 (see Fig. 5), as is suggested in observations of equa-

torial waves by Wheeler et al. (2000) and Straub and Kiladis

(2002).

Strict quasi-equilibrium disturbances exhibit a very different

mechanism governing propagation. By hypothesis, the buoy-

ancy anomaly in strict quasi-equilibrium does not change sign

with height. Furthermore, these modes tend to be highly disper-

sive (e.g. Emanuel, 1987 and subsequent papers; Neelin and Yu,

1994), suggesting that their phase speeds are not constrained by

the quantization of vertical wavelength discussed above. This

is consistent with the absence of a homogeneous component in

their solutions. The eastward propagation of these modes is ac-

tually due to a phase lag between heating and temperature which

is related to the east–west asymmetry in surface fluxes in the

presence of a mean easterly flow.

4.2. Fast gravity modes

The modelled fast gravity modes are only weakly coupled to

convection. They have a phase speed near 48 m s−1 and decay

at a very slow rate. Their vertical wavelength is approximately

twice the depth of the troposphere, so they have a first baroclinic

mode structure in the vertical. As these modes are of limited

meteorological interest, we will not discuss them further here.

4.3. Moisture mode

The moisture mode shown on Fig. 2 is unstable and has properties

nearly identical to the mode described by Fuchs and Raymond

(2002, 2005). Since normally ε 	 1 and � M 	 1, this mode has

|�|2 	 1. The dispersion relation (43) reduces approximately to

� = i(ε − �M )/κ − �/κ2 (46)

under these conditions. This turns out to be consistent with the

results obtained using the weak temperature gradient approx-

imation of Sobel et al. (2001) in the limit of zero meridional

moisture gradient. In the context of our model, the weak tempera-

ture gradient approximation is equivalent to setting the buoyancy

perturbation b = 0 in the governing eqs. (1)–(6).

As (46) shows, the moisture mode is unstable when an ‘effec-

tive GMS’ equal to �M − ε < 0. The only effect of WISHE is

to cause the disturbance to propagate, with the long wavelength

modes propagating most rapidly. The direction of propagation is

opposite the direction of the low-level zonal wind. The results for

the moisture mode shown in Fig. 2 are consistent with (46), so

this approximate dispersion relation is in good agreement with

the full dispersion relation (43) in the case of the moisture mode.

As expected, the approximate dispersion relation eliminates all

gravity modes.

In contrast to the gravity modes, the homogeneous part of the

solution to (13) plays only a minor role in the profile of vertical

velocity for the moisture mode (see Fig. 6). Thus the vertical

velocity is proportional to the heating profile to a high degree of

accuracy. The heating and temperature structure shown in Fig. 7

are also consistent with a fundamental baroclinic vertical mode

structure.

The instability of the moisture mode depends on the existence

of a negative effective GMS. Neelin and Held (1987) and Sobel

et al. (2001) (who did not include the effects of CRI) assumed

that the GMS �M is always positive. However, López Carrillo

and Raymond (2005) found that negative GMS is associated

with periods of widely scattered convection lacking significant

stratiform rain, whereas positive GMS occurs when stratiform

rain is widespread.

We speculate that the red noise part of the frequency-

zonal wavenumber spectrum eliminated by Wheeler and Kiladis

(1999) from their observational analysis of equatorial waves is

actually a manifestation of moisture instability. One can imagine

a life cycle of a disturbance which starts with showery convection
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352 Ž . FUCHS AND D. J . RAYMOND

Re(w)

0

0.5

1

1.5

z
/h

-0.01 0 0.01 0.02 0.03

Im(w)

0

0.5

1

1.5

z
/h

Fig. 6. As in Fig. 5, but for the moisture mode with l = 2.
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Fig. 7. As in Fig. 4 except for the moisture mode with l = 2, � = −0.4,

ε = 0.2, and �M ≈ 0. The contour interval of temperature perturbation

is 0.02 in arbitrary units, which is much finer than in Fig. 4.

manifesting negative GMS, proceeds to heavier rain accompa-

nied by increasing stratiform conditions, and dies as the GMS

turns positive and the instability vanishes. Given the lack of

wavenumber selectivity in the disturbance growth rate, we en-

vision an ensemble of nearly stationary disturbances of widely

varying sizes going through their life cycles with the chaotic be-

haviour of a boiling pot of water. Most of the convection over the

warm ocean regions of the tropics exhibits such behaviour, and

much of the equatorial precipitation may therefore be associated

with such moisture modes.

5. Conclusions

This paper extends the shallow water model of Fuchs and

Raymond (2002) to the vertically resolved case without chang-

ing the assumptions about precipitation production. The results

are as follows:

(1) The moisture mode found in the vertically resolved

model has very similar characteristics to that seen in the ear-

lier model. However, the vertically resolved calculation clarifies

the role of gross moist stability in the production of instability.

In particular, the moisture mode is unstable when a modified

gross moist instability, which includes the effects of CRI, is neg-

ative. We speculate that much of the non-wave deep convection in

the equatorial regions is associated with unstable-moisture-mode

disturbances. The moisture mode is retained when the dynamics

are simplified to the weak temperature gradient approximation

of Sobel et al. (2001).

(2) The fast gravity modes seen by Fuchs and Raymond

(2002) are seen in the present analysis as well. These modes

have a fundamental baroclinic mode vertical structure, move

with phase speeds of order 50 m s−1, and interact only weakly

with deep convection.

(3) A more slowly propagating, convectively coupled grav-

ity mode not found by Fuchs and Raymond (2002) is seen in the

present results. This mode decays with time and propagates with

a speed of 16–19 m s−1. The vertical structure is complex, con-

sisting of an inhomogeneous part (in a mathematical sense) with

a vertical velocity profile proportional to the convective heat-

ing profile, and a homogeneous part with a shorter wavelength

governed by the upper radiation boundary condition. This wave-

length determines the propagation speed of the mode. It is tempt-

ing to identify this mode with equatorial, convectively coupled

Kelvin waves. However, additional precipitation physics beyond

that used in the present model is presumably needed to give this

mode its observed unstable behaviour. Further progress in un-

derstanding equatorial Kelvin waves depends on elucidating the

additional precipitation physics.

(4) The amplitude of the homogeneous part of the solution

in the convectively coupled gravity mode depends on the na-

ture of the convective parametrization used in the model. Those

which depend strongly on having a temperature perturbation

which changes sign with height such as wave-CISK, the model

of Mapes (2000), and the present model, need this homogeneous

component. Its vertical wavelength in turn fixes the propagation

speed of the disturbance. Strict quasi-equilibrium prohibits such

a temperature structure by hypothesis, and is therefore not sub-

ject to the constraint on the propagation speed imposed by the
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homogeneous component of the solution. As a result, strict quasi-

equilibrium models, especially those dependent on WISHE to in-

duce propagation, can produce highly dispersive modes in which

the propagation speed depends strongly on zonal wavenumber.

The moisture mode has this characteristic in contrast to the con-

vectively coupled gravity mode.
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